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ABSTRACT

Since the digital age, how we design has become as important as what we design. Never before
have there been so many different techniques at our disposal, many of them with the ability to
cross previously imagined frontiers. During the twentieth century, efforts to rethink the habitual
practice of design are accompanying the process itself-the role of the model as an immediate
source of physical and emotional feedback shifts from the analogue to the digital realm, and de-
signing characterizes itself by manipulating digital systems rather than deterministic articulation.
Today's computational resources advance the early pioneering approaches of digital emergence
and complexity, while at the same time unveiling algorithmic design to non-programmers with
intuitive interfaces. With respect to evolutionary search and optimization, this work investigates
aspects of flexibility and performance on the levels of fast application and open representation.
Firstly, a set of tools is introduced which allows parallelized implementation and customization of

evolutionary algorithms on an existing parametric platform. Secondly, an approach for open-ended

description of geometry is presented.
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INTRODUCTION

Emotion and efficiency are just two desires being negotiated
during an architectural design process, where ultimate success
can mean the evolution of good trade-offs between goals at odds.
Economics introduced the Pareto-principle to describe an optimal
distribution of limited resources, where one aspect can just be
improved when degrading another. Pareto-optimization always
yields a set of solutions, ideally spanning diversely from one ex-
treme situation to the other. The final decision, which can address
non-quantifiable measures such as aesthetics, is left to the design-
er. Modern parametric modeling allows the quick iteration of many
design alternatives, while at the same time being able to supply

a number of measures regarding their performance-character.
Explorations and design by trial and error are again becoming more
interesting for building-practice, as intuitive design environments
and innovative design approaches enable a broad base of users to
lever vast computational resources. Modern design platforms and
their open systems allow a simple formulation of intricate genera-
tive processes, though a model’s ability to adapt to changes is lim-
ited by its own complexity. There is a desire to be designing with
systems of simple rules, which are able to temporarily stabilize but
stay open to changes of any kind, to be capable of reflecting any
unforeseen state. Ideally, the accommodation of profound change
at any point of the design process should be as easy possible.

Daniel Davis concludes that a lack of smart modeling can be a
major setback for an architectural project (Davis 2013). There are

a number of different approaches to foster the development of
parametric models that are more universal. Most of them rely on
the user to design his or her parametric formulation in a respon-
sible way, considering the uncertainties or certainties a planning
process could have. Though, apart from the aspects of workflow,
flexibility can be needed on another scale. When the model pri-
marily serves the purpose of exploration, a digital representation
defines the boundaries of the design space. A simple system with
a little number of input variables, but a large spectrum of eventual-
ly unforeseeable solutions, is sought to be able to effectively and
systematically explore the design domain. Whereas it is difficult to
innovate in the field of CAD software on the scale of this work, it
is the usage and the way of parameterization within existing open
systems that is of interest here. When it comes to the dynamic
representation, combination, and generation of pattern, shape,
emotion, and aesthetics, there is a lot of capacity to unveil.

Stanley (2007) proposes the digital evolution of Compositional
Pattern Producing Networks (CPPNs) to create fields of any com-
plexity and resolution. Successfully used for controlling artificial
neural networks and formation of multidimensional shapes, a
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transformation of the principle to the parameterization of design
is investigated here. CPPNs use a set of canonical functions such
as sine, cosine, etc. and combine them in a dynamically evolv-
ing tree, being able to describe almost any state—similar to the
Fourier-approximation of a mathematical function. This includes
the iterative fitting of the CPPN, training it over generations to
exhibit certain qualities. In contemporary practice, it is already the
case that grids, patterns, and shapes are successively refined by
the designer or a genetic algorithm to fulfill a specific purpose.

Purpose can be of a performance-related or aesthetic character,
where we do not want to touch on a general quantification of
beauty here. Shajay Booshan, lead developer at ZHA CoDe, uses
technigues of image-synthesis and ray-tracing to quantify his
aesthetic desires in a setting of simulated evolution of shapes
(Bhooshan 2014). Bittermann (2009) is grasping soft parameters like
perception and cognition of an architectural design by using fuzzy
logic and artificial neural trees. However, he ultimately states,

“in order to boost the design generation component to deal with
greater uncertainty regarding the potential solutions, it is signifi-
cant to enhance the exploration capabilities of the algorithm.”

In case the goal is clearly defined and numerically manifest, algo-
rithms have been well probed to find good solutions. Professional
simulation systems have become freely shared plug-ins for
parametric design platforms, including particle-physics engines,
structural finite element- and solar analysis as well as tool-path
simulations. Digital physical models are accessible to anyone and
can play a significant role in defining parametric design-elements.
By their nature, they only yield numeric performance indicators,
which might be less suited for interpretation by a human than by
a machine, respective of a genetic algorithm. Especially in fields
of engineering, the applicability of genetic algorithms to optimize
performance problems has been shown (Kicinger 2005).

Still, as Manuel de Landa speaks of artistic use of genetic algo-
rithms he states, “Only if virtual evolution can be used to explore
a space rich enough so that all the possibilities cannot be con-
sidered in advance by the designer, only if what results shocks
or at least surprises, can genetic algorithms be considered use-
ful visualization tools” (DelLanda 2001).

For this idea he quotes Gilles Deleuze as the first to bring three
imperative forms of philosophical thinking together: population,
intensive, and topological thinking. The application of topological
principles hereby is the most important. It defines the mapping
of how an abstract genome is turned into an actual solution. It

is also the biggest quest to the exploratory parametric designer
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to find a relationship between genotype and phenotype as generic
as possible, yet precise enough to have realistic chances of finding
usable solutions.

The discourse about the nature of ‘parametric modeling’ lasts
since its beginnings with the rise of CAD software applications,
such as Ivan Sutherlands ‘Sketchpad’ from 1963. His novel
computer program enabled the user to draw on screen with a
light-pen, the shape could then be altered by a simple ‘paramet-
ric engine’ that was built in. The vision of the computer as an
uber-human design aid already existed at that time. John von
Neumann, the inventor of modern chip architecture, in 1951 pub-
lished ‘General and Logical Theory of Automata’ (Neumann 1951).
Similar to Stephen Wolfram'’s ‘a new kind of science’ from 2002,
Neumann foresees the potential of computational strategies that
rely on simple rules for an intricate output.

Genetic algorithms, representative for stochastic evolutionary
algorithms here, rely on simple and intuitive rules derived from bi-
ological development. There are a variety of specializations just as
in nature, but the basic principles of selection, mating, crossover,
mutation, and evaluation mostly outline the central mechanisms.
Yet they perform a manifold of tasks that, if they were to be
solved analytically, usually would require significantly more elabo-
ration. Theoretically they are universal problem solvers, although
practically limited by the relation of the problem'’s degrees of free-
dom and the runtime needed to arrive at satisfactory solutions.
Still, the prototypic building industry and its conditions of econom-
ic production allow the success of evolutionary algorithms in ar-
chitecture and engineering. Further, contemporary visual scripting
environments that grow from a pool of shared add-ons provide
extensive possibilities to set up the definition of a complex prob-
lem relatively fast.

CUSTOM EVOLUTION

One major advantage of visual scripting environments is their
simplicity in usage compared to lines of code, though there is

a threshold when writing code again becomes more efficient
for advanced tasks. Today, a few generic evolutionary solvers
are publicly available for parametric modeling frameworks. A
tool for multi-objective evolutionary search has been introduced
recently, which is geared for flexibility during a search process
in regards to changing parameters, objectives, and user choices
to eventually become a parametric design assistant instead of

a singular event of optimization (Vierlinger 2013). Still, neither this
one released as ‘octopus’, nor another public tool for parametric
modeling frameworks so far enables the user to customize the
actual search algorithm.
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A set of functional components called octopus.Explicit is pro-
posed, which can be combined, adapted, and replaced for dif-
ferent specialized purpose of evolutionary search (Figure 1). The
essential groups of components are:

» Solutions: Data objects containing any characteristic of
a solution such as parameter values, objective values,
phenotypic representations, etc.; include components to
construct and deconstruct solutions from and into native
data types.

» Selectors: To select one or more solutions out of a pool,
according to different criteria

Pareto Tournament Selection
Partitioning into Pareto Front and subsequent Front Ranks

Elite Selection after different criteria such as the
Hypervolume Contribution (Bader 2006) or the archiving rou-
tine of SPEA-2 (Zitzler 2001)

* Operators: Stochastic modification of solutions to find a
better configuration of parameters

Mutation after different strategies such as Polynomial,
Alternative Polynomial (Deb 1996), or HypE Mutation
(Bader 2006)

Crossover after (Deb 1994) as Simulated Binary Crossover
for continuous search spaces

* Evaluators: To compute the solution’s objective values de-
pending on their parameter values

Diversity of Parameters: To introduce genotypic diversity
as an optimization goal

Diversity of Objectives: To introduce objective diversity as
an optimization goal

Evaluator: To evaluate the actual problem and compute
the objective values of a parametric representation; the
component supports local multi-threading and distributed
computing for improved performance.

Evaluation Receiver: To receive an evaluation-context on a
remote machine, enabling distributed computation

There has been extensive research on strategies for general
evolutionary optimization, each defining different strategies for
the iterative processing of solutions. By explicitly formulating the
search algorithm in the same environment as the problem is de-
fined, a more flexible reaction to special requirements is possible.
Components can be replaced or added either by a sub-system of
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3 Statistical Comparison of Two Mutation-Operators Made in Grasshopper

the functional graph or an embedded piece of code, levering the
vast possibilities of native and add-in components of parametric

modeling software to compose a specialized optimization pipeline.

(Figure 2) shows the setup of a basic multi-objective evolutionary
algorithm modeled with the explicit components. In the example,
the sphere-problem as an academic benchmark of multi-objective
optimization algorithms is used. The inner loop to evaluate the
solutions is performed by the octopus.E loop component, which
is explained later. The outer loop over the evolution’s generations
is facilitated with the third-party plug-in Anemone (Zwierzycki 2014),
for reasons of read and usability, and because the performance
needed by the Selector and Operator components is negligible.
A benchmark between different looping tools is presented at the
end of this work.
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With the set of explicit components, many different extensions
to a simple evolutionary algorithm are possible, some of them are:

* Elitism, where a percentage of solutions to modify by the
Operator-components is selected not from the entire popu-
lation but from the Elite.

* A biased Mutation-scheme, which takes into account analyt-
ical properties of the respective solution or relations of the
solution to the rest of the generation. This way, an agent-
like behavior can be introduced to form a hybrid between
heuristic and deterministic optimization. (Figure 3) shows
the statistical study of two different mutation operators
(Polynomial Mutation and HypE Mutation), performed within
Grasshopper. It exemplifies the advantage of developing,
testing and applying within a single environment.
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4 Use of octopus.E's Evaluator-component

* A Mutation scheme which considers the sensitivity of each
gene, mutating parameters to different extents dependent
on their level of influence on the solution.

* Lehmann and Stanley (2011) propose a general approach to
evolutionary optimization which they call Novelty Search.
It implies the abandoning of objectives, respectively the
reward of innovation in a search process. Inspired by this,
diversity in a search can be fostered by defining a dis-
tance measure of one solution to the rest of a generation,
which can be in genotypic, phenotypic, or objective space.
Defining this distance as an additional objective would im-
pose a fitness pressure towards the evolution of a diverse
set of optimized solutions. In this sense, Novelty Search
could be called similar to diversity preservation techniques
commonly used in multi-objective evolutionary algorithms.

* The type of parameters is not limited to numbers, and
could be actual geometry. If the operators are modified or
replaced accordingly, any type of data could serve as the
genome of a solution.

LOOPING AND PARALLELIZATION

The Evaluation-component works different from other approach-
es to iteration and looping in Grasshopper. Technically, it does not
constitute a breach in Grasshopper's policy to always keep the fo-
cus of computation on just one component. Similar to Galapagos
(Rutten 2013), it connects to a part of the definition and evaluates
it with specific parameters. Galapagos does this by using native
processes: it writes the parameter values into the connected
components and waits for all downstream elements to calculate
until it finally reads the goal values. Hence it can never be part of
the definition itself, since its own evaluation would require other
components to compute. Our Evaluation-component analyzes
the network it is connected to, and copies the network and its
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dependencies into a separate abstract document, called context.
(Figure 4) shows the basic use of the Evaluation-component. It
connects to a part of the definition and highlights the relevant
parts in colored frames and symbols. Upstream connections on
a connected input are not considered by the evaluation since
the parameters will be chosen and supplied by the evolutionary
algorithm; they are marked by an orange triangle. However,
those connections can still be used for debugging or using the
definition from another point within the setup. Upstream depen-
dencies are highlighted in blue; the components which are part
of the actual evaluation are marked in green. The context which
is being copied by the evaluation-component can additionally be
shown and edited in a separate window (Figure 5). This window
also shows bottlenecks in the performance of the definition. For
example, the flexibility which Grasshopper provides by automatic
casts between data-types can have significant negative influence.
Octopus.E's loop component does not evaluate the components
on the canvas, but it is still using Grasshopper's native methods
to compute each component’s solution. Since the constant
updating of the user-interface is not necessary, this brings a
significant gain in performance-still the evaluation would always
work correctly. Code optimizations within the copied context, for
example regarding expensive type-casts, are possible but have
been discarded for the robustness of the component. A perfor-
mance-benchmark with other looping plug-ins for Grasshopper
can be found at the end of this paper.

In general, the practicability of evolutionary algorithms suffers
from their immanently long runtime. Mostly reliant on stochastic
methods, the number of solutions to be evaluated increases with
the complexity of the problem. Planning tools in the prototypic
architectural industry benefit from an immediate feedback as a
true design tool. Therefore, we propose the distribution of compu-
tational load by:

* Local multithreading, unscheduled
* Local multithreading, scheduled

* Distributed computing within a local network or the Internet

Local multithreading can be problematic with regards to the very
core architecture of the underlying functions that are used by
Grasshopper and Rhinoceros. They are not designed to be thread-
safe, which means their concurrent execution on CPUs sharing the
same memory can lead to unexpected results and crashes. A naive
scheduling is implemented, which reflects the code of each com-
ponent in the evaluation-context and makes sure no identical func-
tions are executed at the same time. However, the performance
gain by this method strongly depends on the problem definition,
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further the number of CPUs on the local machine mostly is limited
to four or eight. There are other plug-ins enabling iteration and
loops in Grasshopper, but aside their lack of parallelism they also
are not as performant in single-threaded mode.

For this reason, a prototypic framework for distributed computa-
tion of our evaluation-units is introduced. The evaluation-receiver
component (Figure 1) is placed on the canvas of a separate session
of Rhino and Grasshopper, which has to be configured in the same
way as the initial instance regarding the versions and plug-ins
needed to run the definition. All evaluation-components register
themselves on a server, which then manages the split and dis-
tribution of a pool of solutions to be evaluated. The distribution

is naive, meaning the pool is split up uniformly without any load
balancing approach. This means that the weakest machine deter-
mines the overall performance of the evaluation, since the mas-
ter-component has to wait for all solutions to be computed. The
outsourcing of an optimization's computational load also opens
up the possibilities of a continuously accompanying design assis-
tant which is acting in the background.

FLEXIBLE PARAMETERIZATION

The optimization of a truss is used as an illustrative, yet simple
example. Parametric finite element analysis using karamba for
Grasshopper (Preisinger 2013) offers high-performance assessment
of the trusses’ load bearing capacity. Additionally, it is able to
iteratively size the cross sections of its members according to
their maximum allowable stress (Figure 7). Hence, the maximum
displacement and the resulting mass are goal values to be mini-
mized, as well as the number of joints as a measure for economic
fabrication. Further, genetic diversity is imposed as a custom goal
with octopus.E like described above.
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6 Translation of Two Magnetic Fields into Two Sets of Truss-Diagonals

7 lterative Cross Section Optimization of the Truss Members
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The geometry of the chords is fixed as straight lines and the vari-
ables of each solution are the positions of the diagonals. A simple
parameterization would be the introduction of a parameter for the
two ends of each strut. This straightforward way can have advan-
tages for some applications, but for larger numbers of diagonals,
the amount of parameters becomes too high for an efficient opti-
mization. Also, a truss would mostly exhibit a certain degree of reg-
ularity, respectively enabling a reading of the underlying structural
mechanisms. These would be hard to accomplish by the approach
of an individual parameterization. Instead, we define two direction-
al fields spanning throughout the bounding box of the structure.
The fields each are parameterized by three points of simulated
magnetic charge, adding to a total of twelve parameters. Three
more parameters are used to determine the distribution-functions
and offset of each set of diagonals. Along the middle axis of the
truss, these distribution functions create points, for which the
directional fields are evaluated. A point and a direction then define
a diagonal (Figure 6). The resulting line geometry is turned into a
structural finite-element model, and loaded by 1.35 times its dead
weight and a line load of thirty kN/m on its upper chord. (Figure 8)
shows selected results after three generations and a population
size of 200, where bearing mechanisms already are clearly read-
able. The distribution of tension and compression within those
mechanisms, as well as the deflected shape are further illustrated
in (Figure 9). (Figure 10) shows a plot of the solutions in objective
space forming the Pareto-front approximation, giving feedback on
the best trade-offs that were found so far. The color and size in the
diagram correspond to an abstract measure of diversity.

Hofmann (2011) uses a direct parameterization as described
above, and needs significantly higher runtime to arrive at coherent
solutions. This shows that encodings using superimpositions of
fields and functions are at least promising when trying to digitally
breed and evolve functionally meaningful patterns.

(Figure 11) shows the setup for a benchmark between differ-

ent tools for looping a definition in Grasshopper. ‘Hoopsnake'
(Chatzikonstantinou 2014) and "Anemone’ (Zwierzycki 2014) are
compared to the looping-tool introduced in this work. The re-
sulting runtimes are written in (Table 1). It is shown that also in
single-threaded mode octopus.E performs best due to savings
at user-interface updates. Hoopsnake exhibits a function to deac-
tivate the previews during execution of a loop, but still is almost
twice as slow as octopus.E. In local multithreading mode, octo-
pus.E is slower than single-threaded due to the use of karamba in
the truss example, which already uses all the cores available. The
resulting overhead in management of the different threads then
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Number of octopus.E Multi octopus.E octopus.E Anemone Hoopsnake Hidden Hoopsnake Visible
Solutions Distr. 4 Machines Multi Local Single Local Preview Preview
200 36s 12.7s 9.7s 259s 18.6s 22.3s
400 6.1s 26.1s 20.1s 504 s 374s 452 s
Table 1

Benchmark Results for
the evaluation of the Truss
Examples’ Solutions

create random solutions
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11 Benchmark Setup with Truss
Example

leads to the performance loss. The experimental setup of distributed computing on four machines in

a local network shows by far the best results. Still it is to be noted that the setup is experimental and
under well-tuned conditions. Large geometric dependencies which have to be transferred over the net-
work in each generation, or differently powerful slave-computers can degrade the performance of this
approach quickly.

CONCLUSION

The experiments explained in this work try to exemplify original ways of thinking about how we use
contemporary design tools. Simple principles are used along with the idea of modularity and flexibility.
Paired with improved performance through parallelization, the setup and application of developmental

617  VIERLINGER, BOLLINGER ACCOMMODATING CHANGE IN PARAMETRIC DESIGN



biology's principles is tried to be somewhat defanged. However,
there are many chances regarding interface, workflow, and im-
mediacy of parametric modeling environments with respect to
augmented performance intelligence. The question of the role

of the model in an architectural project is tightly related to the
task of maintaining flexibility throughout the digital chain to not
only improve a design'’s ultimate quality, but also the workflow in
practice. With new paradigms in modern parametric modeling on
the other hand, there is great potential in the research of represen-
tations, and the theoretically unlimited pool of formal languages
waiting to be described.
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