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Background literature review, methodology, results, and
analysis are presented for a novel approach to
approximating wind pressure on tall buildings for the
application of generative design exploration and
optimisation.The predictions are approximations of
time-averaged computational fluid dynamics (CFD) data
with the aim of maintaining simulation accuracy but
with improved speed.This is achieved through the use
of a back-propagation artificial neural network (ANN)
with vertex-based shape features as input and pressure
as output.The training set consists of 600 procedurally
generated tall building models, and the test set of 10
real building models; for all models in both sets, a
feature vector is calculated for every vertex. Over the
test set, mean absolute errors against the basis CFD
are 1.99–4.44% (σ:2.10–5.09%) with an on-line process
time of 14.72–809.98s (0.028s/sample). Studies are also
included on feature sensitivity, training set size, and
comparison of CFD against prediction times. Results
indicate that prediction time is only dependent on the
number of test model vertices, and is therefore
invariant to basis CFD time.



1. INTRODUCTION

Although computational fluid dynamics (CFD) has existed now for over 50
years and parametric CAD for over 30, both have seen an increased
interest in architectural practice over the last decade. However, in
computational design, especially in generative exploration or optimisation,
CFD remains a challenging simulation tool to integrate.There are at least
three reasons for this: firstly, the cost of expertise and software is high;
secondly, the relationship between a design and its fluid environment is
complex, often subtle, and esoteric; and thirdly, the time required to achieve
accurate results is typically greater than that available, namely at early
project stages when the guidance provided by the simulation is most
valuable.

The third issue is fundamentally one of approximation, a trade-off
common in simulation of time against accuracy.This relationship is marked
by the two characteristic extremes of fast-inaccurate and slow-accurate,
with a range of solutions existing along this spectrum. Responses to this
problem can be categorised into two forms: i) type-one is solver
approximation, including all conventional CFD methods which by one
approach or another seek to emulate the full underlying physical fluid
behaviour.Any approach of this type can only fit within the time-accuracy
spectrum since the two properties remain dependent; ii) type-two is
solution approximation, encompassing methods which aim to emulate
simulation behaviour.Through model reduction and machine learning, a
break from the established trade-off can enable a move towards fast-yet-
accurate approaches.

Effects of the wind upon buildings are numerous: for pedestrian comfort
in surrounding proximity; ventilation and therefore thermal comfort and
indoor air quality; and structural performance.Wind loads, along with
seismic, are the two primary external forces that increase with building
height.Therefore tall buildings have been identified as a focal typology for
this and a number of reasons.The aerodynamic shape has a primary impact
on these forces and therefore subsequently on the overall structural,
material, energy, and financial performance.

The trend has always been to build them as high as (contextually,
economically and structurally) possible, necessitating cutting-edge design and
construction technologies.With the quantity, height, and complexity of tall
buildings still increasing, there is a greater need for early-stage form analysis
and optimisation.The geometric complexity in the latest generation has
broken away from the previously necessary extruded planform to more
freeform shapes.This has been facilitated by the recent ubiquity of
computation in design, analysis, fabrication, and construction.Tall buildings
generally lend themselves well to parametric design since there is often a
strong vertical repetition which can be expressed easily computationally. It
also means it is suitable for generating procedural models that, with a
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relatively small number of parameters, can represent a large number of
potential designs.

1.1. Contribution

The aim of this paper is to demonstrate a new approach to approximating
wind pressure on tall buildings for the application of generative design
exploration and optimisation.The predictions are approximations of time-
averaged computational fluid dynamics (CFD) data with the aim of
maintaining simulation accuracy but with improved speed.This is achieved
through the use of a back-propagation artificial neural network (ANN) with
vertex-based shape features as input and pressure as output. Success of the
approach is measured against the objective of being fast-yet-accurate;
therefore the time and errors are quantified in the end discussion.

2. LITERATURE REVIEW

The background review of existing literature is divided into three parts: i)
solver approximation; ii) solution approximation; and iii) shape features.

2.1. Solver approximation

Most approaches towards CFD approximation focus on simplification of the
solver itself. For instance: simplified meshes (spatial discretisation); the use
of lower-order equations; or the treatment of turbulence through
modelling.These methods can be classed as type-one, solver approximation
(Figure 2.1). For instance, RANS (Reynolds-Averaged Navier-Stokes), LES
(Large Eddy Simulation), and DNS (Direct Numerical Simulation) all treat
turbulence with different numerical approaches, i.e. temporally, spatially, and
directly.

Another example is the ‘Stable Fluids’ fast fluid dynamics (FFD) solver
developed by [1] for the computer graphics and games industries, which has
subsequently been developed and tested for architectural applications [2, 3,
4, 5]. Development and application for architectural design was motivated by
three factors: a validation study suggested it as suitable for purpose, even
though it was limited to indoor, low Reynolds number flow regimes [6, 7];
the qualitative appearance of accuracy for turbulent flows; and its
remarkable speed compared to traditional CFD methods like RANS
(Reynolds-Averaged Navier-Stokes). [6] implemented the FFD with a zero-
equation turbulence model but found that it performed worse since it was
not designed or suited to the FFD approach. It should be noted, however,
that with a lack of turbulence model, the solver relies on continuous
interaction (such as game character movement) to compensate for
numerical dissipation.

Although such recent developments aim to increase the speed of CFD,
they do so at the direct expense of accuracy; the opposite of traditional
CFD development where accuracy is increased at the expense of speed.
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The benefit of solver over solution approximation is the availability of
full spatial field data for all fluid properties, although in some cases such as
the FFD, production of surface data is more difficult due to the structured
mesh approximation (voxelisation).

2.2. Solution approximation

Another possible approach to this problem, type-two, is solution
approximation. CFD originated in aeronautics and astronautics, as such there
is a large quantity of work directed towards modelling and optimisation of
aerofoils, fuselages, and turbine blades.An optimisation routine will often
generate large data sets of simulation data, from which knowledge of the
problem can be extracted.The following fall into the greater category of
supervised machine learning approaches where the relationship between an
input feature vector extracted from some geometry and the ground truth
data output from full CFD simulation is learnt.

In one such approach, a large model set of turbine blades is used with a
decision tree to analyse the relationship between point deformation of
models and their change in surface pressure [8, 9].Areas of high sensi– tivity
can then be mapped onto a pre-defined base geometry and used to focus
subsequent analysis. Extension of this work incorporates an evolutionary
optimisation process, so as to use the information extracted from previous
cases to create non-random initial populations of solutions and to guide the
evolution.

Analyses that are potentially obstructive to the design process may
involve partial differential equations (PDEs), such as the Navier-Stokes
equations of fluid flow and the Maxwell equations in electromagnetism [10].
Whilst simulation of these phenomena can give high-accuracy results, they
are computationally expensive and cannot be computed in real-time.As a

� Figure 2.1:

CFD solver

approximation

taxonomy.
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result, a design process using high-accuracy techniques has inherently slow
response times and loses any desired interactivity.

Significant efforts have been made to reduce the complexity of these
systems in order to make them interactive or suitable for optimisation; this
is generally referred to as model reduction. Reduced-order models (ROMs)
approximate representations of system behaviours, namely for
computational simulations with slow response times, with the aim to create
a lower-dimensional system model whilst retaining predictive fidelity [11,
12].They typically do so by restricting the input quantities to boundary
conditions and outputs to those of interest (e.g. lift, drag, or a quantity at a
single point).

In one example, [13] use spatial and behavioural parameters as input
features to a radial basis function (RBF).The RBF is used to interpolate and
merge CFD and wind-tunnel data on pressure coefficient values (lift and
drag) for aerofoil analysis.They use an input feature vector Cp{x,y,z, a, M
,Re): where x, y, z is the spatial position; a the angle of attack; M the Mach
number; and Re the Reynolds number.

� Figure 2.2: Reduced-order model

schematic.
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(a) Simulation (b) Typical ROM from boundary conditions (c) Proposed ROM from geometry

Whilst this method proved successful for linking behavioural
characteristics (a, M, and Re) to data sources (CFD and wind-tunnel), it is
limited to a single geometry, thus the use of explicit spatial positions (x, y,
and z). For cases of differing geometry between training and testing, spatial
positions become non-unique and can therefore not be used within the
feature vector.This necessitates the use of either explicit global design
parameters or implicit local shape description.

Using spatial positions (or mesh node numbers) for a feature vector is
also proposed by [14]. In this case, an ANN is used to predict post-
processed CFD data for rapid visualisation and interpolation of boundary
conditions with an augmented reality user display system.The input feature
vector, X, and output response, Y, are defined as: X{n, S, P}, Y{T, V}, where T
is the air temperature and V is the air speed at a node, n is the mesh node
number (1224 nodes in the cubic room), S is the supply temperature, and P
is the supply pressure.Again the proposal is strongly limited to not only a
single geometry but to a single mesh by the use of spatial positions or node



numbers corresponding consistently with fixed locations.The limitation
again is that for differing training/test geometry the positions are non-
unique.

2.3. Shape features

A component of the methodology involves a localised description of a
sample point or vertex, constituting the input vector for the machine
learning.These are predominantly shape or topological characteristics,
although this can be extended to local fluid flow properties.With
discretised surface representations (meshes) there is often a need to
describe local shape features for a broad range of applications.

An exemplar case is for scale-invariant surface descriptors for the
matching of molecular surface regions to identify potential chemical
functionality, i.e. binding molecules often have locally complementary shapes
[15, 16].When calculating surface curvature, the distance or neighbourhood
size must be included, shown in Figure 2.3. From left to right the features
are: minimum curvature; maximum curvature; mean curvature; and Gaussian
curvature.

There are a large number of similar studies on mesh curvature, edge
detection, and invariant shape analysis, for example [17, 18, 19, 20, 21, 22,
23].Applications range from chemistry, to rationalising and reconstructing 3-
D scanned models, to identifying constant features in images for camera
stabilisation.

Whilst [9] do not learn the function between local shape features and
pressure to make predictions on new cases, the ability, however, to generate
the sensitivity at a point from its deformation is an inspiration for two key
elements of this work. Firstly, it highlights the importance of showing the
pressure distribution over the entire model rather than calculating a global
metric of a design’s success, i.e. considering the problem locally rather than
globally. Secondly, the use of top-down models (those found in parametric
models with global variables) have an inherently limited flexibility.They can
be adjusted infinitely within the bounds of the logic of the model
parameters, however it is firstly difficult to alter these foundations at later
stages and secondly each model will have a different logic, variables, or set
of dependencies. It is therefore difficult to use these global variables (for
example, a parametric tall building may have Height and Taper Factor as two
of its defining variables) as input features to learning. If they are used, the

� Figure 2.3: Shape analysis for

protein shape matching in

biochemistry [16].
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problem being learnt is restricted to that logic. [9], on the other hand, use a
local mesh vertex deformation as input feature. Since all CFD simulations
require a surface mesh of the geometry to be generated, it is a relatively
simple generalisation to use the mesh data and its derivates as input for the
learning.

Further generalisation of the method is proposed, specifically for
automobile design, in particular for the detection of design novelty or for
characterising families of similar products [8].The key similarity with this
work is the use of unstructured surface meshes as the basis geometric
representation, which in itself is a good foundation for generating training
data due to the high acceptance in design practice.The distinction however
is in the definition of the actual learning process and feature vector: [8] use
a deformation metric from a base case; as opposed to the here proposed
broader shape description.

Their proposed shape mining process focuses on the extraction of
performance data from conventional analysis processes for compilation of a
large database. From which a meta-representation, or reduced-order model,
can be created and used for sensitivity analysis, concept retrieval, and
interaction analysis.These data modelling and knowledge formation
components link back holistically to knowledge utilisation and decision
making processes (DMPs).

3. METHODOLOGY

The approach can be split into the following steps: i) training set procedural
geometry generation; ii) training set CFD evaluation; iii) training set feature
calculation; iv) ANN training; v) test set geometry generation; vi) test set
CFD evaluation; and vii) prediction and assessment.

3.1. Procedural training geometry

The parametric model was created in GenerativeComponents [24].The goal
was to create a generalised tower model, with the two properties of
minimising the number of parameters used whilst maximising the design
representation potential, i.e. the number of possible buildings it could
create.This is important when considering optimisation or exploratory
design space searches to avoid the curse of dimensionality.This means that
as the number of variables increases, the design space increases
exponentially by nD, where n is the number of samples taken per parameter
and D is the number of parameters, or dimensionality.There is therefore
clearly a compromise to be made between model efficiency and represent-
ability.

The geometry for the training set was generated using a procedural tall
building model with a select number of key parameters.There are in fact
three separate topologies in the procedural model with their own
parameters, since it is difficult to incorporate the entire design space with
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one parametric logic [25, 26]. Using the unstructured triangulated surface
mesh from these means we are not limited by a single parametric topology
in the learning phase of the method [9]. Local surface-mesh shape
characteristics are used as input features to the learning algorithm instead
of the design parameters, avoiding reliance on any one parametric model
definition.

Contemporary tall building design, as discussed previously, has been
freed up by computational design tools, analysis, and construction methods.
The iconicity of skyscrapers is also a driving force for unique, bespoke
forms; as such, increasingly complex forms are being planned and
constructed.This presents an interesting challenge to wind engineers who,
for the new generation of tall buildings, typically struggle to find general
behavioural rules akin to the top-down global learning approach, i.e.
bespoke designs require bespoke analysis. In a similar way, a procedural tall
building model is used to generate the reduced-order model and is tested
on an extended set of 10 real buildings.

The geometry for the training set was generated using a procedural tall
building model with a select number of key parameters.There are three
separate topologies in the procedural model each with their own
parameters, shown in Figure 3.1.

The three procedural models can be classified as one of three
topologies: Extrusion; Periodic; and Blocks.The topology is initially selected
randomly, and then each can be used to generate instances by randomly
assigning parameter values from the ranges given in Table 3.1.

With these parameter sets and ranges, the maximum number of
potential instances for the three topologies respectively is: 2.56e16 ; 2.34e21 ;
and 3.24e12 ; giving a sum of the three of 2.3448e21 .Although this is the
maximum number, certain combinations or regions of the parameter space
lead to invalid instances which reduces the total.These are filtered out in
the code simply with a while(solid.Success==false) statement.A training set of
600 instances is generated, giving a sampling of 2.56e–17 % of the total
parameter space.

3.2. CFD simulation

CFX 13.0 [27] is used for the steady-state time-averaged Reynolds-Averaged
Navier-Stokes (RANS) simulations with a k-∈ turbulence model.Typically
the models are meshed with roughly an equal number of cells (up to the
maximum available computational resources), of around four million
elements. Each simulation, depending on the complexity, requires on average
1914.470s (σ:629.808s) to converge on a 2.66GHz i7 4GB RAM.

For the ground, a no slip smooth wall is assigned (i.e. fluid velocity at
wall boundary is zero); for the sides and top parallel to the flow, a free slip
wall (i.e. zero shear stress from wall friction); and for the outlet, a zero
relative pressure opening. For the inlet, the wind profile is applied as
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described below, with a medium intensity turbulence and eddy viscosity
ratio [28].

Basic simulation parameters are: high-resolution advection and
turbulence numerics; isothermal fluid at 25˚C; a scalable wall function; and a
convergence residual target of 1.0e–6 RMS.The following meshing
parameters are used: an unstructured tetrahedral domain mesh, with patch
independence; a boundary surface element size of 5m; a model surface
minimum size of 0.20m and maximum face size 0.25m; for prismatic
expansion, a growth rate of 1.2, a transition ratio of 0.77, and a maximum of
3 layers.

� Table 3.1: Procedural training model

parameter ranges.

� Figure 3.1: Procedural training

model sets.
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The wind speed is applied at an upstream inlet with a reference speed
(vr ) of 10m · s–1 at a reference height (zr ) of 10m.The most commonly
used distribution of wind speed with height is the ‘power-law’ expression:

(1)

The exponent α is an empirically derived coefficient that is dependent on
the stability of the atmosphere. For neutral stability conditions it is

Note: N no. edges; W width [m]; D depth [m]; H height [m]; mS F mid planform scale factor; tS
F top planform scale factor; F fillet radius [m]; o planform curvature order; R orientation [˚]; A
amplitude; D decay; f frequency; f O frequency offset; Nw no. blocks in width; Nd no. blocks in
depth; Nh no. blocks in height.



approximately 0.143, and is appropriate for open-surroundings such as open
water or landscape [29].

Both the training (Figure 3.2) and test sets are evaluated under the same
boundary conditions and with the same wind profile.The ‘static’ pressure
[Pa or N · m–2 ] is the force per unit area, taken at sample-points (vertices)
over the model surfaces (mesh).

3.3. Shape feature vector

The basic concept is to define the pressure at a point or vertex on a model
by its geometric characteristics, i.e. its relative position on the model,
proximity to an edge, curvature, relative position on the vertical wind
profile distribution, and direction of orientation.These features are
calculated for every vertex V, along with its pressure, to be used as a
sample.The R23 definition of the model is now:

(2)

• HEIGHT: Z is the vertical position of V, i.e. Vz ;
• NORMAL: nx,y,z are the normal components of V;
• CURVATURE: nσx,y,z

1–5 is the standard deviation of the vertex
normals in each independent ring, inversely weighted by the
distance.This is also visualised in Figure 3.3.

(3)

Where: r is the vertex neighbourhood ring; n is the number of vertices in r;
d is the distance between each vertex in n and the central feature vertex; n̄
is the average of the normals in r; ni are all the normals in each
neighbourhood ring, r.

In this case, convex mesh curvature is given as a positive standard
deviation and negative for concave regions. Figure 3.3 shows how this is
calculated in 3-D.The basic procedure is as follows:

� Figure 3.2: Example set of evaluated

procedural models.
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The extension of the standard deviation to be positive for convex
vertex neighbourhood and negative for concave vertex neighbourhoods
allows for greater accuracy and applicability to a broader set of forms.The
use of various neighbourhood scales (rings one through five) gives the local
curvature over a range of scales, as can be seen in Figure 3.4. In these
images the white regions are concave and black are convex. Due to the
complexity of the meshes here though certain points may in fact be convex
in one axis and concave in another. For this reason the x, y, and z
components are given for each scale.The images show the mean of all three
components to give the primary indication of curvature direction.

The convex-concave calculation is shown in Figure 3.4 on the Stanford
Bunny [30], a standard test model used in computer graphics.The model
consists of 69451 triangular polygons, and shows the extension of the
curvature neighbourhood from the vertices’ first to fifth neighbourhood
rings.

� Figure 3.4: Convex-concave

curvature analysis over N1 to N5

neighbourhoods.
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• POSITION: Tx,y,z is the normalised position of Vi within the range
of all model vertices V

(4)

• PRESSURE: P is simply the pressure at V as extracted from the
simulation.This can quite easily be replaced with any dependent
secondary metric, such as force or the pressure coefficient.

The feature generation time, for both training and test models, is
currently 0.02784 s/sample. For example, a model with a mesh of 1000
vertices currently requires 27.84s.The following pseudocode is a 

simplification of the full code used to calculate the feature vector:

The output of the calculation, per vertex, is simply a 23-dimensional
vector. E.g. z{0.52}, n{-0.68,0.72,-0.05}, nσ1 {-0.03,-0.03,-0.02}, nσ2 {-0.07,-
0.07,-0.03}, nσ3 {-0.11,-0.10,-0.02}, nσ4 {-0.15,-0.14,-0.02}, nσ5 {- 0.20,-0.18,-
0.03}, T{0.79,0.13,0.04}, P{-0.17}

From the training feature set, the reduced-order model is generated by a
back-propagation artificial neural network (ANN), with a hyperbolic tangent
sigmoid transfer function [31]:

(5)

The ANN structure X:H:Y is 22:20:1, i.e. 22 input neurons, 20 hidden layer
neurons, and 1 output.The sensitivity analysis on the number of neurons in
the hidden layer, and the number of layers, is not included here; although 20
in a single layer has been seen to be sufficient.There is generally no rule-of-
thumb or guidance to define either, necessitating sensitivity analysis for each
problem.
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3.4.Test data set

The models are selected from Google Earth, rebuilt in GC as solids, and
evaluated with CFX.They were selected relatively arbitrarily, except for the
one criteria that each has a unique architectural design feature. For instance,
the set contains features such as pedestals (1 and 2), tapering (2), stepping
(3 and 7), concavities, corner filleting (5), voids (6), spires (5), etc.

Note that the heights range between 124 and 508m, whilst the
procedural model used to generate the training set has a height range of
100 to 200m.The test models were therefore all scaled to 100m to reduce
the amount of sampling required for the training set.

� Table 3.2: Real building test

set details.

� Figure 3.5: Real building test set

models.
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4. RESULTS

Firstly, sensitivity analyses are conducted on the feature vector components
and the training set size using data only from the procedural models;
followed by an assessment of the accuracy of the predictions on the real
building test set.

The distinction is drawn between the simulation output response Y from
CFD, and the prediction output response Y′ from the reduced-order model.
For a single vertex sample i, the difference between the Y and Y′ is used to
calculate the sample prediction error, δi :

(6)

The descriptive statistics used for reporting the errors throughout are:

There are two types of test used here: sample-based (Figure 4.1a) or
model-based (Figure 4.1b). In the sample-based assessment, test data set T
of size m and training data set S of size n are drawn from the same set of
available data D, meaning that m = D – n. Both T and S are randomised in
this case, and are used to monitor error convergence during the ANN
training. For model-based tests, a completely different test set is used so
that T and S are independently generated, such as in the case where a
procedural model is used for training and real models for testing.

Whilst the descriptive statistics for the sample- and model-based
accuracy are a good indicator of the ROM’s performance, a qualitative visual
comparison of simulated and predicted surface pressure is also included at
the end.
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� Figure 4.1:Testing of sample- and

model-based data sets.



� Figure 4.2: Feature importance for

X{z,n,nσ1–5 ,T}.
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4.1. Feature sensitivity analysis

Given the feature vector definition of X{z,n,nσ1–5 ,T}, each of the 22 input
components has a different significance, importance, or sensitivity to the
output.Whilst this varies between problems and geometry, a measure of
importance can be calculated during generation of the reduced-order model
based solely on the training data set.The random forest method [32],
specifically the TreeBagger [33] algorithm, intrinsically calculates the
OOBPermutedVarDeltaError.A set size of 10000 randomly sampled from the
full training set is used; 10 trees for the TreeBagger algorithm; and the
process is re-run 30 times to take the mean and range.

The first observation is that primarily the y, and secondarily the x,
components are typically the most significant part of vector.The x (across
flow) and the y (stream-wise) direction components determine whether the
point is facing into, perpendicular to, or away from the flow.Which in turn is
the primary indicator of a positive or negative pressure.Also, note that the
variability or distribution increases with feature importance: the standard
deviation σ and the mean have an r2 =0.795.

4.2.Training set size sensitivity analysis

Sample-based errors given are at the converged training set size (Figure 4.3)
of n=10000.The test set size m, being the full data set D minus the training
set n, is therefore 5726831 – 10000 = 5716831.Where the full data set D
has 5.727e6 samples; an average of 9545 vertices per training model.These
are randomly selected for each training run, which is repeated 20 times.The
individual runs are shown as grey crosses, with the black lines showing the
limits and the blue line the mean over the 20 re-runs.The training set size is
increased incrementally, by an increment of 100 from 100 to 1000, and an
increment of 500 from 1000 to 10000.The converged sample-based errors
are: δmin. = -59.365%, δmax. = 63.634%, |δ

–
| = 2.767%, and σ|δ| = 3.420%.



� Figure 4.3: Complex geometry:

sample-based training error

convergence.
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4.3. Model-based test

The test set is of mixed geometric complexity which can be seen in the
number of vertices on each model, m, ranging from 528 to 29091.This is a
product of the geometric complexity, but, without resampling, also effects
the output resolution and speed.Therefore, one of the primary methods for
the user to improve the on-line prediction time is to lower the number of
vertices on the test model.

A noticeable trend in these 10 test cases is of under-prediction of
negative pressure values, especially in localised regions of very low pressure.
To be clear, an under-prediction of a negative value means the prediction is
too high, e.g. simulated value is -10 but predicted value is -5.

� Table 4.1:

Error and time

results

summary -

complex

geometry:

model-based.



� Figure 4.4: Model-based test: (left) Metlife; (right) Shard.
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� Figure 4.5: Model-based test: (left) Sears; (right) Euston.

� Figure 4.6: Model-based test: (left) Taipei; (right) Shanghai.

� Figure 4.7: Model-based test: (left) BankOfChina; (right) Exchange.



5. DISCUSSION

These developments represent an alternative approach that is fundamentally
different to previous attempts at generalising tall building aerodynamics
found in the literature.The use of local features rather than global
parameters allows for arbitrary complexity in the model and for vertex
surface pressure visualisation rather than global factors.

Compared to solver approximation techniques, such as the FFD solver,
solution approximation has the benefit of being based on a conventional,
higher accuracy CFD solver.As such, the validity of the basis data can, to a
larger extent, be trusted or verified.The comparative disadvantage is that
the FFD can produce field rather than surface data which is useful for
identifying flow patterns, assessing pedestrian comfort, and to gauge the
secondary downstream effects that a new building will have on others.

A sensitivity analysis was run on the training set size, and found that a
sample size of n=10000 was adequate to reach error convergence during
the ANN training.The training set is therefore only 0.175% of the full
available data set D=5726831 from the 600 evaluated training models.
Although this does not mean that only one training simulation is required
(the average number of vertices on a training model was 9545), evaluating
600 models may be excessive. Following this, the final model-based test was
visualised to check the predicted pressure distribution qualitatively against
the simulation. Generally, under-prediction of negative pressures can be
seen, but general patterning or distribution of both positive and negative
pressure remains intact.

5.1. Process time analysis

The feature extraction times are based on a calculation speed of
0.02784s=sample (about 36 samples/s) for off-line ROM generation
(n=10000) and on-line predictions.The ANN training time, for n=10000, is
averaged over 20 runs; the mean time is 38.269s (σ:17.143s).

The model-based prediction times show that, in comparing only on-line
processes, the ROM is 5.39-times faster than the conventional CFD
method. However, this does not take into account the full process. By
comparing the off-line plus on-line processes for repetition, where x is the

� Figure 4.8: Model-based test: (left)

Frankfurter; (right) Washington.
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number of design iterations, the CFD time=1383.162x and the ROM
time=256.482x+1145905.17 (Figure 5.1). In solving for x, the minimum
number of iterations before the full ROM process time equals the CFD is
x=1017.

5.2. Limitations

A key characteristic of the solution approximation approach is a reduction,
where the full field data available through CFD simulation is reduced to the
surface data of interest.As such, no direct information about the
surrounding wind environment is conveyed as it would be with the full CFD.
For certain cases this information is valuable; for instance, pedestrian
comfort studies require data on the wind velocity at a horizontal plane
above ground level in order to measure the change that a new design can
have on an urban environment.The FFD is primarily focused on this field
data with surface interactions as a secondary consideration; for the FFD the
structured meshes give a poor surface representation and makes direct
comparisons with CFD difficult.

Steady-state RANS CFD was used, therefore the prediction results are
not time-dependent peaks but timeaveraged; a common approximation
strategy in practice.This is a relatively significant simplification in structural
engineering terms, but necessary to allow simulation of a large training set.
In later project stages it is of concern to establish quantifiable peak values
for the design, for which more accurate in-depth analyses are conducted, i.e.
wind-tunnel or LES.

The algorithm calculating the training and test shape features is not
currently optimised for efficiency.The most costly part of the calculation lies
in the local curvature analysis, where for every vertex the neighbouring
vertices must be found and ordered by proximity. Consequently, the
reported tests use a feature generation time of 0.02784s=sample (about 36
samples per second) which is open for improvement. Similarly for the input

� Table 5.1: CFD and ROM process

times.
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feature vector; there is no guarantee that the selection used is necessarily
optimal.The local curvature analysis was calculated over five neighbourhood
rings per vertex since the computational effort escalates quickly with the
number of neighbourhoods. For the shape features, the optimal selection
likely varies between geometry types and complexity, i.e. a simpler model
would require less features to make an acceptable prediction.

6. CONCLUSION

In summary, the methodology and results presented here demonstrate an
alternative approach to approximating tall building wind pressure for
generative, early stage design.The results indicate that significant
improvements in response time (5.4-times faster when comparing on-line
prediction times with conventional CFD) can be made with a reasonable
trade-off in accuracy (mean absolute errors of 1.99–4.44% σ:2.10–5.09%).
Although the off-line time is substantial, requiring around 1000 predictions
before the process time becomes an improvement on the traditional CFD
approach, there are three conditions that mediate this limitation: firstly, the
current feature calculation time is not optimised and an improvement on
the current speed can easily be attained through more efficient code;
secondly, the converged training set sample size of 10000 suggests that 600
training simulations is in fact too high; and thirdly, the off-line process time is
inherently a one-off component as compared to the potential infinite
number of on-line predictions it enables.

The most promising aspect of the approach is its applicability to higher-
order basis CFD.The basic invariance of the on-line prediction time and
accuracy to the basis simulation means that benefits increase with cost of
the conventional simulation.

� Figure 5.1: Process time t against

number of design iterations x for CFD

and ROM.
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