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Figure 1: Prototype designed and produced using the method described in this paper. 

ABSTRACT 

The research presented in this paper explores curved-crease 
tessellations to manufacture freeform geometries for 
architectural and industrial design. The work draws 
inspiration from the ease of shaping paper into double-
curved geometries through repeating fold patterns and the 
observed stiffening of curved surfaces.  

Since production of large scale curved-folded geometries is 
challenging due to the lack of generalised methods, we 
propose an interactive design system for curved crease 
tessellation of freeform geometries. The methods include 
the development of curved folding patterns on the local 
scale as well as a novel computational method of applying 
those patterns to polysurfaces. Using discretized, straight-
line fold approximations of curved folds in order to 
simplify computation and maintain interactivity, this 
approach guarantees developable surfaces on the local scale 
while keeping the double curved appearance of the global 
geometry. 
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INTRODUCTION 

Curved folding offers a very economical method of 
manufacturing curved surfaces from flat sheet material but 
a significant obstacle in working with curved-folded 
geometries is the lack of appropriate computational tools in 
commercial CAD software for describing such geometries. 
As architects and designers, we favour interactive methods 
that offer direct control over three-dimensional geometry. 
Contrastingly, the methods we have surveyed either require 
scanning of physical models and planar-quad meshing [7], 
or work on smaller scales of bending a singular surface [9], 
or require sequentially deriving surfaces through the 
method of reflection [8], but do not scale well to geometries 
with high number of creases. Further, curved-folded 
surfaces are simple to model physically with a limited 
number of creases, but substantially increase in complexity 
with several repeating creases as in a tessellation. Thus, the 
primary contribution of this paper is the setting out of a 
method for designing curved-crease tessellations and 
describing a simple and intuitive computational framework 
to simulate these curved-creases on straight-line 
tessellations. Critically, it should be pointed out that the 
geometry simulated by this method is a visual 
approximation and not precise curved folded geometry. 
However it does ensure that the unrolled two-dimensional 
shapes can be folded and fit together into a predefined 
form. 
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As case studies we investigated Ron Resch’s straight 
folding patterns [10], as well as David Huffman’s studies 
on curved folding [2]. In Ron Resch’s pattern (Figure 2), 
polygonal faces (so-called inflated vertices) have straight 
fold-lines at each vertex, describing triangular faces. 
Aggregations of this folded pattern across a grid lead to 
global curvature. However, when all fold-lines converge 
into one vertex (so-called non-inflated vertex) instead of a 
polygonal face, it is not possible to fold the pattern with 
straight-line creases. David Huffman investigated patterns 
with even number of curved creases on inflated and non-
inflated vertices. 

 
Figure 2:  Ron Resch’s folding pattern a. flat state; b. folded 

state. 

For the purpose of our research we explored the possibility 
of achieving globally double curved geometries with 
aggregations of non-inflated vertices with curved creases. 

METHOD 

The method presented in this paper is broken down into two 
sections. The first part sets out a framework for designing 
curved-crease patterns at the local level (similar to 
Maekawa’s and Kawasaki’s theorems for straight-folding) 
[5] and the second part presents an interactive 
computational method for applying those crease patterns to 
freeform surfaces such that the resulting unrolled shapes are 
ensured to be developable. 

Designing a Curved Crease Component 

Non-inflated Vertex 
We take a non-inflated degree-n vertex with an even 
number of alternating mountain and valley curved folds, 
similar to those developed by David Huffman [2]. In 
isolation, this configuration is versatile in terms of the 
number of mountain-valley folds at a vertex, and in terms 
of the curvature and type of two-dimensional curves that 
can be folded, which affect the three-dimensional depth of 
the folded geometry. For a given folding angle, a crease line 
with lower curvature will increase the three-dimensional 
depth of the folded component. 

Boundary conditions 
In order to develop a repeatable component that can be 
aggregated across a three-dimensional tessellation, the 
boundary of the non-inflated degree-n vertex in relation to 
its curved folds needs to be defined, so that each boundary 
edge can act as a developable seam between two folded 
components. In a curved folded tessellation, the surfaces 
adjacent to a crease are either cylindrical or conical, 
reflected by the plane on which the curved crease lies. This 
results in alternating concave-convex developable surfaces. 

Hexagonal Boundary  
Our initial attempt at aggregation is done with a folded non-
inflated degree-3 vertex (Figure 3a). The aggregation is 
based on a regular hexagonal tessellation with the vertex of 
the folded module lying at the centre of each hexagon. No 
additional crease curves are added along the boundaries of 
the hexagon in this case. This results in the formation of 
secondary vertices of all-mountain or all-valley creases 
along the boundaries between components and in the 
formation of curved surfaces defined by four curved folds 
in the order mountain-mountain-valley-valley. 

  

 
Figure 3: Aggregation of a folded non-inflated degree-3 vertex with hexagonal boundary (a, b) and triangular boundary adaptable 

to all n-gons (c). 
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Figure 4: Surface rulings: cylindrical rulings showing conflict (a); conical rulings on hexagonal (b) and n-gon boundary (c). 

We tested this aggregation on a number of material 
samples: 80gsm paper, 120gsm paper, thin cardboard and 
polypropylene. The paper folds easily into the pattern, 
however the thicker materials tend to unfold with increased 
aggregations of the pattern. This results from the fact that 
the four-sided surfaces which are formed as a result of two 
adjacent folded modules need to accommodate the 
transition from concave to convex, which adds bending into 
each face; this is investigated by analysing the surface 
rulings (Figure 4a). 

This was resolved by introducing a valley crease with 
alternating curvature, splitting the 4-sided surface into a 
convex and a concave conical surface (Figure 3b, 5b). Tests 
in paper, cardboard and polypropylene (figure 5a) reflect 
the resolved rulings. Critically, this requires an alternating 
convex-concave curvature sequence within the n-gon, 
making it unsuitable for odd sided n-gons. 

Tessellation of freeform surfaces 

We used discrete meshes to represent our geometry due to 
their ease of use across platforms and the wide variety of 
available tools to control and manipulate them. However, 
meshes are usually made up of only tri or quad faces, while 
our folded components are better suited to polygons. 

To achieve a mesh with convex polygonal faces we used 
the dual-mesh based on a triangulated mesh where the 
centres of adjacent faces are connected. Thus, new faces are 
created in which the initial vertices represent the centres of 
the new polygonal faces. An even number of edges and 
therefore an even and alternating arrangement of mountain 
and valley folds is guaranteed by dividing each edge of 
each polygonal face into two parts, as explained above. 

For a smooth and homogenous appearance of the resultant 
polygon mesh, the triangular faces of the initial mesh 
should be as close as possible to equilateral. (Figure 6). 

 
Figure 5: Hexagonal Boundary (a); N-gon Boundary (b). 
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Figure 6: Steps of mesh tessellation: triangulation, dual-mesh and subdivision of polygon faces. 

Although meshing algorithms implemented in commercial 
CAD and analysis software packages are able to generate 
meshes with regular faces (triangles close to equilateral or 
quads close to squares), they tend to create irregular faces 
adjacent to seams of surface patches that are not conducive 
to curved folding. (Figure 7) 

 
Figure 7: Mesh generated from nurbs patches. 

To overcome this issue an alternative re-meshing approach 
is needed. The proposed strategy is based on a relaxation 
method using a particle spring system in combination with 
the half edge data structure [1]. This way of storing 
topological information of a mesh makes it easier to iterate 
through all adjacent edges, faces and vertices, and to locally 
modify the mesh topology, overcoming irregularities 
around seams without remeshing globally. Each edge of a 
given input triangulated mesh represents a spring with 
certain stiffness and adjustable predefined target length. 
The mesh therefore relaxes in a state of equilibrium where 
the distance between adjacent vertices is converging to an 
equal length and therefore the resultant mesh consists of 
close-to-equilateral triangles. 

If the rest length is set to zero, the relaxation will lead to a 
minimal surface approximation between the boundary 
curves. To keep the information of the initial design 
geometry, the vertices are pulled towards the polysurface, 
acting as a secondary force during the relaxation process. 

The edge length and aspect ratio of faces are evaluated after 
each relaxation iteration and edges are created or collapsed 
based on a given set of influencing rules and constraints, 
such as curvature of the base geometry (leading to smaller 
triangles in areas of high curvature while areas of low 
curvature will be populated with larger triangles) or 
refinement of boundary and edge conditions. The 
connectivity between vertices can be influenced by either 
emphasising consistent angles between adjacent edges 
(leading to more homogenous appearance) or equal valence 
of vertices (leading to a hexagon dominated dual-mesh) 
(Figure 8). After convergences are reached (approximately 
100 - 200 iterations) the parameters can be modified and the 
system stays interactive during the relaxation process. We 
chose to weigh the relaxation towards maintaining 
consistent angles between edges as it is not possible to 
ensure a mesh in which all vertices have a valence of 6, 
meaning the dual mesh consist of only hexagonal faces. The 
used computational system is based on the particle spring 
system Kangaroo Physics 0.099, developed by Daniel Piker 
for Grasshopper 3D, a visual programming language for 
Rhinoceros 3D and the plankton half edge mesh library, 
developed by Daniel Piker and Will Pearson. Our algorithm 
was written in C# and python within the grasshopper 
environment.  

Approximating Curved Creases 

To convert a polygonal-faced mesh to the curved-folded 
geometry, we use a series of geometric relationships 
between the mesh polygons and the n-gon boundary curved 
folded crease pattern as described above, which enables an 
easy transition between the simplified triangular mesh and 
all its derivatives (Figure 9). 
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Figure 8: Mesh Relaxation under different influencing parameters. 

 
Figure 9: A triangular grid and its derivatives: it’s polygonal dual, a triangular-subdivision mesh, and the curved-fold pattern.

This provides an initial estimation of the curved creases on 
the three-dimensional geometry, the curvature direction of 
creases and the mountain-valley assignment of folds. It is 
important to mention that because each curved-crease 
replaces a straight edge from the triangular-subdivision 
mesh, we assume the distance between its endpoints remain 
constant even when folded. Using this in combination with 
the method of reflection [8], we are able to compute the 
correct orientation of each curved crease by iteratively 
rotating them about the straight-line connecting their 
endpoints until the surfaces on either side of the crease are 
reflections of each other. Figure 10 illustrates this for a high 
and a low curvature crease. 

 
Figure 10: Rotating creases about the straight-line connecting 

their endpoints 

The points X and Y represent the straight-line that connects 
the endpoints of the curved crease XQY, and points B and 

C are the centres of the polygons adjacent to the edge XY in 
the polygonal mesh. The curved crease XQY is iteratively 
rotated about the chord XY by an angle θ until QM bisects 
the angle BQC, QM being normal to the plane of XQY. 

We implemented this method in Rhinoceros 5.8.4 using C# 
in Grasshopper 0.90076 without multi-threading or using 
any third-party plugins. To test its performance, we used a 
sample mesh of 25 n-gon faces with 95 creases on a laptop 
computer with 8GB of RAM and a 1.6GHz Intel Haswell 
processor with Windows 8.1. The solution took 17ms to 
compute on average with each crease being iteratively 
rotated 57 times on average. Some creases were rotated 
only once and some up to a 120 times, and the longest 
solving time for the method was 19ms. The computing time 
appears to increase linearly with 50 faces taking 34ms and 
100 faces taking 68ms. To solve much larger meshes, the 
method could be multi-threaded with relative ease as it 
solves each crease independent of all others, thereby being 
very parallelizable. 
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Figure 11: Using a modified Prim’s algorithm to produce developable strips of triangles. 

Unfolding 

A key difference between our method and the precedents 
we studied is that we unfold the underlying triangulated 
mesh instead of unfolding the curved folded dimensional 
geometry and convert the straight edges to curves as a two-
dimensional operation. This eliminates the need to produce 
an accurate three-dimensional model of the folded 
geometry. Instead, the folded digital model only 
approximates the visual appearance of the object, which is 
critical to a designer.  

As the base geometry is a freeform surface exhibiting 
Gaussian curvature, the triangulated mesh is required to be 
split into developable strips of contiguous mesh faces. We 
developed a custom version of Prim’s algorithm (4) on the 
face-centres of the mesh which culls edges on the minimum 
spanning tree graph to ensure that all vertices have a 
maximum valence of two, effectively converting the 
minimum spanning tree to chains of faces (figure 11). In 
addition, our algorithm also takes into account if the 
unfolded faces in a chain overlap and modifies the graph 
accordingly. The strips of triangles are unfolded by a simple 
trigonometric method to maintain edge lengths. The 
flattened strips of triangles are converted to curved creases, 
applying the geometric relationships described in figure 9. 
The distance between the vertices of the triangles remain 
unchanged when converted to curves (figure 12), ensuring 
the strips fit together correctly upon folding. 

It should be noted that in order to maintain interactivity of 
the design method, the unfolding is computed only once the 
tessellation and curved creases have been finalized. As the 
unfolding does not affect the appearance of the surface, 
excluding it from the interactive method results in speedier 
performance. 

 
Figure 12: Converting strips of unrolled triangles to curved 

creases. 

RESULTS AND DISCUSSION 

The folding of a sheet material either causes or is caused by 
a change in its boundary conditions. In the case of curved 
folded tessellations, the depth of the folding is a direct 
consequence of the boundary condition. Irregular folds can 
often be caused by non-uniform forces applied at the 
boundaries, or in the case of cylindrical tessellations (figure 
13), unidirectional forces applied on a multidirectional 
tessellation.  

Another critical relationship is that of the curvature of base 
geometry and the size of the tessellation. Curvature causes 
each polygon in the tessellation to bend with respect to its 
neighbours, and this bending in turn causes the polygon to 
fold. Figure 13 shows two different tessellation sizes on the 
same boundary condition, one barely folds, and the other 
folds significantly. 
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Figure 13: Boundary condition with small tessellation size (a), 

and the reworked boundary with large tessellations.  

In our current process of approximating curved creases as 
mentioned in 2.3, we make a fundamental assumption that 
distances between vertices of the triangular mesh stays 
constant as the curved creases are folded. Although this is 
essential to how the process is setup, we have observed that 
this distance may reduce slightly during folding. To 
quantify this behaviour, we measured areas of unrolled 
triangular strips and compared them to the areas of their 
corresponding curved creased strips (figure 12), and 
observed a variation of 40-80% per strip. As is evident in 
figure 12, some of this can be attributed to each strip losing 
or gaining significant portions of triangles on being 
converted to curved creases. However, if this variation is 
summed up across all strips, the cumulative area change 
seemed to be less than 0.2%.  Therefore, it appears that the 
final geometry produced will have a proportional shrinking, 
depending on the local arc curvatures of the tessellation 

pattern. A precise reconstruction of the three-dimensional 
geometry would improve our understanding of this 
phenomenon. 

CONCLUSION 

In this paper, we have demonstrated a method to design 
curved folded surfaces and a computational framework to 
apply them to freeform surfaces, producing fabrication data 
that ensures consistent assembly. Further, the method 
presented is applicable to any freeform surfaces that can be 
tessellated into convex polygons. Figure 14 summarises the 
method presented including future developments planned. 

The domain of curved folding offers exciting potentials in 
architecture and manufacturing, but it remains largely 
unexplored. With the recent developments in computer 
hardware and the sophistication of tools available to 
architects and designers, it is becoming increasingly 
feasible to work with multi-constraint optimization 
algorithms such as those required for curved folding.  

The method presented offers numerous opportunities to 
inform parameters such as folding depth, tessellation size, 
etc by external criteria such as required structural 
performance, material specific attributes, etc. We hope to 
further this work by enriching it with relevant contemporary 
research in related fields such as Gattas and You’s recent 
analysis [3] of structural performance of fold-core panels 
demonstrated the benefits of panels with curved-folded 
cores over straight-fold ones highlights the potential of 
using curved folds to lend stiffness to surfaces.  

 
Figure 14. Logic Diagram of the proposed system including future development 
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