
609

ACCOMMODATING CHANGE
IN PARAMETRIC DESIGN

Robert Vierlinger
Klaus Bollinger
University of Applied Arts Vienna

Components for Custom Evolutionary
Algorithms & Parallel Computation

ABSTRACT

Since the digital age, how we design has become as important as what we design. Never before

have there been so many different techniques at our disposal, many of them with the ability to

cross previously imagined frontiers. During the twentieth century, efforts to rethink the habitual

practice of design are accompanying the process itself–the role of the model as an immediate

source of physical and emotional feedback shifts from the analogue to the digital realm, and de-

signing characterizes itself by manipulating digital systems rather than deterministic articulation.

Today’s computational resources advance the early pioneering approaches of digital emergence

and complexity, while at the same time unveiling algorithmic design to non-programmers with

intuitive interfaces. With respect to evolutionary search and optimization, this work investigates

aspects of flexibility and performance on the levels of fast application and open representation.

Firstly, a set of tools is introduced which allows parallelized implementation and customization of

evolutionary algorithms on an existing parametric platform. Secondly, an approach for open-ended

description of geometry is presented.

1

610ACADIA 2014 DESIGN AGENCYDATA AGENCY

INTRODUCTION

Emotion and efficiency are just two desires being negotiated

during an architectural design process, where ultimate success

can mean the evolution of good trade-offs between goals at odds.

Economics introduced the Pareto-principle to describe an optimal

distribution of limited resources, where one aspect can just be

improved when degrading another. Pareto-optimization always

yields a set of solutions, ideally spanning diversely from one ex-

treme situation to the other. The final decision, which can address

non-quantifiable measures such as aesthetics, is left to the design-

er. Modern parametric modeling allows the quick iteration of many

design alternatives, while at the same time being able to supply

a number of measures regarding their performance-character.

Explorations and design by trial and error are again becoming more

interesting for building-practice, as intuitive design environments

and innovative design approaches enable a broad base of users to

lever vast computational resources. Modern design platforms and

their open systems allow a simple formulation of intricate genera-

tive processes, though a model’s ability to adapt to changes is lim-

ited by its own complexity. There is a desire to be designing with

systems of simple rules, which are able to temporarily stabilize but

stay open to changes of any kind, to be capable of reflecting any

unforeseen state. Ideally, the accommodation of profound change

at any point of the design process should be as easy possible.

Daniel Davis concludes that a lack of smart modeling can be a

major setback for an architectural project (Davis 2013). There are

a number of different approaches to foster the development of

parametric models that are more universal. Most of them rely on

the user to design his or her parametric formulation in a respon-

sible way, considering the uncertainties or certainties a planning

process could have. Though, apart from the aspects of workflow,

flexibility can be needed on another scale. When the model pri-

marily serves the purpose of exploration, a digital representation

defines the boundaries of the design space. A simple system with

a little number of input variables, but a large spectrum of eventual-

ly unforeseeable solutions, is sought to be able to effectively and

systematically explore the design domain. Whereas it is difficult to

innovate in the field of CAD software on the scale of this work, it

is the usage and the way of parameterization within existing open

systems that is of interest here. When it comes to the dynamic

representation, combination, and generation of pattern, shape,

emotion, and aesthetics, there is a lot of capacity to unveil.

Stanley (2007) proposes the digital evolution of Compositional

Pattern Producing Networks (CPPNs) to create fields of any com-

plexity and resolution. Successfully used for controlling artificial

neural networks and formation of multidimensional shapes, a

transformation of the principle to the parameterization of design

is investigated here. CPPNs use a set of canonical functions such

as sine, cosine, etc. and combine them in a dynamically evolv-

ing tree, being able to describe almost any state–similar to the

Fourier-approximation of a mathematical function. This includes

the iterative fitting of the CPPN, training it over generations to

exhibit certain qualities. In contemporary practice, it is already the

case that grids, patterns, and shapes are successively refined by

the designer or a genetic algorithm to fulfill a specific purpose.

Purpose can be of a performance-related or aesthetic character,

where we do not want to touch on a general quantification of

beauty here. Shajay Booshan, lead developer at ZHA CoDe, uses

techniques of image-synthesis and ray-tracing to quantify his

aesthetic desires in a setting of simulated evolution of shapes

(Bhooshan 2014). Bittermann (2009) is grasping soft parameters like

perception and cognition of an architectural design by using fuzzy

logic and artificial neural trees. However, he ultimately states,

“in order to boost the design generation component to deal with

greater uncertainty regarding the potential solutions, it is signifi-

cant to enhance the exploration capabilities of the algorithm.”

In case the goal is clearly defined and numerically manifest, algo-

rithms have been well probed to find good solutions. Professional

simulation systems have become freely shared plug-ins for

parametric design platforms, including particle-physics engines,

structural finite element- and solar analysis as well as tool-path

simulations. Digital physical models are accessible to anyone and

can play a significant role in defining parametric design-elements.

By their nature, they only yield numeric performance indicators,

which might be less suited for interpretation by a human than by

a machine, respective of a genetic algorithm. Especially in fields

of engineering, the applicability of genetic algorithms to optimize

performance problems has been shown (Kicinger 2005).

Still, as Manuel de Landa speaks of artistic use of genetic algo-

rithms he states, “Only if virtual evolution can be used to explore

a space rich enough so that all the possibilities cannot be con-

sidered in advance by the designer, only if what results shocks

or at least surprises, can genetic algorithms be considered use-

ful visualization tools” (DeLanda 2001).

For this idea he quotes Gilles Deleuze as the first to bring three

imperative forms of philosophical thinking together: population,

intensive, and topological thinking. The application of topological

principles hereby is the most important. It defines the mapping

of how an abstract genome is turned into an actual solution. It

is also the biggest quest to the exploratory parametric designer

611 VIERLINGER, BOLLINGER

to find a relationship between genotype and phenotype as generic

as possible, yet precise enough to have realistic chances of finding

usable solutions.

The discourse about the nature of ‘parametric modeling’ lasts

since its beginnings with the rise of CAD software applications,

such as Ivan Sutherlands ‘Sketchpad’ from 1963. His novel

computer program enabled the user to draw on screen with a

light-pen, the shape could then be altered by a simple ‘paramet-

ric engine’ that was built in. The vision of the computer as an

uber-human design aid already existed at that time. John von

Neumann, the inventor of modern chip architecture, in 1951 pub-

lished ‘General and Logical Theory of Automata’ (Neumann 1951).

Similar to Stephen Wolfram’s ‘a new kind of science’ from 2002,

Neumann foresees the potential of computational strategies that

rely on simple rules for an intricate output.

Genetic algorithms, representative for stochastic evolutionary

algorithms here, rely on simple and intuitive rules derived from bi-

ological development. There are a variety of specializations just as

in nature, but the basic principles of selection, mating, crossover,

mutation, and evaluation mostly outline the central mechanisms.

Yet they perform a manifold of tasks that, if they were to be

solved analytically, usually would require significantly more elabo-

ration. Theoretically they are universal problem solvers, although

practically limited by the relation of the problem’s degrees of free-

dom and the runtime needed to arrive at satisfactory solutions.

Still, the prototypic building industry and its conditions of econom-

ic production allow the success of evolutionary algorithms in ar-

chitecture and engineering. Further, contemporary visual scripting

environments that grow from a pool of shared add-ons provide

extensive possibilities to set up the definition of a complex prob-

lem relatively fast.

CUSTOM EVOLUTION

One major advantage of visual scripting environments is their

simplicity in usage compared to lines of code, though there is

a threshold when writing code again becomes more efficient

for advanced tasks. Today, a few generic evolutionary solvers

are publicly available for parametric modeling frameworks. A

tool for multi-objective evolutionary search has been introduced

recently, which is geared for flexibility during a search process

in regards to changing parameters, objectives, and user choices

to eventually become a parametric design assistant instead of

a singular event of optimization (Vierlinger 2013). Still, neither this

one released as ‘octopus’, nor another public tool for parametric

modeling frameworks so far enables the user to customize the

actual search algorithm.

A set of functional components called octopus.Explicit is pro-

posed, which can be combined, adapted, and replaced for dif-

ferent specialized purpose of evolutionary search (Figure 1). The

essential groups of components are:

•	 Solutions: Data objects containing any characteristic of

a solution such as parameter values, objective values,

phenotypic representations, etc.; include components to

construct and deconstruct solutions from and into native

data types.

•	 Selectors: To select one or more solutions out of a pool,

according to different criteria

·· Pareto Tournament Selection

·· Partitioning into Pareto Front and subsequent Front Ranks

·· Elite Selection after different criteria such as the

Hypervolume Contribution (Bader 2006) or the archiving rou-

tine of SPEA-2 (Zitzler 2001)

•	 Operators: Stochastic modification of solutions to find a

better configuration of parameters

·· Mutation after different strategies such as Polynomial,

Alternative Polynomial (Deb 1996), or HypE Mutation

(Bader 2006)

·· Crossover after (Deb 1994) as Simulated Binary Crossover

for continuous search spaces

•	 Evaluators: To compute the solution’s objective values de-

pending on their parameter values

·· Diversity of Parameters: To introduce genotypic diversity

as an optimization goal

·· Diversity of Objectives: To introduce objective diversity as

an optimization goal

·· Evaluator: To evaluate the actual problem and compute

the objective values of a parametric representation; the

component supports local multi-threading and distributed

computing for improved performance.

·· Evaluation Receiver: To receive an evaluation-context on a

remote machine, enabling distributed computation

There has been extensive research on strategies for general

evolutionary optimization, each defining different strategies for

the iterative processing of solutions. By explicitly formulating the

search algorithm in the same environment as the problem is de-

fined, a more flexible reaction to special requirements is possible.

Components can be replaced or added either by a sub-system of

ACCOMMODATING CHANGE IN PARAMETRIC DESIGN

612ACADIA 2014 DESIGN AGENCYDATA AGENCY

the functional graph or an embedded piece of code, levering the

vast possibilities of native and add-in components of parametric

modeling software to compose a specialized optimization pipeline.

(Figure 2) shows the setup of a basic multi-objective evolutionary

algorithm modeled with the explicit components. In the example,

the sphere-problem as an academic benchmark of multi-objective

optimization algorithms is used. The inner loop to evaluate the

solutions is performed by the octopus.E loop component, which

is explained later. The outer loop over the evolution’s generations

is facilitated with the third-party plug-in Anemone (Zwierzycki 2014),

for reasons of read and usability, and because the performance

needed by the Selector and Operator components is negligible.

A benchmark between different looping tools is presented at the

end of this work.

With the set of explicit components, many different extensions

to a simple evolutionary algorithm are possible, some of them are:

•	 Elitism, where a percentage of solutions to modify by the

Operator-components is selected not from the entire popu-

lation but from the Elite.

•	 A biased Mutation-scheme, which takes into account analyt-

ical properties of the respective solution or relations of the

solution to the rest of the generation. This way, an agent-

like behavior can be introduced to form a hybrid between

heuristic and deterministic optimization. (Figure 3) shows

the statistical study of two different mutation operators

(Polynomial Mutation and HypE Mutation), performed within

Grasshopper. It exemplifies the advantage of developing,

testing and applying within a single environment.

Basic Multi-Objective Genetic Algorithm Using Octopus. Explicit Components2

Statistical Comparison of Two Mutation-Operators Made in Grasshopper3

613

•	 A Mutation scheme which considers the sensitivity of each

gene, mutating parameters to different extents dependent

on their level of influence on the solution.

•	 Lehmann and Stanley (2011) propose a general approach to

evolutionary optimization which they call Novelty Search.

It implies the abandoning of objectives, respectively the

reward of innovation in a search process. Inspired by this,

diversity in a search can be fostered by defining a dis-

tance measure of one solution to the rest of a generation,

which can be in genotypic, phenotypic, or objective space.

Defining this distance as an additional objective would im-

pose a fitness pressure towards the evolution of a diverse

set of optimized solutions. In this sense, Novelty Search

could be called similar to diversity preservation techniques

commonly used in multi-objective evolutionary algorithms.

•	 The type of parameters is not limited to numbers, and

could be actual geometry. If the operators are modified or

replaced accordingly, any type of data could serve as the

genome of a solution.

LOOPING AND PARALLELIZATION

The Evaluation-component works different from other approach-

es to iteration and looping in Grasshopper. Technically, it does not

constitute a breach in Grasshopper’s policy to always keep the fo-

cus of computation on just one component. Similar to Galapagos

(Rutten 2013), it connects to a part of the definition and evaluates

it with specific parameters. Galapagos does this by using native

processes: it writes the parameter values into the connected

components and waits for all downstream elements to calculate

until it finally reads the goal values. Hence it can never be part of

the definition itself, since its own evaluation would require other

components to compute. Our Evaluation-component analyzes

the network it is connected to, and copies the network and its

VIERLINGER, BOLLINGER

dependencies into a separate abstract document, called context.

(Figure 4) shows the basic use of the Evaluation-component. It

connects to a part of the definition and highlights the relevant

parts in colored frames and symbols. Upstream connections on

a connected input are not considered by the evaluation since

the parameters will be chosen and supplied by the evolutionary

algorithm; they are marked by an orange triangle. However,

those connections can still be used for debugging or using the

definition from another point within the setup. Upstream depen-

dencies are highlighted in blue; the components which are part

of the actual evaluation are marked in green. The context which

is being copied by the evaluation-component can additionally be

shown and edited in a separate window (Figure 5). This window

also shows bottlenecks in the performance of the definition. For

example, the flexibility which Grasshopper provides by automatic

casts between data-types can have significant negative influence.

Octopus.E’s loop component does not evaluate the components

on the canvas, but it is still using Grasshopper’s native methods

to compute each component’s solution. Since the constant

updating of the user-interface is not necessary, this brings a

significant gain in performance–still the evaluation would always

work correctly. Code optimizations within the copied context, for

example regarding expensive type-casts, are possible but have

been discarded for the robustness of the component. A perfor-

mance-benchmark with other looping plug-ins for Grasshopper

can be found at the end of this paper.

In general, the practicability of evolutionary algorithms suffers

from their immanently long runtime. Mostly reliant on stochastic

methods, the number of solutions to be evaluated increases with

the complexity of the problem. Planning tools in the prototypic

architectural industry benefit from an immediate feedback as a

true design tool. Therefore, we propose the distribution of compu-

tational load by:

•	 Local multithreading, unscheduled

•	 Local multithreading, scheduled

•	 Distributed computing within a local network or the Internet

Local multithreading can be problematic with regards to the very

core architecture of the underlying functions that are used by

Grasshopper and Rhinoceros. They are not designed to be thread-

safe, which means their concurrent execution on CPUs sharing the

same memory can lead to unexpected results and crashes. A naive

scheduling is implemented, which reflects the code of each com-

ponent in the evaluation-context and makes sure no identical func-

tions are executed at the same time. However, the performance

gain by this method strongly depends on the problem definition,

Use of octopus.E’s Evaluator-component4

ACCOMMODATING CHANGE IN PARAMETRIC DESIGN

614ACADIA 2014 DESIGN AGENCYDATA AGENCY

further the number of CPUs on the local machine mostly is limited

to four or eight. There are other plug-ins enabling iteration and

loops in Grasshopper, but aside their lack of parallelism they also

are not as performant in single-threaded mode.

For this reason, a prototypic framework for distributed computa-

tion of our evaluation-units is introduced. The evaluation-receiver

component (Figure 1) is placed on the canvas of a separate session

of Rhino and Grasshopper, which has to be configured in the same

way as the initial instance regarding the versions and plug-ins

needed to run the definition. All evaluation-components register

themselves on a server, which then manages the split and dis-

tribution of a pool of solutions to be evaluated. The distribution

is naive, meaning the pool is split up uniformly without any load

balancing approach. This means that the weakest machine deter-

mines the overall performance of the evaluation, since the mas-

ter-component has to wait for all solutions to be computed. The

outsourcing of an optimization’s computational load also opens

up the possibilities of a continuously accompanying design assis-

tant which is acting in the background.

FLEXIBLE PARAMETERIZATION

The optimization of a truss is used as an illustrative, yet simple

example. Parametric finite element analysis using karamba for

Grasshopper (Preisinger 2013) offers high-performance assessment

of the trusses’ load bearing capacity. Additionally, it is able to

iteratively size the cross sections of its members according to

their maximum allowable stress (Figure 7). Hence, the maximum

displacement and the resulting mass are goal values to be mini-

mized, as well as the number of joints as a measure for economic

fabrication. Further, genetic diversity is imposed as a custom goal

with octopus.E like described above.

Copied Evaluation Context5

Translation of Two Magnetic Fields into Two Sets of Truss-Diagonals6

Iterative Cross Section Optimization of the Truss Members7

615 VIERLINGER, BOLLINGER

Selected Solutions after Three Generations of Size 2008

ACCOMMODATING CHANGE IN PARAMETRIC DESIGN

616ACADIA 2014 DESIGN AGENCYDATA AGENCY

The geometry of the chords is fixed as straight lines and the vari-

ables of each solution are the positions of the diagonals. A simple

parameterization would be the introduction of a parameter for the

two ends of each strut. This straightforward way can have advan-

tages for some applications, but for larger numbers of diagonals,

the amount of parameters becomes too high for an efficient opti-

mization. Also, a truss would mostly exhibit a certain degree of reg-

ularity, respectively enabling a reading of the underlying structural

mechanisms. These would be hard to accomplish by the approach

of an individual parameterization. Instead, we define two direction-

al fields spanning throughout the bounding box of the structure.

The fields each are parameterized by three points of simulated

magnetic charge, adding to a total of twelve parameters. Three

more parameters are used to determine the distribution-functions

and offset of each set of diagonals. Along the middle axis of the

truss, these distribution functions create points, for which the

directional fields are evaluated. A point and a direction then define

a diagonal (Figure 6). The resulting line geometry is turned into a

structural finite-element model, and loaded by 1.35 times its dead

weight and a line load of thirty kN/m on its upper chord. (Figure 8)

shows selected results after three generations and a population

size of 200, where bearing mechanisms already are clearly read-

able. The distribution of tension and compression within those

mechanisms, as well as the deflected shape are further illustrated

in (Figure 9). (Figure 10) shows a plot of the solutions in objective

space forming the Pareto-front approximation, giving feedback on

the best trade-offs that were found so far. The color and size in the

diagram correspond to an abstract measure of diversity.

Hofmann (2011) uses a direct parameterization as described

above, and needs significantly higher runtime to arrive at coherent

solutions. This shows that encodings using superimpositions of

fields and functions are at least promising when trying to digitally

breed and evolve functionally meaningful patterns.

(Figure 11) shows the setup for a benchmark between differ-

ent tools for looping a definition in Grasshopper. ‘Hoopsnake’

(Chatzikonstantinou 2014) and ‘Anemone’ (Zwierzycki 2014) are

compared to the looping-tool introduced in this work. The re-

sulting runtimes are written in (Table 1). It is shown that also in

single-threaded mode octopus.E performs best due to savings

at user-interface updates. Hoopsnake exhibits a function to deac-

tivate the previews during execution of a loop, but still is almost

twice as slow as octopus.E. In local multithreading mode, octo-

pus.E is slower than single-threaded due to the use of karamba in

the truss example, which already uses all the cores available. The

resulting overhead in management of the different threads then

Finite Element Analysis of Truss Solutions9

Solutions to Truss-Optimization in Objective Space10

617 ACCOMMODATING CHANGE IN PARAMETRIC DESIGNVIERLINGER, BOLLINGER

leads to the performance loss. The experimental setup of distributed computing on four machines in

a local network shows by far the best results. Still it is to be noted that the setup is experimental and

under well-tuned conditions. Large geometric dependencies which have to be transferred over the net-

work in each generation, or differently powerful slave-computers can degrade the performance of this

approach quickly.

CONCLUSION

The experiments explained in this work try to exemplify original ways of thinking about how we use

contemporary design tools. Simple principles are used along with the idea of modularity and flexibility.

Paired with improved performance through parallelization, the setup and application of developmental

Benchmark Setup with Truss
Example

11

Benchmark Results for
the evaluation of the Truss
Examples’ Solutions

Table 1

618ACADIA 2014 DESIGN AGENCYDATA AGENCY

biology’s principles is tried to be somewhat defanged. However,

there are many chances regarding interface, workflow, and im-

mediacy of parametric modeling environments with respect to

augmented performance intelligence. The question of the role

of the model in an architectural project is tightly related to the

task of maintaining flexibility throughout the digital chain to not

only improve a design’s ultimate quality, but also the workflow in

practice. With new paradigms in modern parametric modeling on

the other hand, there is great potential in the research of represen-

tations, and the theoretically unlimited pool of formal languages

waiting to be described.

REFERENCES
Bader J., Deb K., Zitzler E. 2010. ‘Faster Hypervolume-based Search
using Monte Carlo Sampling’, M. Ehrgott et al., editors, Conference
on Multiple Criteria Decision Making (MCDM 2008), volume 634
of LNEMS, pages 313–326, Heidelberg, Germany.

Bittermann M.S. 2009. ‘Intelligent Design Objects (IDO) - A cognitive
approach for performance based design’, Phd diss., TU Delft, Faculty
of Architecture, http://repository.tudelft.nl, accessed Apr. 2014.

Bollinger K., Hofmann A., Preisinger C. 2011. ‘Algorithmic Generation
of Complex Spaceframes’, Conference Proceedings IABSE-IASS,
p.445, London.

Bhooshan S., Zaha Hadid Architects ‘Computation and Design (co|de)
group’, http://www.zha-code-education.org/, accessed Apr. 2014.

Chatzikonstantinou, Y. ‘Hoopsnake’, software, http://yconst.com/
software/hoopsnake/, accessed July 2014.

Davis, D. 2013. ‘Modelled on Software Engineering: Flexible
Parametric Models in the Practice of Architecture.” PhD dissertation,
RMIT University.

Deb K., Goyal M. 1996. ‘A combined genetic adaptive search
(GeneAS) for engineering design’, Computer Science and Informatics,
26(4), p. 30-45, 1996.

Deb K., Agrawal R. B. 1994. ‘Simulated Binary Crossover for
Continuous Search Space’, IITK/ME/SMD-94027, Convenor, Technical
Reports, Indian Institue of Technology, Kanpur, India.

De Landa M. 2001. ‘Deleuze and the Use of the Genetic Algorithm in
Architecture’, Design for a digital world, p. 117-120, Wiley-Academy,
Wiley, New York.

Kicinger R., Arciszewski T., De Jong K. 2005. ‘Evolutionary
Computation and Structural Design: a Survey of the State of the Art’,
Journal of Computers and Structures, Volume 83 Issue 23-24, p. 1943-
1978.

Lehman J., Stanley K.O. 2011. ‘Abandoning Objectives: Evolution
through the Search for Novelty Alone’, Evolutionary Computation
journal, (19):2, p. 189-223, Cambridge, MA: MIT Press.

Neumann, John von 1951. ‘The general and logical theory of
automata’, Pergamon Press.

Preisinger, C. 2013. ‘Linking Structure and Parametric Geometry’, AD
Architectural Design Issue ‘Computation Works’, p. 110-113.

Rutten, D. 2013. ‘Galapagos – On the logic and limitations of generic
solvers’, AD Architectural Design Issue ‘Computation Works’, p. 132-
135.

Stanley K.O. 2007. ‘Compositional Pattern Producing Networks:
A Novel Abstraction of Development’, Genetic Programming and
Evolvable Machines, Special Issue on Developmental Systems, New
York, NY: Springer.

Vierlinger, R. 2013. ‘A Framework for Flexible Search and Optimization
in Parametric Design’, Rethinking Prototyping - Proceedings of the
Design Modelling Symposium Berlin, Berlin.

Wolfram, S. 2002. ‘A New Kind of Science’, Wolfram Media,
Champaign, IL.

Zitzler E., Laumanns M., Thiele L. 2001. ‘SPEA2: Improving the
Strength Pareto Evolutionary Algorithm’, Swiss Federal Institute of
Technology (ETH) Zürich, TIK-Report 103.

Zwierzycki, M. ‘Anemone’, software, http://www.grasshopper3d.com/
group/anemone, accessed July 2014.

IMAGE CREDITS
All image credits to Robert Vierlinger (2014).

ROBERT VIERLINGER is a researching engineer and inter-
disciplinary consultant. Working on his PhD at University of Applied
Arts Vienna, he investigates on digital representations and evolu-
tionary design strategies. Robert develops the plug-ins octopus and
octopus.e for Grasshopper. Further, he is involved in the development
of karamba. Parametric engineering and optimizations for international
competition- and construction-projects are the basis of his consul-
tancy at Bollinger-Grohmann engineers. He studied structural design
at TU Delft and TU Vienna, studied at Studio Hani Rashid Vienna, led
workshops in Germany, England, Denmark, Hong Kong and Austria,
and teaches at Studio Zaha Hadid Vienna.

KLAUS BOLLINGER has studied Civil Engineering at the
Technical University Darmstadt and taught at Dortmund University.
Since 1994 he has been Professor for Structural Engineering at the
IoA/University of Applied Arts Vienna, since 2012 he is the Institute’s
dean. In 1983, Klaus Bollinger and Manfred Grohmann established the
practice Bollinger + Grohmann, now located in Frankfurt am Main,
Berlin, Vienna, Paris, Oslo, Melbourne, and Berlin with around 200
employees. The office’sscope of work includes building structures,
facade design and building performance.

