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Kangaroo Physics, a physical simulation engine, is amongst the most used
form-finding tool with nearly 500 000 downloads. Mostly resorted to by users
with moderate computation skills, it provides a simplified interface for an
advanced simulation tool. It is a Particle Spring System relying on the Dynamic
Relaxation method and offering a wide design space. Thanks to the visual
scripting interface provided by Grasshopper, the user has access to a fixed set of
physical ““goals" and unitless variables, without having to work with more
complex aspects of the Kangaroo physical model. This setup induces a
disconnection between the user and the physical model with its variables. The
goal of this research is to introduce, within the Grasshopper environment, a
tensile parameter, the Young Modulus, into the Kangaroo model. Thus, while
preserving the design freedom of the plug-in, a better understanding of the
physical behaviour modelled in Kangaroo is offered to neophytes, as well as
better control of material properties.
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INTRODUCTION

With the first Digital Turn in architecture (Carpo
2012), in the 1990s design processes have shifted
from representation to simulation. Designers work in
a whole new space, where topology, geometry, ma-
terial and load case are equivalents parameters that
can be programmed. The designer’s role is therefore
overturned: he/she no longer projects a finite shape,
but he/she collaborates with the machine at different
degrees, from adjusting parameters on an interface,
to designing his own tools, no longer focusing on a
finite shape but on a dynamic design process. With
the massive development of digital tools and their
democratisation, the first has recently become pre-

dominant, raising the issue of the designer’s ability
to understand and fully master his tools (Gaudilliere
2020).

One of these processes is called form-finding.
We can distinguish two approaches to form-finding
which could be called: the “physical rationalisation”
approach and the “shape freedom” approach. The
first is to maximise the mechanical and geometric ac-
curacy of the model, in order to establish the con-
structibility of a given object. In this case, a mechani-
cal problem is defined ahead of the form-finding pro-
cess. The second is part of a more prospective con-
text and offers more formal variation possibilities. In
this case, it is necessary to operate with as few con-
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straints as possible, in order to generate a design
space as large as possible. These two approaches co-
exist and can correspond to the stages of the archi-
tecture project. However, the physical rationalisation
approach is the most common in research today (Luo
et al. 2018) (Shi et al. 2018). The technical complex-
ity of new physical simulation models forces design-
ers to rely on tools whose physical principles govern-
ing simulation are hidden in favour of a simplified in-
terface (Gaudilliere 2020)(Mueller and Brown 2017).
Such software with a simplified interface are accessi-
ble without any in-depth technical knowledge, be it
in the field of physics of in the field of computation.

With nearly 500,000 downloads [1], Kangaroo
Physics is the most downloaded grasshopper plugin
and one of the most widely used form-finding tool.
Kangaroo is among those tool with a simplified in-
terface, thanks to its integration into Grasshopper, a
visual programming software relying on dynamically
linked libraries (DLL).

The purpose of this paper is to question the role
played by tools and their interfaces in the designer’s
practice, through an analysis of Kangaroo Physics.
The user is offered a simplified interface, this simplifi-
cation allowing for a wider design freedom by easing
the resort to advanced simulation tools. This to the
detriment of physical rationality set aside, because
the technical principles and physical laws at stake
during the simulation are overshadowed. The goal
of this paper is therefore to explicit Kangaroo's func-
tioning in a pedagogical objective.

First, a brief historical review will be made and a
classification of the form-finding methods will be es-
tablished. Then, a study of the functioning of Kan-
garoo is proposed, in order to to detect interface bi-
ases. Finally, a set of tools is developed, and applied
to three case studies.

FORM-FINDING METHODS CLASSIFICA-
TION

The form-finding process can be defined as follows: it
is the search for a state of equilibrium of forces under
given conditions and according to a given stress.

Until the beginning of the 20th century, form-
finding was based on analog research processes. In
his experiments with soap bubbles, Frei Otto (1969)
explored the properties of matter to generate mini-
mal surfaces. Before him, Antoni Gaudi (see Fig. 1a)
used suspended chain models to prefigure vaults and
arches shape. With analog research, the architect
places himself in a physical relationship with mate-
rial. This type of approach requires intuition. How-
ever, analog models show their limits when the de-
sign intention requires a high number of iterations,
on complex geometries. Moreover, scaling remains
an issue.

Since the end of the 1960s, the rise of computer
science has made it possible to develop form-finding
methods in the theoretically unlimited design space
offered by computers (see Fig 1b). Block and Veenen-
daal define three families of algorithmic form-finding
methods (Adriaenssens et al. 2014, table 10.1 p.116)

«  Stiffness Matrix Methods (such as Natural Shape
Finding (1974))

«  Geometric Stiffness Method (such as Force Den-
sity Method (1971), Thrust Network Analysis
(2007))

+  Dynamic Equilibrium Methods (such as Dy-
namic Relaxation (1984), Particule Spring Sys-
tem (2005))

These methods can then be classified into two cat-
egories: static problem methods (stiffness matrix
methods) and dynamic problem methods (dynamic
equilibrium method) (see Fig. 2).

The first category includes methods that require
a rigorous description of boundary conditions (ge-
ometry, topology, material, loads), the simulation is
dependent on the material and on solid geometry,
which is difficult to reconcile with any prospective
approach. Methods such as the FEM consume a lot
of computing power and are intended to evaluate
a given solution. In short, it is a knowledge-based
process, while the objective of the form-finding pro-
cess is precisely the opposite; to produce variety. Al-
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Figure 1

1a. (left) A model
with suspended
chains, Gaudi, 1889
[2]. 1b. (right)
ElasticSpace ITKE
interface, a
screenshot of the
video [3].

Figure 2
Available
form-finding tools.

though the debate remains open, we chose to ex-
clude these methods from form-finding as is defined
in this research.

The second category includes methods making
it much easier to perform interactive deformations
and manipulate complex interactions with only a few
equations and parameters. In fact, these methods
are well suited to generate visually correct simula-
tions. For example, the Dynamic Relaxation Method
is based on the resolution of the balance of forces
to reach the static state of a structure. In addition,
this method requires the least computing power and
produces the most diverse results(Veenendaal and
Block 2012, section 2.5). The most recent process
(2005) based on this latter method is the particle-
spring system (PSS). In a PSS, each object is discrete,
that is, each object must be readable as a set of
points. Each point is characterised by its position,
mass and velocity. The particle system’s evolution is
calculated using springs; understand the repulsive,
attractive or neutral relationship between two parti-

cles in the system. It is therefore possible to build in-
teractive models with parameters modifying the ge-
ometry in real-time. Kangaroo Physics belongs to this
category (see Fig 2). Thus, the surface becomes a
mesh, i.e. a set of points and lines. However, a parti-
cle spring-system cannot simulate complex physical
phenomenons such as flexion, given that in an en-
vironment that was originally designed to simulate
hulls and minimal surfaces, structures operate with
normal forces (compression/traction) only.

Based on the PSS method, several design tools
have been developed in the past years. CADenary
is a software developed by Axel Kilian (MIT), in 2005,
based on Gaudi’s catenaries system and offering a
configurable tool for the generation of compression-
only vaults (Kilian and Ochsendorf 2005). Regarding
complex structures involving hybrid dynamic bend-
ing and tension, in 2013 Achim Menges developed
SPRINGform (Ahlquist et al. 2013). Evy Slabbinck’s
recent research at the University of Stuttgart has led
to the development of a real-time recursive topol-

Static problem
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ogy algorithm: ElasticSpace [3] (Suzuki et al. 2017).
All these solutions have a simplified interface (see
Fig. 1b). Kangaroo Physics relies on the same form-
finding method but is the only released and free tool
today. K2Engineering is a grasshopper plugin us-
ing Kangaroo Physics library, developed by Cecilia
Brandt. Oriented toward physical rationalisation, the
plugin includes similar adjustments as the ones pro-
posed in this paper. Although this plugin has been
used in some works (Melville et al. 2017)(Bonavia et
al. 2019), no article details how this plugin works, and
it hasn't been released, although the source code is
available[4]. The author has not been able to get the
plugin working at the time of writing this article. The
existence of K2Engineering shows that there is a flaw
since there was a need to make this plugin, but this
flaw is not demonstrated anywhere, even though it
is very important for reducing the gap between the
user, and the physical model and its variable. The
goal of this article is to reduce this gap, first by show-
ing its existence, and then by developing a clear and
appropriable approach to reduce it.

Despite Kangaroo Physics' many advantages,
several issues remain in the form-finding developed
in it. It relies on known methods without showing
their full complexity and potential. The source code
of Kangaroo has been published on Github by Daniel
Piker [5], and online documentation about the meth-
ods involved are available online[6]. Using these re-
sources, we will develop the functioning of Kangaroo
Physics (a Particle-Spring System) in order to high-
light this gap, then we will propose a solution that will
be applied to a set of three case studies in order to
validate the principle, validate design freedom, and
validate the results.

ANALYSIS

Particle-Spring System Functioning

Hooke Law (Hooke 1678). In a Particle-Spring Sys-
tem, a spring is calculated according to Hooke's law:

Fo=k- -z M

Dynamic relaxation. The name dynamic relaxation
appears for the first time in an article by A. S. Day
and J. R. Otter (1960), where the authors sought to
model the movement of the swell. They replace the
equations of continuity and motion of fluid mechan-
ics with those of elasticity (Hooke’s law) and structural
mechanics dynamics (Newton’s Laws).

This method simplifies the solution of a non-
linear equation system into an iterative and linear
explicit calculation. The proposed static solution is
therefore the result of a damped dynamic process.
The dynamic behaviour itself does not matter be-
cause it is the static state that is sought. The dy-
namic relaxation iterative model is explained by Cyril
Douthe (2007, part 3.2.2 p.83).

Kangaroo Operating Mode

A dynamic relaxation algorithm follows specific steps
(Adriaenssens et al. 2014, table 10.1 p.116), pre-
sented in the following parts, for a generic tensioned
surface. The input is a mesh, its vertices and edges
become nodes and connections in kangaroo. The
output is a set of curves, that can be assembled into
amesh.

Definitions of the initial conditions. Initial geome-
try (Li), rest geometry (LO), and load cases (see Fig. 3).

«  1: Amesh composed of vertices and edges

+  2: Theinitial length of the mesh edges gives Li
for each edge

+  3:Thelength factor, a
4: "Strength” corresponds to the stiffness of the
connection, k

We therefore retrieve, for each interaction L of the
system, Hooke’s law (equation 1):
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Algorithm for
simulating a
generic tensioned
surfacein
Grasshopper with
Kangaroo Physics.



Figure 4

Weight / mass
definition in
Kangaroo Physics.

With Lo = a- L;

«  5: Definition of the anchorage points, here the 4
corners of the mesh.

Definition of convergence parameters. The solver
component (see Fig. 3).

+  6: The threshold indicates the moment at which
the simulation will be stopped and at which the
algorithm will have converged. By default this
threshold is 10-15, or one femtometer. By raising
this threshold, we accelerate the convergence of
the simulation, at the expense of its accuracy.

Four other entries can be found on this component:
“GoalObjects” - is the sum of forces, “Reset” - to which
a reset button for the simulation is connected, “Tol-
erance” - the threshold for which 2 points will be
merged, “On” - To which a switch to turn the solver
off is connected.

Definition of the masses at each node. By default
each node has a mass equal to 1. Since the mass acts
on the inertia, it also acts on the convergence speed
of the algorithm.

Convergence loop. At each iteration and until the
model converges.

Calculation of residual forces R_% The “GoalOb-
jects” entry is the sum of the residual forces for each
node. .

Calculation of speeds V,erAt/z. (Douthe 2007,
part 3.2.2 p.83)

V$+_At/2 _ At

Mn

L 11 3)
Calculation of positions X£T4t. (Douthe 2007, part

3.2.2p.83)

XEFAY2 — Xt 4 Ap . pETAY2 @)

The algorithm will stop when the threshold is
reached, we will then have the static state of the ge-
ometry.

Static state of the geometry (L). (see Fig. 3).

« 7 Once the static state of the geometry is
reached, the PSS gives 3 different types of out-
put: Iterations (I) number of iterations required
until the model converges, Vertices (V) for the
points, and Output Geometry (O) for the edges.

Verifying Newton’s Laws

Kangaroo Physics uses Newton's first law to calculate
the system. The third law is de facto validated be-
cause the PSS are based on the interaction between
two points. The force between these two points acts
in the direction of the line. It is added to one point
and subtracted from the other.

In Kangaroo (see Fig. 4), by default, each particle
has a unit mass. Newton'’s second law can be used
to define a mass for a particule. (In version 1 of Kan-
garoo, we could define the mass of an object with a
dedicated component, which is missing in version 2).

We therefore use the following expression:

(ﬁ)g =p (5)
n
with:

«  my : total mass of the object

+  n:number of nodes in the discrete object
- g:acceleration of terrestrial gravity

+  p:object weightin N

) 0384 ,
{x
.. 4s |l

Young Modulus

The longitudinal modulus of elasticity, also called
Young's modulus, is the constant that connects the
stress (as normal stress, traction or compression) and
uniaxial deformation (proportional deformation) of a
given material. This constancy measures the stiffness
of this material. It is therefore interesting to compare
it with Hooke's law, to understand to what extent the
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latter approximates physical phenomena.
For a specimen of any material of module E, we

have:
F- Lo (6)

E =
S-AL

With:

« Lo :resting length of the specimen

«  AL:relative elongation

«  F':force exerted by the material when it is elon-
gated by AL

+  S:section perpendicular to the force F’

We thus find Hooke's law back:

F:(EL'S)-ALEF:k-m @)
0
[N]:M[adim.]

Hooke’?}_aw describes only the linear part of the
behaviour of matter (see Fig. 5). We also observe
that this behaviour varies greatly depending on the
material (from 7.50.10-7 GPa to 1200 GPa [7]). It thus
appears relatively complex to control physically ratio-
nal behaviour, in Kangaroo as it is. Nevertheless, with
equation 7, we understand that the modulus of elas-
ticity can be introduced into Kangaroo. By in produc-
ing the Modulus of Elasticity, we open the way to the
implementation of bending or buckling (and other
properties) as it is linked to the Modulus of Elasticity,
however it is not the purpose of this paper.
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PROPOSED RESOLUTION
In this section we define four components, following
the introduction of Young’s modulus into Kangaroo.

Rational Stiffness

With equation 7, Young'’s modulus can be linked to
Hooke’s law. A physical rationalisation can therefore
be introduced in Kangaroo Physics. Thus, we have:

E-S
(52)->
Lo
Thisis translated into Kangaroo (see Fig. 6). For better
intelligibility, the diameter in millimetres is the vari-

able. It is converted to meters and gives section S
(see asterisk) with S = (d/2)?1I
o (x*y) /z |k }’

[Maleriau(E) < Nyon }])—d E[Pa] D
diametre [nm] | ©2.0

Figure 5

Kangaroo Physics
behaviour v. given
material behaviour.

Figure 6

Rational stiffness in
Grasshopper's
environment.



Figure 7

Yield strength in
the Grasshopper
environment.

Figure 9

Rational
prestressing in the
Grasshopper
environment.

Figure 8

Support reaction in
Grasshopper’s
environment.

Yield Strength

(xy) * ((z/u) -1)

Following what has been shown earlier in the paper,
we are attempting to visualise the moment where
a connection exceeds its yield strength in Kangaroo
(see Fig. 7).
First of all, the yield strength is a stress expressed
in Pa, so:
Re:%zFe:SJQE 9)

Moreover, by reusing equation 6, we have: F = E -
L

Sl— -1
Lo
We visualise the elasticity state of a connection

by comparing the force F'in this connection with the
maximum force Fe,

F
< if A € [0;1] then the connection is in elastic
e
behaviour, the simulation is correct.
« if — > 1 then the material is in plastic be-
e
haviour, the simulation is incorrect.

Moreover, the mechanical resistance limit noted R,
is also a constraint, it can be visualised with the same
method.

Support Reaction

In fact, the support reaction P at point A is equal to
the sum of the vectors of the forces exerted on this
support. In Grasshopper (see Fig. 8), the tool is di-
vided into 4 parts: extraction of the connections re-
lated to the supports and the forces associated with
these connections (a), definition of vectors having as
amplitude the values of forces previously extracted
(b), for each support, sum of the vectors (c), then dis-
play of the reaction vectors to the supports and their
value in kN (d)

Rational Prestressing
By default, prestress is defined by a ratio between L;
and Lo, and prestress is characterised in Newton.
By picking up equation 6, we find: Lo =
Ly
L; — 5 Figure 9 shows this equation in the

Grasshopper environnement.

2= ((u*z) / (x*y))|LO

<© 100000

CASES STUDIES

The data used in this section are from MathWeb [7].
The aim here is to validate our set of tools with three
study cases.

Validation of the Principle

We are studying the elongation of nylon specimen,
comparing traditional calculation and with our set of
tools in Kangaroo.

Young modulus E = 3G Pa, initial length L; =
1m, section S = 3,14160.10~%m?, applied force
(m = 1kg) F = 9,80665N
Manual calculation. Using equation 6, we find the
value of L:

L=+ L
- E.S

L =1,001041m

(10)
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Kangaroo Physics. By using the tools shown earlier
in the paper, Kangaroo displays the sameresult: L =
1,001041m.This first experience confirms that Kan-
garoo is able to simulate material behaviour with our
tools.

Validation of the Design Freedom
We are seeking to reproduce a classic form-finding
case implementing our tools.

The simulation takes 46ms to compute, mean-
ing there is a 0.046-second delay between the mod-
ification of a parameter by the user, and the visual
feedback (see Fig. 10a). As a comparison, the ini-
tial Kangaroo simulation presented in part 3.2. re-
quires 6ms. The simulation, therefore, remains us-
able in real-time. The user does not lose the flexibil-
ity of use, as a result of the addition of rationalisation
tools. Thus the wide design space specific to Kanga-
roo is maintained. The variability of results enabled
by this algorithm is shown in figure 10b. Initial ge-
ometry and prestress are the fixed parameters, but
other parameters can be a source of variation: ma-
terial, connection cross-section, weight, etc.

Validation of the Results

We are seeking to reproduce the conditions of the
form-finding method developed by four Chinese en-
gineers to optimise the cable network corresponding
to the roof of the Suzhou Industrial Park Stadium (Shi
et al. 2018). This article is recent and the subject of
study, a tension cable network, can be modelled with
Kangaroo Physics. The initial conditions are set out
on page 7 of the reference article.

All cables have a mechanical strength limit (R,,)
of 1,670M Pa, a density (d) of 7,85.103kg/m?,
a modulus of elasticity (E, Young's modulus) of
1,60.10° M Pa.

Definition of load cases applied to the nodes of
4 2173,41N

Nbnodes
Here the parameters are: height of peripheral

nodes (anchoring), prestress level of each cable, sec-
tion of each cable. We record the orders of magni-
tude of the parameters in Figures 8 to 12 of the refer-

the central hoop: Ihoop - S

enced article: cable section: from 0.006 to 0.0150 m2
and node elevation: from 0 to 30 000 mm.

Having read this information, we can build a
model with the system developed in case study 2.
The development and application of a genetic algo-
rithm is not the subject of this paper, so this part will
not be covered. The objective function is therefore
given page 5 of the reference article:

Obju(z) = d; - S; -1 an
By using the tools shown earlier in the paper, an al-
gorithm is constructed in Grasshopper.

The figure above (see Fig. 11) shows 3 forms
generated by the user’s search. The details of the
force per connection in kN (a) and the mechanical
strength limit '/ F,,, (b) are given.

Using their genetic algorithm to have a bespoke
dimensioning on each cable of the system, Luo, B.,
Ding, M., Han, L. and Guo, Z. get similar results. This,
therefore, demonstrates that the proposed compo-
nents for Kangaroo Physics produce valid results. The
proposed method opens the understanding of com-
plex form-finding cases, such as the design of a sta-
dium roof, to neophytes.

CONCLUSION

Using Grasshopper’s programming environment, we
have integrated the elasticity parameter (Young’s
modulus) into Kangaroo’s particle system. The new
model is integrated into the form-finding process
and projects four layers in real-time: the force F' in
kN per connection, the ratio between the force F'
and the yield strength limit force F, the ratio be-
tween the force F' and the mechanical strength limit
force F,, and the reaction to the supports. Three
new parameters are a source of shape variation: the
material (Young's modulus E, yield strength R, me-
chanical strength limit R,,), but also the weight in
Newton, and the prestress in Newton.

The three study cases demonstrate both the ac-
curacy and the interest of the proposed model at dif-
ferent scales and complexity degrees. It opens the
way to a new level of accuracy in form-finding with
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Figure 10

10a. Isometric view
of the physical
rationalisation
layers. 10b.
Form-Finding with
case study 2's
algorithm:
Two-dimensional
population.

Kangaroo for untrained users, by expressing the full
technical complexity at stake during the simulation
by Kangaroo. Beyond expliciting Kangaroo's func-
tioning in a pedagogical objective, and implement-
ing physical properties through the Young Modulus,
this research is a starting point to adding more phys-
ical properties.

In our quick paced technological era, digital tools
and the algorithms they rely on tend to be displayed
via simplified interface leading designers to partly
losing control of their production. This is an attempt
to give back control to designers, by reducing the
gap between the user and the physical model with its
variables. This research aims at reconciling the phys-
ical rationalisation approach with the shape freedom
approach, by maintaining advantages coming from

both, in order for neophytes to better grasp the place
of computational tools in the design process.
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Figure 11

Three individuals
with details of the
#F# and #F_m#
layers.



