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Abstract. The methods and algorithms of generative modelling can be 
improved when representing organic structures by the study of com-
putational models of natural processes and their application to archi-
tectural design. In this paper, we present a study of the generation of 
branching structures and their application to the development of façade 
support systems. We investigate two types of branching structures, a 
recursive bifurcation model and an axial tree based L-system for the 
generation of façades. The aim of the paper is to capture not only the 
form but also the underlying principles of biomimicry found in branch-
ing. This is then tested, by their application to develop experimental 
façade support systems. The developed algorithms implement paramet-
ric variations for façade generation based on natural tree-like branch-
ing. The benefits of such a model are: ease of structural optimization, 
variations of support and digital fabrication of façade components.

Keywords. Parametric Modelling; Biomimicry; Lindenmayer Systems; 
Branching Structures. 

1. Introduction 

The re-emerging science and philosophy of learning from nature is inspir-
ing architectural design through the concept of biomimicry (Benyus, 1997). 
Biomimicry uses nature as a model and takes inspiration from natural forms 
and processes to solve human problems. The methods and algorithms of gen-
erative modelling can be improved by the study of computational models of 
natural processes and their application to architectural design. In this paper, 
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we present a study of the generation of branching structures and their potential 
application in the development of façade support systems.

Architects use a variety of design approaches in drawing upon nature. For 
example, Architektonic Architects presented a design concept for the AAC 
Global Headquarters in China based on the structural logic of tree growth 
(Figure 1, left), where the building form and structural system replicate the 
form of trees and branches. Toyo Ito, in his Tod’s Omotesando building in 
Tokyo (Figure 1, centre) draws its inspiration the elm trees that line Omote-
sando Boulevard. Ito explains the logic as, 

“Trees are organisms that stand by themselves, so their shape has an 
inherent structural rationality” (Pollack, 2005)

Figure 1. Examples of tree-like façades in architecture. AAC headquarters building (left), Ito’s 
Omotesando building (centre) and A2RC’s Brussels meeting centre (left).

In their entry to their Brussels Meeting Centre, A2RC Architects subdivide a 
glass cube with a treelike structure, gesturing to the adjacent historic garden 
(Figure 1, right). While these examples of architecture draw inspiration from 
nature but they do not utilise the formal logic of natural systems to drive the 
geometry. For example, in the Ito building, the form was developed in a tra-
ditional manner in partnership with structural engineer Masato Araya and his 
firm, OAK Structural Design Office. This paper aims to extend these informal 
approaches with formal generative methods to façade subdivision, driven by 
the logic and principles of branching systems. 

2. Related work

Becker (2006) demonstrated a novel method for modelling branch connectiv-
ity with smooth nodes based on isosurfaces. Vanucci (2008) developed the 
notion of pluri-potential branching systems based on the interaction between 
biological processes and computation. Architectural applications of branch-
ing structures drawing on biological processes, computation and architectural 
design are explored in his research. Greenberg (2008) outlined the mathe-
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matical logic underlying various types of branching systems found in nature. 
Serrato-Combe (2005) investigated the application of LindenmayerSystems 
in architectural design.

3. Branching structures 

Branching structures are a dominant occurrence in natural structures, such 
as trees and rivers. They have been investigated in mathematics and com-
puter science as efficient data structures for search algorithms (Bovill, 1996). 
In design, novel studies of route networks, structural systems and spatial 
organisation have also touched upon the concept of branching (Frazer, 1995; 
Panchuk, 2006). They have been proven to be an optimised form of creating 
node-edge networks. In this paper, we present the application of two types of 
branching algorithms to develop façade support systems, a simple recursive 
bifurcation algorithm (Figure 2) and a rewriting system based on L-systems 
(Figure 3).

Figure 2. Bifurcation with recursive subdivision with depth d =1, 2 and 6.

3.1. REcurSIVe Bifurcation 

Bifurcation is the process of division of a main body into two parts or branches. 
This, when replicated, allows for the development of a simple branching 
system. This system is based off a single starting line that recursively gen-
erates new lines at the endpoint of the parent line. This allows for infinite 
branching and therefore requires careful control of the recursion depth. The 
control of the angle of division allows for the exploration of the geometric 
generation.

3.2. rewriting systems

Rewriting systems are a powerful method of generative modelling in design. 
Using a set of rules or productions, they allow for the parts of a simple initial 
object to be successively replaced resulting in a more complex final object. 
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String re-writing systems were first formally defined at the beginning of the 
20th century by Thue, a Norwegian mathematician. String rewriting gained 
wide interest in the late 1950’s due to Chomsky’s work on formal grammars. 
At the centre of attention were sets of strings, called formal languages, and the 
methods for generating, recognizing and transforming them. These systems 
became critical to the development of computer languages.

In 1968 Aristid Lindenmayer, a biologist, introduced a new type of string-
rewriting mechanism as a theoretical frame work for studying the develop-
ment of simple multi-cellular organisms, and subsequently was applied to 
higher order plants. This type of string re-writing mechanism is termed an 
L-System and is based on the central concept of rewriting (Przemyslaw et al, 
1990). L-systems provide a mathematical description of tree-like shapes and 
methods of generating them. 

The key difference between Chomsky’s grammars and L-systems lies 
in the method of applying productions. In Chomsky grammars productions 
are applied sequentially, while in L-systems they are applied in parallel and 
simultaneously replace all letters in a given word. This difference reflects the 
biological motivation of L-systems, with the productions intended to capture 
cell divisions (Prusinkiewicz and Lindenmayer, 1990).

Figure 3. L-system based rewriting system with depth d =2, 4 and 6

4. Recursive bifurcation model

The standard model of recursive bifurcation, explained in Section 3.1, takes 
an initial line and places two copies of it at its end point. These copies are 
rotated by a rotation parameter with a positive and a negative phrasing to 
allow for a left and right branch generation. This process is then repeated on 
each of the new branches until the depth of the recursion is met. Recursive 
bifurcation was implemented within Generative Components with two exten-
sions, the rotation and scaling variables were parameterised and randomised. 



179GENERATIVE MODELLING WITH AXIAL BRANCH REWRITING

The rotation angle was modified by replacing the branching angle input 
with a random generator. Within this random angle generator, limits were set 
to ensure that the differences between branches were not too extreme (Figure 
4, Left). As a result the script generates a completely different tree form each 
time the script is run. The second modification was to introduce a variable 
scaling input, which adjusts the length of the copied line by a variable scale 
factor. (Figure 4, Right). 

Figure 4. Bifurcation system with random angle (Left) and variable scale factor (Right). 

While our bifurcation script allows for the generation of a tree pattern, it lacks 
any boundary definitions that can relate it to a building. If the tree is main-
tained within the façade boundaries, problem areas arise were the tree falls 
short of the boundaries. This is solved by ensuring that the tree is larger than 
the surface area required and the designer can then manually determine which 
section of the tree pattern will be used (Figure 5).

The bifurcation model successfully subdivides a façade while providing a 
tree like pattern. While this model offers advantages over manually drawing 
the subdivision, both in the variation within and the speed at which different 
options can be generated, it is still limited to the simple use of bifurcation. To 
implement deeper logic within tree branching, we have developed a rewriting 
script based on L-Systems.

Figure 5. Boundary area (Left) and projection (Middle), final Façade model (Right). 
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5. Rewriting system model

In order to address the limitations of the recursive model outlined above, 
a second method of branch generation was investigated. In this scheme, a 
façade model based on L-systems was developed. 

5.1. Dol System

The simplest class of L-systems are those that are deterministic and context-
free, called DOL-systems. A DOL-system is defined as the ordered triple G = 
(V,w,P), where:

•	 V = {s1,s2,....,sn} is an alphabet composed of a set of distinct symbols.
•	 w, known as the axiom
•	 P, known as the finite set of productions

In order to understand how they work consider a string built of two letters a 
and b. Each letter is associated with a rewriting rule, in this example a → ab 
and b → a. This means that the letter a is replaced by the string ab and the 
letter b is replaced by a. 

The rewriting process begins from a distinguished string called the axiom 
in this case a. In the first derivation step the axiom a is replaced by ab. The 
word ab consists of two letters, so in the second step both are simultaneously 
replaced, a with ab and b with a resulting in the string aba. In a similar manner 
the string aba results in abaab, which results in abaababa, and so on (Figure 
6, Left).

Figure 6. D-OL System (Left), Turtle Interpretation of string symbols (Middle) and Interpreta-
tion of a string (Right).

5.2. turtle interpretation 

An L-system in its own right only provides a string and in order to develop the 
string into geometry we require a turtle. A turtle is a historical term that comes 
from the early days of computer graphics, where a mechanical robot turtle, 
capable of simple movement and carrying a pen, would respond to instruc-
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tions (McCormack, 2008). The string is the instructions that are interpreted by 
the turtle as movement, orientation and geometry building actions. Reading 
the string from left to right the turtle interprets specific symbols responding 
accordingly (Figure 6, Middle), and given a step size and angle increment the 
turtle responds to commands represented by the following symbols:

•	 F		 Move forward a step of length d.
•	 +		 Turn left by angle δ. (Orientation of angles is counter clockwise)
•	 − 	 Turn right by angle δ. 

The turtle interprets a character string as a sequence of line segments and 
depending on the segments lengths and the angles between them, the resulting 
line from the turtle can be self-intersecting and more or less convoluted. The 
line always remains a single line, but can have some segments drawn many 
times (Figure 6, Right).

5.3. FAÇADE suBdivision

A DOL-system for façade subdivision was developed with the following 
parameters:

•	 V = {F, X, +, -, [,]}
•	 w : X
•	 p1 : X → F[-X]F[+X]-X
•	 p2 : F → FF

This generates the sequence of words, where n is the derivation length = the 
number of iterations:

•	 w 	 = n0 = X
•	 n1 	 =F[-X]F[+X]-X
•	 n2	 =FF[-F[-X]F[+X]-X]FF[+F[-X]F[+X]-X]- F[X]F[+X]-X
•	 n3 	 =FFFF[-FF[-F[-X]F[+X]-X}FF[+F[-X]F[+X]-X]-F[-X]F[+X]-X]

FFFF[+FF[-F[-X]F[+X]-X]FF[+F[-X]F[+X]-X]-F[-X]F[+X]-X]-FF[-F[-X]
F[+X]-X]FF[+F[-X]F[+X]-X]-F[X]F[+X]-X

This demonstrates how the size of the string increases rapidly. This system was 
run until n=7 to develop a string comprising of 13,956 characters to input to 
the turtle. The turtle, described previously, interprets the string as a sequence 
of line segments. What is slightly different about this particular string is that 
X is a placeholder and is used to nest other symbols, and has no effect on the 
turtle. With the string input to the turtle additional inputs are required, the 
length of the line segment and the angle increment of the turtle when rotating. 
In this particular case a line segment length of 500mm is used and an angle 
increment of 22 degrees. This results in an L-system based tree being drawn, 
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which while providing the desired overall geometry present areas for further 
development.

While the L-system model offers a more natural looking tree, the fixed 
angle increment results in a sense of regularity within the branching of the tree; 
similar to the bifurcation model. With this in mind, a new turtle was developed 
that is able to take a minimum and maximum angle increment input. Using 
this range the turtle is able to generate a new angle increment value each time 
that it reads a – or + from that string, resulting in a more varied tree generation 
due to the variation in the angle increments (Figure 7).

Figure 7. Initial L-system Tree (Left), examples of random angle increment (Middle, Right)

While the random input to the angle increment offers more variety in the tree 
generation, of more concern is the method in which the standard turtle draws 
the L-system. Because the turtle interprets the string as individual line seg-
ments of a fixed distance the total count of line segments is rather high, in the 
current example the turtle produces 4118 individual line segments. While this 
might not be an issue in terms of the visual aspect of the drawing it presents 
problems if further development and analysis is to be undertaken. In order to 
simplify the tree the new turtle was developed to simplify the string as it reads 
it. This is achieved by the turtle looking at the next character as it reads the 
string:

•	 If character = F, then advance the count.
•	 If character = [, then commit new line and start again. 

As a result the turtle multiples the F count by the line segment length input 
and draws the simplified line, when it reaches a [ in the string it begins again. 
This results in the line segment count being drastically reduced, in the current 
example dropping from 4118 to 2186 (Figure 8).
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 Figure 8. Line simplification before (Left) and after (right). 

The required surface area is positioned in the desired section, with the tree 
geometry then being projected onto the surface (Figure 9). This allows for the 
surface to be sub-divided into lines of structure and areas of infill panels. 

Figure 9. Overall L-system tree (Left) and projection (Middle), final Façade model (Right). 

6. Results

This paper demonstrates the generation of façade support systems based on 
two models of branching, namely recursive bifurcation and L-systems. These 
two types of branching algorithms are implemented as parametric scripts for 
façade generation based on natural tree-like branching. We extended the stand-
ard procedures for branching variation by employing a randomised rotation 
operator and a parameterised scaling factor. Further, we introduce a boundary 
condition operator that permits the mapping of the branching script output 
to simple façade subdivision. The façade support systems generated by our 
branching scripts captures not only the form but also the underlying principles 
of biomimicry found in branching. 

While the focus of this paper was to generate plausible branching struc-
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tures for application to façade support systems, it is limited to two dimen-
sional branching. Our goal is to extend the algorithms to three dimensional 
branching and to develop efficient and optimised subdivision algorithms that 
can be scaled to real world design. We intend to extend this research to employ 
structural optimisation methods to test the feasibility of our generated models 
in terms of structural support and material constraints. The benefits of such a 
model will be further tested in future research for ease of structural optimiza-
tion, variations of support and digital fabrication of façade components.
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