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ABSTRACT

Since the digital age, how we design has become as important as what we design. Never before 

have there been so many different techniques at our disposal, many of them with the ability to 

cross previously imagined frontiers. During the twentieth century, efforts to rethink the habitual 

practice of design are accompanying the process itself–the role of the model as an immediate 

source of physical and emotional feedback shifts from the analogue to the digital realm, and de-

signing characterizes itself by manipulating digital systems rather than deterministic articulation. 

Today’s computational resources advance the early pioneering approaches of digital emergence 

and complexity, while at the same time unveiling algorithmic design to non-programmers with 

intuitive interfaces. With respect to evolutionary search and optimization, this work investigates 

aspects of flexibility and performance on the levels of fast application and open representation. 

Firstly, a set of tools is introduced which allows parallelized implementation and customization of 

evolutionary algorithms on an existing parametric platform. Secondly, an approach for open-ended 

description of geometry is presented.
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INTRODUCTION

Emotion and efficiency are just two desires being negotiated 

during an architectural design process, where ultimate success 

can mean the evolution of good trade-offs between goals at odds. 

Economics introduced the Pareto-principle to describe an optimal 

distribution of limited resources, where one aspect can just be 

improved when degrading another. Pareto-optimization always 

yields a set of solutions, ideally spanning diversely from one ex-

treme situation to the other. The final decision, which can address 

non-quantifiable measures such as aesthetics, is left to the design-

er. Modern parametric modeling allows the quick iteration of many 

design alternatives, while at the same time being able to supply 

a number of measures regarding their performance-character. 

Explorations and design by trial and error are again becoming more 

interesting for building-practice, as intuitive design environments 

and innovative design approaches enable a broad base of users to 

lever vast computational resources. Modern design platforms and 

their open systems allow a simple formulation of intricate genera-

tive processes, though a model’s ability to adapt to changes is lim-

ited by its own complexity. There is a desire to be designing with 

systems of simple rules, which are able to temporarily stabilize but 

stay open to changes of any kind, to be capable of reflecting any 

unforeseen state. Ideally, the accommodation of profound change 

at any point of the design process should be as easy possible. 

Daniel Davis concludes that a lack of smart modeling can be a 

major setback for an architectural project (Davis 2013). There are 

a number of different approaches to foster the development of 

parametric models that are more universal. Most of them rely on 

the user to design his or her parametric formulation in a respon-

sible way, considering the uncertainties or certainties a planning 

process could have. Though, apart from the aspects of workflow, 

flexibility can be needed on another scale. When the model pri-

marily serves the purpose of exploration, a digital representation 

defines the boundaries of the design space. A simple system with 

a little number of input variables, but a large spectrum of eventual-

ly unforeseeable solutions, is sought to be able to effectively and 

systematically explore the design domain. Whereas it is difficult to 

innovate in the field of CAD software on the scale of this work, it 

is the usage and the way of parameterization within existing open 

systems that is of interest here. When it comes to the dynamic 

representation, combination, and generation of pattern, shape, 

emotion, and aesthetics, there is a lot of capacity to unveil. 

Stanley (2007) proposes the digital evolution of Compositional 

Pattern Producing Networks (CPPNs) to create fields of any com-

plexity and resolution. Successfully used for controlling artificial 

neural networks and formation of multidimensional shapes, a 

transformation of the principle to the parameterization of design 

is investigated here. CPPNs use a set of canonical functions such 

as sine, cosine, etc. and combine them in a dynamically evolv-

ing tree, being able to describe almost any state–similar to the 

Fourier-approximation of a mathematical function. This includes 

the iterative fitting of the CPPN, training it over generations to 

exhibit certain qualities. In contemporary practice, it is already the 

case that grids, patterns, and shapes are successively refined by 

the designer or a genetic algorithm to fulfill a specific purpose. 

Purpose can be of a performance-related or aesthetic character, 

where we do not want to touch on a general quantification of 

beauty here. Shajay Booshan, lead developer at ZHA CoDe, uses 

techniques of image-synthesis and ray-tracing to quantify his 

aesthetic desires in a setting of simulated evolution of shapes 

(Bhooshan 2014). Bittermann (2009) is grasping soft parameters like 

perception and cognition of an architectural design by using fuzzy 

logic and artificial neural trees. However, he ultimately states, 

“in order to boost the design generation component to deal with 

greater uncertainty regarding the potential solutions, it is signifi-

cant to enhance the exploration capabilities of the algorithm.”

In case the goal is clearly defined and numerically manifest, algo-

rithms have been well probed to find good solutions. Professional 

simulation systems have become freely shared plug-ins for 

parametric design platforms, including particle-physics engines, 

structural finite element- and solar analysis as well as tool-path 

simulations. Digital physical models are accessible to anyone and 

can play a significant role in defining parametric design-elements. 

By their nature, they only yield numeric performance indicators, 

which might be less suited for interpretation by a human than by 

a machine, respective of a genetic algorithm. Especially in fields 

of engineering, the applicability of genetic algorithms to optimize 

performance problems has been shown (Kicinger 2005). 

Still, as Manuel de Landa speaks of artistic use of genetic algo-

rithms he states, “Only if virtual evolution can be used to explore 

a space rich enough so that all the possibilities cannot be con-

sidered in advance by the designer, only if what results shocks 

or at least surprises, can genetic algorithms be considered use-

ful visualization tools” (DeLanda 2001). 

For this idea he quotes Gilles Deleuze as the first to bring three 

imperative forms of philosophical thinking together: population, 

intensive, and topological thinking. The application of topological 

principles hereby is the most important. It defines the mapping 

of how an abstract genome is turned into an actual solution. It 

is also the biggest quest to the exploratory parametric designer 
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to find a relationship between genotype and phenotype as generic 

as possible, yet precise enough to have realistic chances of finding 

usable solutions. 

The discourse about the nature of ‘parametric modeling’ lasts 

since its beginnings with the rise of CAD software applications, 

such as Ivan Sutherlands ‘Sketchpad’ from 1963. His novel 

computer program enabled the user to draw on screen with a 

light-pen, the shape could then be altered by a simple ‘paramet-

ric engine’ that was built in. The vision of the computer as an 

uber-human design aid already existed at that time. John von 

Neumann, the inventor of modern chip architecture, in 1951 pub-

lished ‘General and Logical Theory of Automata’ (Neumann 1951). 

Similar to Stephen Wolfram’s ‘a new kind of science’ from 2002, 

Neumann foresees the potential of computational strategies that 

rely on simple rules for an intricate output. 

Genetic algorithms, representative for stochastic evolutionary 

algorithms here, rely on simple and intuitive rules derived from bi-

ological development. There are a variety of specializations just as 

in nature, but the basic principles of selection, mating, crossover, 

mutation, and evaluation mostly outline the central mechanisms. 

Yet they perform a manifold of tasks that, if they were to be 

solved analytically, usually would require significantly more elabo-

ration. Theoretically they are universal problem solvers, although 

practically limited by the relation of the problem’s degrees of free-

dom and the runtime needed to arrive at satisfactory solutions. 

Still, the prototypic building industry and its conditions of econom-

ic production allow the success of evolutionary algorithms in ar-

chitecture and engineering. Further, contemporary visual scripting 

environments that grow from a pool of shared add-ons provide 

extensive possibilities to set up the definition of a complex prob-

lem relatively fast.

CUSTOM EVOLUTION

One major advantage of visual scripting environments is their 

simplicity in usage compared to lines of code, though there is 

a threshold when writing code again becomes more efficient 

for advanced tasks. Today, a few generic evolutionary solvers 

are publicly available for parametric modeling frameworks. A 

tool for multi-objective evolutionary search has been introduced 

recently, which is geared for flexibility during a search process 

in regards to changing parameters, objectives, and user choices 

to eventually become a parametric design assistant instead of 

a singular event of optimization (Vierlinger 2013). Still, neither this 

one released as ‘octopus’, nor another public tool for parametric 

modeling frameworks so far enables the user to customize the 

actual search algorithm. 

A set of functional components called octopus.Explicit is pro-

posed, which can be combined, adapted, and replaced for dif-

ferent specialized purpose of evolutionary search (Figure 1). The 

essential groups of components are:

•	 Solutions: Data objects containing any characteristic of 

a solution such as parameter values, objective values, 

phenotypic representations, etc.; include components to 

construct and deconstruct solutions from and into native 

data types.

•	 Selectors: To select one or more solutions out of a pool, 

according to different criteria

·· Pareto Tournament Selection

·· Partitioning into Pareto Front and subsequent Front Ranks

·· Elite Selection after different criteria such as the 

Hypervolume Contribution (Bader 2006) or the archiving rou-

tine of SPEA-2 (Zitzler 2001)

•	 Operators: Stochastic modification of solutions to find a 

better configuration of parameters

·· Mutation after different strategies such as Polynomial, 

Alternative Polynomial (Deb 1996), or HypE Mutation 

(Bader 2006)

·· Crossover after (Deb 1994) as Simulated Binary Crossover 

for continuous search spaces

•	 Evaluators: To compute the solution’s objective values de-

pending on their parameter values

·· Diversity of Parameters: To introduce genotypic diversity 

as an optimization goal

·· Diversity of Objectives: To introduce objective diversity as 

an optimization goal

·· Evaluator: To evaluate the actual problem and compute 

the objective values of a parametric representation; the 

component supports local multi-threading and distributed 

computing for improved performance.

·· Evaluation Receiver: To receive an evaluation-context on a 

remote machine, enabling distributed computation

There has been extensive research on strategies for general 

evolutionary optimization, each defining different strategies for 

the iterative processing of solutions. By explicitly formulating the 

search algorithm in the same environment as the problem is de-

fined, a more flexible reaction to special requirements is possible. 

Components can be replaced or added either by a sub-system of 
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the functional graph or an embedded piece of code, levering the 

vast possibilities of native and add-in components of parametric 

modeling software to compose a specialized optimization pipeline.

(Figure 2) shows the setup of a basic multi-objective evolutionary 

algorithm modeled with the explicit components. In the example, 

the sphere-problem as an academic benchmark of multi-objective 

optimization algorithms is used. The inner loop to evaluate the 

solutions is performed by the octopus.E loop component, which 

is explained later. The outer loop over the evolution’s generations 

is facilitated with the third-party plug-in Anemone (Zwierzycki 2014), 

for reasons of read and usability, and because the performance 

needed by the Selector and Operator components is negligible. 

A benchmark between different looping tools is presented at the 

end of this work.

With the set of explicit components, many different extensions 

to a simple evolutionary algorithm are possible, some of them are:

•	 Elitism, where a percentage of solutions to modify by the 

Operator-components is selected not from the entire popu-

lation but from the Elite.

•	 A biased Mutation-scheme, which takes into account analyt-

ical properties of the respective solution or relations of the 

solution to the rest of the generation. This way, an agent-

like behavior can be introduced to form a hybrid between 

heuristic and deterministic optimization. (Figure 3) shows 

the statistical study of two different mutation operators 

(Polynomial Mutation and HypE Mutation), performed within 

Grasshopper. It exemplifies the advantage of developing, 

testing and applying within a single environment.

Basic Multi-Objective Genetic Algorithm Using Octopus. Explicit Components2

Statistical Comparison of Two Mutation-Operators Made in Grasshopper3
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•	 A Mutation scheme which considers the sensitivity of each 

gene, mutating parameters to different extents dependent 

on their level of influence on the solution.

•	 Lehmann and Stanley (2011) propose a general approach to 

evolutionary optimization which they call Novelty Search. 

It implies the abandoning of objectives, respectively the 

reward of innovation in a search process. Inspired by this, 

diversity in a search can be fostered by defining a dis-

tance measure of one solution to the rest of a generation, 

which can be in genotypic, phenotypic, or objective space. 

Defining this distance as an additional objective would im-

pose a fitness pressure towards the evolution of a diverse 

set of optimized solutions. In this sense, Novelty Search 

could be called similar to diversity preservation techniques 

commonly used in multi-objective evolutionary algorithms.

•	 The type of parameters is not limited to numbers, and 

could be actual geometry. If the operators are modified or 

replaced accordingly, any type of data could serve as the 

genome of a solution.

LOOPING AND PARALLELIZATION

The Evaluation-component works different from other approach-

es to iteration and looping in Grasshopper. Technically, it does not 

constitute a breach in Grasshopper’s policy to always keep the fo-

cus of computation on just one component. Similar to Galapagos 

(Rutten 2013), it connects to a part of the definition and evaluates 

it with specific parameters. Galapagos does this by using native 

processes: it writes the parameter values into the connected 

components and waits for all downstream elements to calculate 

until it finally reads the goal values. Hence it can never be part of 

the definition itself, since its own evaluation would require other 

components to compute. Our Evaluation-component analyzes 

the network it is connected to, and copies the network and its 
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dependencies into a separate abstract document, called context. 

(Figure 4) shows the basic use of the Evaluation-component. It 

connects to a part of the definition and highlights the relevant 

parts in colored frames and symbols. Upstream connections on 

a connected input are not considered by the evaluation since 

the parameters will be chosen and supplied by the evolutionary 

algorithm; they are marked by an orange triangle. However, 

those connections can still be used for debugging or using the 

definition from another point within the setup. Upstream depen-

dencies are highlighted in blue; the components which are part 

of the actual evaluation are marked in green. The context which 

is being copied by the evaluation-component can additionally be 

shown and edited in a separate window (Figure 5). This window 

also shows bottlenecks in the performance of the definition. For 

example, the flexibility which Grasshopper provides by automatic 

casts between data-types can have significant negative influence. 

Octopus.E’s loop component does not evaluate the components 

on the canvas, but it is still using Grasshopper’s native methods 

to compute each component’s solution. Since the constant 

updating of the user-interface is not necessary, this brings a 

significant gain in performance–still the evaluation would always 

work correctly. Code optimizations within the copied context, for 

example regarding expensive type-casts, are possible but have 

been discarded for the robustness of the component. A perfor-

mance-benchmark with other looping plug-ins for Grasshopper 

can be found at the end of this paper.

In general, the practicability of evolutionary algorithms suffers 

from their immanently long runtime. Mostly reliant on stochastic 

methods, the number of solutions to be evaluated increases with 

the complexity of the problem. Planning tools in the prototypic 

architectural industry benefit from an immediate feedback as a 

true design tool. Therefore, we propose the distribution of compu-

tational load by:

•	 Local multithreading, unscheduled

•	 Local multithreading, scheduled

•	 Distributed computing within a local network or the Internet

Local multithreading can be problematic with regards to the very 

core architecture of the underlying functions that are used by 

Grasshopper and Rhinoceros. They are not designed to be thread-

safe, which means their concurrent execution on CPUs sharing the 

same memory can lead to unexpected results and crashes. A naive 

scheduling is implemented, which reflects the code of each com-

ponent in the evaluation-context and makes sure no identical func-

tions are executed at the same time. However, the performance 

gain by this method strongly depends on the problem definition, 

Use of octopus.E’s Evaluator-component4

ACCOMMODATING CHANGE IN PARAMETRIC DESIGN
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further the number of CPUs on the local machine mostly is limited 

to four or eight. There are other plug-ins enabling iteration and 

loops in Grasshopper, but aside their lack of parallelism they also 

are not as performant in single-threaded mode. 

For this reason, a prototypic framework for distributed computa-

tion of our evaluation-units is introduced. The evaluation-receiver 

component (Figure 1) is placed on the canvas of a separate session 

of Rhino and Grasshopper, which has to be configured in the same 

way as the initial instance regarding the versions and plug-ins 

needed to run the definition. All evaluation-components register 

themselves on a server, which then manages the split and dis-

tribution of a pool of solutions to be evaluated. The distribution 

is naive, meaning the pool is split up uniformly without any load 

balancing approach. This means that the weakest machine deter-

mines the overall performance of the evaluation, since the mas-

ter-component has to wait for all solutions to be computed. The 

outsourcing of an optimization’s computational load also opens 

up the possibilities of a continuously accompanying design assis-

tant which is acting in the background. 

FLEXIBLE PARAMETERIZATION

The optimization of a truss is used as an illustrative, yet simple 

example. Parametric finite element analysis using karamba for 

Grasshopper (Preisinger 2013) offers high-performance assessment 

of the trusses’ load bearing capacity. Additionally, it is able to 

iteratively size the cross sections of its members according to 

their maximum allowable stress (Figure 7). Hence, the maximum 

displacement and the resulting mass are goal values to be mini-

mized, as well as the number of joints as a measure for economic 

fabrication. Further, genetic diversity is imposed as a custom goal 

with octopus.E like described above.

Copied Evaluation Context5

Translation of Two Magnetic Fields into Two Sets of Truss-Diagonals6

Iterative Cross Section Optimization of the Truss Members7
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Selected Solutions after Three Generations of Size 2008

ACCOMMODATING CHANGE IN PARAMETRIC DESIGN
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The geometry of the chords is fixed as straight lines and the vari-

ables of each solution are the positions of the diagonals. A simple 

parameterization would be the introduction of a parameter for the 

two ends of each strut. This straightforward way can have advan-

tages for some applications, but for larger numbers of diagonals, 

the amount of parameters becomes too high for an efficient opti-

mization. Also, a truss would mostly exhibit a certain degree of reg-

ularity, respectively enabling a reading of the underlying structural 

mechanisms. These would be hard to accomplish by the approach 

of an individual parameterization. Instead, we define two direction-

al fields spanning throughout the bounding box of the structure. 

The fields each are parameterized by three points of simulated 

magnetic charge, adding to a total of twelve parameters. Three 

more parameters are used to determine the distribution-functions 

and offset of each set of diagonals. Along the middle axis of the 

truss, these distribution functions create points, for which the 

directional fields are evaluated. A point and a direction then define 

a diagonal (Figure 6). The resulting line geometry is turned into a 

structural finite-element model, and loaded by 1.35 times its dead 

weight and a line load of thirty kN/m on its upper chord. (Figure 8) 

shows selected results after three generations and a population 

size of 200, where bearing mechanisms already are clearly read-

able. The distribution of tension and compression within those 

mechanisms, as well as the deflected shape are further illustrated 

in (Figure 9). (Figure 10) shows a plot of the solutions in objective 

space forming the Pareto-front approximation, giving feedback on 

the best trade-offs that were found so far. The color and size in the 

diagram correspond to an abstract measure of diversity.

Hofmann (2011) uses a direct parameterization as described 

above, and needs significantly higher runtime to arrive at coherent 

solutions. This shows that encodings using superimpositions of 

fields and functions are at least promising when trying to digitally 

breed and evolve functionally meaningful patterns.

(Figure 11) shows the setup for a benchmark between differ-

ent tools for looping a definition in Grasshopper. ‘Hoopsnake’ 

(Chatzikonstantinou 2014) and ‘Anemone’ (Zwierzycki 2014) are 

compared to the looping-tool introduced in this work. The re-

sulting runtimes are written in (Table 1). It is shown that also in 

single-threaded mode octopus.E performs best due to savings 

at user-interface updates. Hoopsnake exhibits a function to deac-

tivate the previews during execution of a loop, but still is almost 

twice as slow as octopus.E. In local multithreading mode, octo-

pus.E is slower than single-threaded due to the use of karamba in 

the truss example, which already uses all the cores available. The 

resulting overhead in management of the different threads then 

Finite Element Analysis of Truss Solutions9

Solutions to Truss-Optimization in Objective Space10
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leads to the performance loss. The experimental setup of distributed computing on four machines in 

a local network shows by far the best results. Still it is to be noted that the setup is experimental and 

under well-tuned conditions. Large geometric dependencies which have to be transferred over the net-

work in each generation, or differently powerful slave-computers can degrade the performance of this 

approach quickly.

CONCLUSION

The experiments explained in this work try to exemplify original ways of thinking about how we use 

contemporary design tools. Simple principles are used along with the idea of modularity and flexibility. 

Paired with improved performance through parallelization, the setup and application of developmental 

Benchmark Setup with Truss 
Example

11

Benchmark Results for 
the evaluation of the Truss 
Examples’ Solutions

Table 1
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biology’s principles is tried to be somewhat defanged. However, 

there are many chances regarding interface, workflow, and im-

mediacy of parametric modeling environments with respect to 

augmented performance intelligence. The question of the role 

of the model in an architectural project is tightly related to the 

task of maintaining flexibility throughout the digital chain to not 

only improve a design’s ultimate quality, but also the workflow in 

practice. With new paradigms in modern parametric modeling on 

the other hand, there is great potential in the research of represen-

tations, and the theoretically unlimited pool of formal languages 

waiting to be described.
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