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Figure 1: Prototype designed and produced using the method described in this paper.

ABSTRACT

The research presented in this paper explores curved-crease
tessellations to manufacture freeform geometries for
architectural and industrial design. The work draws
inspiration from the ease of shaping paper into double-
curved geometries through repeating fold patterns and the
observed stiffening of curved surfaces.

Since production of large scale curved-folded geometries is
challenging due to the lack of generalised methods, we
propose an interactive design system for curved crease
tessellation of freeform geometries. The methods include
the development of curved folding patterns on the local
scale as well as a novel computational method of applying
those patterns to polysurfaces. Using discretized, straight-
line fold approximations of curved folds in order to
simplify computation and maintain interactivity, this
approach guarantees developable surfaces on the local scale
while keeping the double curved appearance of the global
geometry.
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INTRODUCTION

Curved folding offers a very economical method of
manufacturing curved surfaces from flat sheet material but
a significant obstacle in working with curved-folded
geometries is the lack of appropriate computational tools in
commercial CAD software for describing such geometries.
As architects and designers, we favour interactive methods
that offer direct control over three-dimensional geometry.
Contrastingly, the methods we have surveyed either require
scanning of physical models and planar-quad meshing [7],
or work on smaller scales of bending a singular surface [9],
or require sequentially deriving surfaces through the
method of reflection [8], but do not scale well to geometries
with high number of creases. Further, curved-folded
surfaces are simple to model physically with a limited
number of creases, but substantially increase in complexity
with several repeating creases as in a tessellation. Thus, the
primary contribution of this paper is the setting out of a
method for designing curved-crease tessellations and
describing a simple and intuitive computational framework
to simulate these curved-creases on straight-line
tessellations. Critically, it should be pointed out that the
geometry simulated by this method is a visual
approximation and not precise curved folded geometry.
However it does ensure that the unrolled two-dimensional
shapes can be folded and fit together into a predefined
form.
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As case studies we investigated Ron Resch’s straight
folding patterns [10], as well as David Huffman’s studies
on curved folding [2]. In Ron Resch’s pattern (Figure 2),
polygonal faces (so-called inflated vertices) have straight
fold-lines at each vertex, describing triangular faces.
Aggregations of this folded pattern across a grid lead to
global curvature. However, when all fold-lines converge
into one vertex (so-called non-inflated vertex) instead of a
polygonal face, it is not possible to fold the pattern with
straight-line creases. David Huffman investigated patterns
with even number of curved creases on inflated and non-
inflated vertices.

Figure 2: Ron Resch’s folding pattern a. flat state; b. folded
state.

For the purpose of our research we explored the possibility
of achieving globally double curved geometries with
aggregations of non-inflated vertices with curved creases.

METHOD

The method presented in this paper is broken down into two
sections. The first part sets out a framework for designing
curved-crease patterns at the local level (similar to
Mackawa’s and Kawasaki’s theorems for straight-folding)
[5] and the second part presents an interactive
computational method for applying those crease patterns to
freeform surfaces such that the resulting unrolled shapes are
ensured to be developable.

Figure 3: Aggregation of a folded non-inflated degree-3 vertex
to all

Designing a Curved Crease Component

Non-inflated Vertex

We take a non-inflated degree-n vertex with an even
number of alternating mountain and valley curved folds,
similar to those developed by David Huffman [2]. In
isolation, this configuration is versatile in terms of the
number of mountain-valley folds at a vertex, and in terms
of the curvature and type of two-dimensional curves that
can be folded, which affect the three-dimensional depth of
the folded geometry. For a given folding angle, a crease line
with lower curvature will increase the three-dimensional
depth of the folded component.

Boundary conditions

In order to develop a repeatable component that can be
aggregated across a three-dimensional tessellation, the
boundary of the non-inflated degree-n vertex in relation to
its curved folds needs to be defined, so that each boundary
edge can act as a developable seam between two folded
components. In a curved folded tessellation, the surfaces
adjacent to a crease are either cylindrical or conical,
reflected by the plane on which the curved crease lies. This
results in alternating concave-convex developable surfaces.

Hexagonal Boundary

Our initial attempt at aggregation is done with a folded non-
inflated degree-3 vertex (Figure 3a). The aggregation is
based on a regular hexagonal tessellation with the vertex of
the folded module lying at the centre of each hexagon. No
additional crease curves are added along the boundaries of
the hexagon in this case. This results in the formation of
secondary vertices of all-mountain or all-valley creases
along the boundaries between components and in the
formation of curved surfaces defined by four curved folds
in the order mountain-mountain-valley-valley.
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with hexagonal boundary (a, b) and triangular boundary adaptable
n-gons (c).
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Figure 4: Surface rulings: cylindrical rulings showing conflict (a); conical rulings on hexagonal (b) and n-gon boundary (c).

We tested this aggregation on a number of material
samples: 80gsm paper, 120gsm paper, thin cardboard and
polypropylene. The paper folds easily into the pattern,
however the thicker materials tend to unfold with increased
aggregations of the pattern. This results from the fact that
the four-sided surfaces which are formed as a result of two
adjacent folded modules need to accommodate the
transition from concave to convex, which adds bending into
each face; this is investigated by analysing the surface
rulings (Figure 4a).

This was resolved by introducing a valley crease with
alternating curvature, splitting the 4-sided surface into a
convex and a concave conical surface (Figure 3b, 5b). Tests
in paper, cardboard and polypropylene (figure 5a) reflect
the resolved rulings. Critically, this requires an alternating
convex-concave curvature sequence within the n-gon,
making it unsuitable for odd sided n-gons.

Tessellation of freeform surfaces

We used discrete meshes to represent our geometry due to
their ease of use across platforms and the wide variety of
available tools to control and manipulate them. However,
meshes are usually made up of only tri or quad faces, while
our folded components are better suited to polygons.

To achieve a mesh with convex polygonal faces we used
the dual-mesh based on a triangulated mesh where the
centres of adjacent faces are connected. Thus, new faces are
created in which the initial vertices represent the centres of
the new polygonal faces. An even number of edges and
therefore an even and alternating arrangement of mountain
and valley folds is guaranteed by dividing each edge of
each polygonal face into two parts, as explained above.

For a smooth and homogenous appearance of the resultant
polygon mesh, the triangular faces of the initial mesh
should be as close as possible to equilateral. (Figure 6).

Figure 5: Hexagonal Boundary (a); N-gon Boundary (b).
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Step 1 - Triangulated Mesh

Step 2 - Dual-Mesh

Step 3 - Subdivision of Polygon Faces

Figure 6: Steps of mesh tessellation: triangulation, dual-mesh and subdivision of polygon faces.

Although meshing algorithms implemented in commercial
CAD and analysis software packages are able to generate
meshes with regular faces (triangles close to equilateral or
quads close to squares), they tend to create irregular faces
adjacent to seams of surface patches that are not conducive
to curved folding. (Figure 7)
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Mesh Based on Polysurface
Seams Stay Visible

Figure 7: Mesh generated from nurbs patches.

To overcome this issue an alternative re-meshing approach
is needed. The proposed strategy is based on a relaxation
method using a particle spring system in combination with
the half edge data structure [1]. This way of storing
topological information of a mesh makes it easier to iterate
through all adjacent edges, faces and vertices, and to locally
modify the mesh topology, overcoming irregularities
around seams without remeshing globally. Each edge of a
given input triangulated mesh represents a spring with
certain stiffness and adjustable predefined target length.
The mesh therefore relaxes in a state of equilibrium where
the distance between adjacent vertices is converging to an
equal length and therefore the resultant mesh consists of
close-to-equilateral triangles.

If the rest length is set to zero, the relaxation will lead to a
minimal surface approximation between the boundary
curves. To keep the information of the initial design
geometry, the vertices are pulled towards the polysurface,
acting as a secondary force during the relaxation process.

The edge length and aspect ratio of faces are evaluated after
each relaxation iteration and edges are created or collapsed
based on a given set of influencing rules and constraints,
such as curvature of the base geometry (leading to smaller
triangles in areas of high curvature while areas of low
curvature will be populated with larger triangles) or
refinement of boundary and edge conditions. The
connectivity between vertices can be influenced by either
emphasising consistent angles between adjacent edges
(leading to more homogenous appearance) or equal valence
of vertices (leading to a hexagon dominated dual-mesh)
(Figure 8). After convergences are reached (approximately
100 - 200 iterations) the parameters can be modified and the
system stays interactive during the relaxation process. We
chose to weigh the relaxation towards maintaining
consistent angles between edges as it is not possible to
ensure a mesh in which all vertices have a valence of 6,
meaning the dual mesh consist of only hexagonal faces. The
used computational system is based on the particle spring
system Kangaroo Physics 0.099, developed by Daniel Piker
for Grasshopper 3D, a visual programming language for
Rhinoceros 3D and the plankton half edge mesh library,
developed by Daniel Piker and Will Pearson. Our algorithm
was written in C# and python within the grasshopper
environment.

Approximating Curved Creases

To convert a polygonal-faced mesh to the curved-folded
geometry, we use a series of geometric relationships
between the mesh polygons and the n-gon boundary curved
folded crease pattern as described above, which enables an
easy transition between the simplified triangular mesh and
all its derivatives (Figure 9).
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Relaxation Example 1:

Target length |: |I=5¢cm
Edge Refinment: 1x1.00
Curvature Influence: 10%
No. Iterations: 200
Time/ iteration: 13ms

System Specification:

Relaxation Example 2:

Relaxation Example 3:

Target length I: I=5cm Target length: |I=5cm
Edge Refinment: 1x1.00 Edge Refinment: 1x0.25
Curvature Influence: 80% Curvature Influence: 10%
No. Iterations: 200 No. Iterations: 200
Time/ iteration: 14ms Time/ iteration: 74ms

Desktop computer, 3.50 GHz AMD FX(tm)-8320 Eight -Core Processor 8GB (RAM), Windows 7 Professional

Figure 8: Mesh Relaxation under different influencing parameters.

Figure 9: A triangular grid and its derivatives: it’s polygonal dual, a triangular-subdivision mesh, and the curved-fold pattern.

This provides an initial estimation of the curved creases on
the three-dimensional geometry, the curvature direction of
creases and the mountain-valley assignment of folds. It is
important to mention that because each curved-crease
replaces a straight edge from the triangular-subdivision
mesh, we assume the distance between its endpoints remain
constant even when folded. Using this in combination with
the method of reflection [8], we are able to compute the
correct orientation of each curved crease by iteratively
rotating them about the straight-line connecting their
endpoints until the surfaces on either side of the crease are
reflections of each other. Figure 10 illustrates this for a high
and a low curvature crease.
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Figure 10: Rotating creases about the straight-line connecting
their endpoints

The points X and Y represent the straight-line that connects
the endpoints of the curved crease XQY, and points B and

C are the centres of the polygons adjacent to the edge XY in
the polygonal mesh. The curved crease XQY is iteratively
rotated about the chord XY by an angle 6 until QM bisects
the angle BQC, QM being normal to the plane of XQY.

We implemented this method in Rhinoceros 5.8.4 using C#
in Grasshopper 0.90076 without multi-threading or using
any third-party plugins. To test its performance, we used a
sample mesh of 25 n-gon faces with 95 creases on a laptop
computer with 8GB of RAM and a 1.6GHz Intel Haswell
processor with Windows 8.1. The solution took 17ms to
compute on average with each crease being iteratively
rotated 57 times on average. Some creases were rotated
only once and some up to a 120 times, and the longest
solving time for the method was 19ms. The computing time
appears to increase linearly with 50 faces taking 34ms and
100 faces taking 68ms. To solve much larger meshes, the
method could be multi-threaded with relative ease as it
solves each crease independent of all others, thereby being
very parallelizable.

1198



Figure 11: Using a modified Prim’s algorithm to produce developable strips of triangles.

Unfolding

A key difference between our method and the precedents
we studied is that we unfold the underlying triangulated
mesh instead of unfolding the curved folded dimensional
geometry and convert the straight edges to curves as a two-
dimensional operation. This eliminates the need to produce
an accurate three-dimensional model of the folded
geometry. Instead, the folded digital model only
approximates the visual appearance of the object, which is
critical to a designer.

As the base geometry is a freeform surface exhibiting
Gaussian curvature, the triangulated mesh is required to be
split into developable strips of contiguous mesh faces. We
developed a custom version of Prim’s algorithm (4) on the
face-centres of the mesh which culls edges on the minimum
spanning tree graph to ensure that all vertices have a
maximum valence of two, effectively converting the
minimum spanning tree to chains of faces (figure 11). In
addition, our algorithm also takes into account if the
unfolded faces in a chain overlap and modifies the graph
accordingly. The strips of triangles are unfolded by a simple
trigonometric method to maintain edge lengths. The
flattened strips of triangles are converted to curved creases,
applying the geometric relationships described in figure 9.
The distance between the vertices of the triangles remain
unchanged when converted to curves (figure 12), ensuring
the strips fit together correctly upon folding.

It should be noted that in order to maintain interactivity of
the design method, the unfolding is computed only once the
tessellation and curved creases have been finalized. As the
unfolding does not affect the appearance of the surface,
excluding it from the interactive method results in speedier
performance.
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Figure 12: Converting strips of unrolled triangles to curved
creases.

RESULTS AND DISCUSSION

The folding of a sheet material either causes or is caused by
a change in its boundary conditions. In the case of curved
folded tessellations, the depth of the folding is a direct
consequence of the boundary condition. Irregular folds can
often be caused by non-uniform forces applied at the
boundaries, or in the case of cylindrical tessellations (figure
13), unidirectional forces applied on a multidirectional
tessellation.

Another critical relationship is that of the curvature of base
geometry and the size of the tessellation. Curvature causes
each polygon in the tessellation to bend with respect to its
neighbours, and this bending in turn causes the polygon to
fold. Figure 13 shows two different tessellation sizes on the
same boundary condition, one barely folds, and the other
folds significantly.
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Figure 13: Boundary condition with small tessellation size (a),
and the reworked boundary with large tessellations.

In our current process of approximating curved creases as
mentioned in 2.3, we make a fundamental assumption that
distances between vertices of the triangular mesh stays
constant as the curved creases are folded. Although this is
essential to how the process is setup, we have observed that
this distance may reduce slightly during folding. To
quantify this behaviour, we measured areas of unrolled
triangular strips and compared them to the areas of their
corresponding curved creased strips (figure 12), and
observed a variation of 40-80% per strip. As is evident in
figure 12, some of this can be attributed to each strip losing
or gaining significant portions of triangles on being
converted to curved creases. However, if this variation is
summed up across all strips, the cumulative area change
seemed to be less than 0.2%. Therefore, it appears that the
final geometry produced will have a proportional shrinking,
depending on the local arc curvatures of the tessellation

pattern. A precise reconstruction of the three-dimensional
geometry would improve our understanding of this
phenomenon.

CONCLUSION

In this paper, we have demonstrated a method to design
curved folded surfaces and a computational framework to
apply them to freeform surfaces, producing fabrication data
that ensures consistent assembly. Further, the method
presented is applicable to any freeform surfaces that can be
tessellated into convex polygons. Figure 14 summarises the
method presented including future developments planned.

The domain of curved folding offers exciting potentials in
architecture and manufacturing, but it remains largely
unexplored. With the recent developments in computer
hardware and the sophistication of tools available to
architects and designers, it is becoming increasingly
feasible to work with multi-constraint optimization
algorithms such as those required for curved folding.

The method presented offers numerous opportunities to
inform parameters such as folding depth, tessellation size,
etc by external criteria such as required structural
performance, material specific attributes, etc. We hope to
further this work by enriching it with relevant contemporary
research in related fields such as Gattas and You’s recent
analysis [3] of structural performance of fold-core panels
demonstrated the benefits of panels with curved-folded
cores over straight-fold ones highlights the potential of
using curved folds to lend stiffness to surfaces.
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