
Aplysia: A Neuroevolutionary Generative Design Tool 

David Gerber1, Natalie Sham2, Edith Chow2, Farzad Ghaznavi2, and Jenessa Man2 

1University of Southern California, Los Angeles CA 90007, USA 
2 Arup, Toronto, ON M4W 3M5, Canada 

djgerber@post.harvard.edu, natalie.sham@arup.com, 
edith.chow@arup.com, farzad.ghaznavi@arup.com, 

jenessa.man@arup.com 

Abstract. This work presents the development of a proof-of-concept generative 
design tool for the AEC industry, named Aplysia. Aplysia has the capability to 
provide the designer with the ability to produce emergent design solutions from 
multi-objective criteria without the tradeoff between number of objectives and 
computational resources. easily and rapidly produce varied, performance-
oriented geometries suited for concept design. The current inefficiencies with 
existing generative design tools are primarily due to the underlying algorithms, 
such as evolutionary algorithms which require significant computational 
resources due to large search spaces, and inconsistencies between industry 
requirements and provided features, such as requiring domain expert input to 
use these tools which make it inaccessible to many users. We present the novel 
use of a compositional pattern-producing network (CPPN) and the Neuro-
Evolution of Augmenting Topologies (NEAT) algorithm for a building-scale 
structure. This paper details the software development methodology to build the 
tool, driven by a user-centric approach. Requirements gathering, which framed 
the scope of Aplysia, was completed through a use case study. The user and 
technical requirements were translated into a modular system architecture and 
user-friendly GUI. Aplysia was experimentally tested for the design of a 
lightweight, free-standing canopy. Our initial findings show that Aplysia 
improves the generative design workflow for the test case, which we argue is 
more adaptable to real-world AEC design problems and outline further 
improvements in the continual development of Aplysia. 
 

Keywords: Parametric Design, Generative Design, Multi-Objective 
Optimization, Artificial Neural Networks, CPPN-NEAT. 

1 Introduction 

The rate of growth of different parts of an organism, however small, is fundamental to 
morphological shifts in physiology, as stated in “Growth and Form” by D’Arcy 
Thompson [1]. The generation of physical forms is a dynamic system of parametric 
interplay that is more accessible to designers today due to the increasing availability 
of higher-performing computers and advances in computational approaches. These 



2 

technologies can foster a designer’s ability to explore a plethora of new forms. 
Generative design is comprised of three factors: a design schema, an ability to create 
variations, and a means of selecting desired outcomes. The main intentions of 
generative design are automating exploration of the solution space and producing 
design in concert with some defined optimization.  Specifically, In the context of 
Architecture, Engineering, and Construction (AEC) projects, generative design is 
defined as exploring and/or optimizing the design space and then reporting to the user 
which options can be further analyzed based on defined geometric parameters and 
fitness goals [2]. Typically, a model is set up with quantitative goals and an initial 
geometry. The model is then connected to an algorithm, usually a single or multi-
objective optimization algorithm, that receives the input parameters and searches 
through the design space to find “high-quality designs” which are evaluated against 
and driven by the fitness goals. The algorithms within existing tools significantly 
affect the solutions generated, and they are investigated in-depth in this paper. 

1.1 Algorithms in Generative Design Tools 

Existing generative design tools primarily implement two main classes of 
optimization methods: iterative and metaheuristic. Iterative optimization generates a 
single point in every iteration, such as local direct search algorithms [3] like RBFOpt 
[4]. Metaheuristic optimization methods uses a set of rules to produce near-optimal 
solutions during multiple iterations with less computational effort, such as simulated 
annealing [5], particle swarm optimization [6], and genetic algorithms [7] [8]. 

The two types of genetic algorithms used in existing generative design tools are 
single-objective and multi-objective (MOGAs). MOGAs are well-suited for 
generative design applications in AEC since they can provide a more realistic 
representation of the complexity of a real-world design problem. A common approach 
to optimizing a multi-objective problem is to search for a subset of solutions in the 
Pareto-optimal set, or the Pareto front [9], which are non-dominated solutions (non-
dominated relative to each other). The Pareto front is a boundary where all solutions 
are optimal but will have trade-offs between two or more objectives [10]. An example 
of a MOGA which uses this approach includes the Strength Pareto Evolutionary 
Algorithm (SPEA), introduced by Zitzler and Thiele in 1998 [11], as a technique for 
finding the Pareto-optimal set for multi-objective optimization problems. SPEA-2 was 
introduced in 2001 [11] and enhances SPEA by incorporating a fine-grained fitness 
assignment strategy, a density estimation technique, and an enhanced archive 
truncation method [11]. The Non-dominated Sorting Genetic Algorithm (NSGA), 
introduced by Srinivas and Deb, focuses on distributing the population of solutions 
over the entire Pareto-optimal regions [12]. NSGA-2 [13] is an improved version of 
NSGA, addressing the high computational complexity of nondominated sorting, lack 
of elitism, and the need for specifying a sharing parameter [13]. Evolutionary 
algorithms, however, do not guarantee convergence to optimal solutions [14], and as 
more objectives are involved, encodings become more complex and require domain 
expert input [15]. This requires more computational resources, human expertise, and 
makes it harder to find best fit solutions. Primarily Grasshopper and Dynamo plugins 



3 

were investigated as they are the most used in the AEC industry, including Galapagos, 
Octopus, Wallacei, Biomorpher, Opossum, Silvereye, GOAT, and Refinery. The 
algorithms analyzed were: SPEA-2 [11], SOGA [9], NSGA-2 [16], COGA [17], 
MSRSM [3], Guttmann [3], PSO [18], BP [19], GANs [20], K-means [17], SVM 
[21], HyperNEAT [10], and various nonlinear optimization algorithms [22]. 

Table 1. Existing generative design tools for Rhino and Revit and their associated algorithms. 

Tool Algorithm Description 

Octopus 

SPEA-2, SVM, BP,   
ES-HyperNEAT 

SPEA-2: Strength pareto evolutionary algorithm; 
finding the Pareto-optimal for multi-objective 
problems 
SVM: supervised learning models with learning 
algorithms, for classification of data/regression 
problems 
BP: backpropagation; find loss function’s gradient 
ES-HyperNEAT: extension of HyperNEAT to 
evolve large-scale ANNs 

Galapagos SOGA SOGA: Single-objective genetic algorithm 
Wallacei NSGA-2, K-means NSGA-2: Non-dominated sorting genetic 

algorithm; distribute population of solutions over 
Pareto-optimal regions 
K-means: clustering method 

Biomorpher COGA with K-means COGA: Cluster-Oriented Genetic Algorithms 
K-means: clustering method 

Opossum MSRSM, Guttman  MRSM: searches the model for points that balance 
improving the model’s accuracy, using a genetic 
algorithm/random sampling/mathematical solvers 
Guttmann: evaluates the surrogate model’s point 
of largest curvature 

Silvereye PSO Particle Swarm Optimization: seek good local 
minimum of the similarity measure, conjugate 
gradient used to find local minimum accurately, 
not suited for multiple object tracking 

GOAT Various nonlinear  
optimization algorithms  

Gradient-free optimization algorithms 

Refinery NSGA-2 Non-dominated sorting genetic algorithm: 
distribute population of solutions over Pareto-
optimal regions 

 
Architectural projects are complex with many functional, contextual, material, 

economic, code, and client/stakeholder requirements. With the addition of coupled 
parameter design tasks from other disciplines, the number of variables and objectives 
will increase [23]. There is an interest in exploring the use of state-of-the-art 
optimization methods using machine learning approaches. These approaches can be 



4 

better suited to search through large search spaces, to ensure convergence to optimal 
solutions with advanced filtering techniques [24].  

 
 

1.2 Neuroevolution 

Current research on machine learning methods are focused on deep learning, where 
neural networks weights are trained through backpropagation or stochastic gradient 
descent. An alternate approach, neuroevolution (NE), is used to train neural networks 
with evolutionary algorithms. Research has shown that NE algorithms produce more 
diverse solutions as it is able to circumvent being stuck in local optima, and scales 
well with model size and a large amount of data [25] [26]. Another distinction 
between traditional machine learning approaches to training models and the use of NE 
for training, is that it evolves an optimal “brain” for the problem instead of mapping. 
NE approaches address some of the limitations common to many of the algorithms 
used in existing generative design tools discussed earlier. Particularly in the AEC 
design context, generative design using NE algorithms is yet to be fully explored.  

An alternate approach, neuroevolution (NE), is used to train neural networks with 
evolutionary algorithms. Research has shown that NE algorithms produce more 
diverse solutions as it is able to circumvent being stuck in local optima, and scales 
well with model size and a large amount of data [25] [26]. Another distinction 
between traditional machine learning approaches to training models and the use of NE 
for training, is that it evolves an optimal “brain” for the problem instead of mapping. 
NE approaches address some of the limitations common to many of the algorithms 
used in existing generative design tools discussed earlier. Particularly in the AEC 
design context, generative design using NE algorithms is yet to be fully explored.  

Neuroevolution algorithms generate solutions that are encodings of the structures 
that are evaluated for fitness, commonly known as phenotypes, that are typically 
neural networks. There are two types of encoding that maps a neuroevolution solution 
to the structure itself: direct or indirect. A direct encoding maps the solution exactly to 
the structure such that every node and connection is explicitly stated, whereas indirect 
encoding specifies rules to how the structure should be formed. An indirect encoding 
can compactly capture regularities such as symmetries in the network structure [25].  

In 2007 Stanley [27] proposed a new type of indirect encoding called 
Compositional Pattern-Producing Networks (CPPNs), which are structurally like 
neural networks. CPPNs allow the use of a wider variety of activation functions (other 
than Sigmoid and Gaussian functions used in neural networks) and its input nodes are 
defined as coordinate system inputs, such as cartesian or polar coordinates [27]. The 
combination of various activation functions such as sine waves and triangle functions 
can allow for mathematical abstraction of common structural motifs such as 
symmetry. These structural motifs can then be used to capture complex patterns. 
CPPNs can be evolved using any neuroevolutionary algorithms. Neuro-Evolution of 
Augmenting Topologies (NEAT) demonstrates the possibility for evolution to 
optimize solutions and become increasingly complex over each generation [28]. 
NEAT is used to evolve CPPNs (CPPN-NEAT) into architectures of increasing 



5 

complexity from a simple form and the results show that patterns and regularities can 
be discovered with this combination [25]. 

 

 
Fig. 1. (A) Evolving 2D images encoded by CPPNs using a weight-space tour where every 
progression is a random mutation of weights and structure of a single network. All simulations 
were performed using the CPPNX tool [29]. (B) Evolving 2D images with the NEAT 
algorithm, every progression both creates a new population of different connection weights, 
and performs a generation where networks with the highest fitness value survive. Simulations 
were performed using GeneticArt [30], an implementation of SharpNEAT (used in Aplysia). 

Some variants of NEAT and CPPN have been used in several architectural, 
structural, and urban design projects. An implementation of CPPN and NEAT was 
used to map the network directly to the physical nodes and vectors of trusses for 
digital fabrication to evolve efficient truss structures [14]. Richards and Amos [31] 
used CPPNs to manipulate material properties and shell thicknesses of shell 
structures, in response to automated finite element analysis and projected design 
intentions. CPPNs evolved shell textures based on a specific loading case to stiffen 
the shell structure. Vierlinger [32] used a variation of CPPN-NEAT in Grasshopper, a 
plugin for Rhino, on agent behaviour based on position and distance to building 
elements (cores, envelope, slabs, columns), with agents being capable of altering 
direction and branching behaviour. Janssen [33] used CPPN-NEAT to generate and 
evolve urban massing models. A developmental procedure was set up to generate 
variations of urban models, using CPPN to find the four parameter fields: parks, 
residential/commercial plot ratios, and rotation of blocks. The parameters were 
mapped to each parcel, and the models were evaluated on predefined performance 



6 

criteria, quality of vista and location, with a single overall score assigned to each 
model generated [33].  

2 Aplysia 

The design of the Aplysia generative design tool is centered on four components: use 
of a novel algorithm in the generative design space; requirements gathering to 
understand users’ needs; developing a user interface which provides engaging, high-
quality user interaction and experience; and an improved generative design workflow. 
The tool is named “Aplysia”, a sea slug/sea hare, inspired by Kandel’s Nobel Prize 
work on the organism’s biological mechanisms of storing memory and learning.  

The research question was how to develop a tool that provides a user-friendly 
interface for all skill levels and aid the AEC user to generate emergent design 
solutions from an unlimited number of parameters, without a tradeoff between 
computational resources and degrees of freedom. The reduced computation time will 
not affect the production of scalable, performance-oriented, and buildable geometries. 
A literature review was conducted on the intersection and application of generative 
design and neural networks in architecture, structural engineering [15] [18], and urban 
design, leading to neuroevolution methods [34], and generative tools and algorithms 
[12] [35] [9] [17] with a focus on Grasshopper and Dynamo plugins. Following the 
findings of the review, extensive research on CPPN and NEAT was conducted to 
understand the connection between the algorithms, the problem space, and where the 
algorithm fits into the optimization process. Ken Stanley, who developed the 
algorithms, and Daniel Richards, who implemented them for evolving 2D and 3D 
geometries, were contacted to better understand the algorithms.  

2.1 Requirements Gathering 

Requirements gathering is a tool used in the development of software projects that can 
capture multidisciplinary views [36]. Aplysia aims to be an interactive system that can 
support users in the generative design field in achieving their goals. The scope and 
requirements of Aplysia was established using user-centered design methodologies in 
data gathering and analysis for software development [36]. Use case analysis was 
selected for identifying requirements due to its emphasis on user-system interaction 
[37] [38], and . It is a method used in software development and is very effective at 
defining the current and future actions of a product [39]. Semi-structured interviews 
were conducted for gathering the respondents’ data in defining use cases and to gain 
insight for the requirements. There were 26 questions, ranging from detailing each 
project worked on using generative design processes, to specific questions about the 
advantages and disadvantages of each software used. Interviewees were selected from 
various disciplines (33% architects, 42% structural engineers, 16% digital specialists, 
8% urban designers) globally with different levels of expertise in the generative 
design field within the design/engineering firm.  



7 

Data was extracted from the documented interviews based on the type of work, 
basic or advanced, per discipline. It was further dissected into activities for each user, 
and preferred user requirements. The user requirements were translated into technical 
requirements using the MoSCoW prioritization technique to understand and manage 
core functionality and features, illustrated in table 2. Technical feasibility was 
considered when prioritizing the user requirements into ‘must-haves’ for a proof of 
concept to be completed within the allotted time frame. 

Table 2. Results from the requirements gathering phase 

User Requirements Technical Requirements 
MUST HAVE  SHOULD HAVE NICE TO HAVE 
Low learning barrier 
Can consider many 
objectives 
Has data visualization 
options 
Can sort/filter solutions 
Can export solutions to 
usable formats 
Can group objectives 
Display/ 
visualization of search 
error 

Good software 
UX/UI 
Feed inputs to 
CPPN-NEAT 
Run CPPN-NEAT 
Sort, filter, ranking 
Export function 
Allow design goals 
and constraints to be 
turned on and off 
Ability to set design 
goals to min or max 

Detailed 
visualization of a 
specific solution 
Grouping of design 
goals 

 
 

Collect, compare, 
and visualize history 
of runs 
Input check and 
validation 
 

 
A workflow mapping exercise was conducted for how a user typically interacts 

with a generative design program. It was then modified to include Aplysia’s user 
based technical requirements. A user typically begins by setting up the constraints, 
objectives, etc. needed for the generative design. At this stage, a user may also want 
to bring up saved settings or load up past data. Once the set-up is done, users will run 
the algorithm and wait for the results. When the results are ready the users will 
interact with some visualization of the results and may export them for further 
analysis outside of the application. 

Fig. 2. Aplysia workflow mapping diagram. 



8 

2.2 Distributed System Design 

Aplysia is a system modularized such that a failure in one component can be 
contained. As a result, algorithm failures will not cause UI crashes and run times are 
independent of users’ computer capabilities. Figure 3 illustrates the system 
architecture comprised of frontend and backend components. 

Another notable aspect of a distributed system is the ability to make updates 
without taking down other parts of the system. Users will be able to run optimizations 
on their models while the dashboard is down for updates or maintenance and the data 
will still be stored properly. Access to past data is possible through the dashboard 
through a web browser even if another component like the engine is going through an 
update. The Grasshopper Component, seen in Figure 3, which will be detailed in 
Section 2.3, is the GUI that Aplysia users interact with and it acts as an access point to 
all the other Aplysia components. Analytical features or algorithm updates can be 
added without users having to perform any updates to their Grasshopper.  

 
Fig. 3. Aplysia system architecture 

Grasshopper Web Service 
This backend component (C#) was created to run specified grasshopper models with 
sets of constraint values and return the resulting objective values. This is critical to 
running an optimization algorithm on a grasshopper model. The current 
implementation uses the Rhino 7 SDK and supported Grasshopper models are limited 
to analytical tools compatible with this version. 



9 

Engine 
The “Optimization Engine” (C#) currently contains an implementation of CPPN-
NEAT, it can theoretically optimize any model but in this case the fitness evaluation 
part has been set to call the grasshopper web service to open run a specific 
grasshopper file with a set of constraint values specified by the optimization 
algorithm. The engine can be easily updated to improve the CPPN-NEAT algorithm 
or include other optimization algorithms 

Database 
A PostgreSQL database was set up to store all optimization run data in a schema 
designed to allow specific filters on results to be done quickly and easily. To protect 
against direct access to the database, an API (Node JS) was created as a front for DB 
access and exposes specific queries that is necessary for the system. Adding new 
queries in for future features is relatively straightforward and therefore scalable. 
 

Dashboard 
A dashboard API (Node JS) was created to visualize the results. The current 

visualization is limited to a table of all results, graphs of the objective values for all 
the results, and the ability to visualize details of a single result in a radar plot. 
Updating the dashboard to include other visualization and analytical tools can be done 
without having to take down the rest of the system. 

Aplysia GUI 
The design process for the Aplysia UX/UI as a Grasshopper plugin focused on ease-
of-use with minimal button clicks and clear portrayal of information, with a focus on 
content presentation, easy navigation, simple and responsive interface, consistent UI 
elements (font, colour scheme), and quick feedback mechanisms. The UI was initially 
designed in Adobe InDesign and Illustrator, and an interactive mock-up created in 
Balsamiq. Combining the visuals and functionality of both led to the final proof-of-
concept system that was reviewed by an internal UX expert.  

Set Up 
The first set-up tab shows a summary of the number sliders connected to 
“Constraints”. The second tab shows the “Objectives”, to be minimized/maximized. 
Since certain objectives correspond to different disciplines, an additional option for 
selecting colour categories of each objective is available. The third set-up tab shows 
options for algorithm settings which are currently under development and will aim to 
simplify the settings in practical terms, so the user does not need prior knowledge of 
the algorithm. The final set-up tab displays a summary of the previous tabs for a final 
check.  
 
 



10 

 Run 
When the user clicks ‘Run’ once they have confirmed the settings, a message will 
appear indicating that the backend is running the algorithm. Once the run is complete, 
a message will show up indicating this along with a link to an external dashboard for 
the user to view later. The results will also be displayed through the GUI 
simultaneously. 

Algorithm Implementation 
There are two primary categories of topologies that a CPPN can represent: abstract 
and physical. If a parametric model is represented using abstract CPPN topologies, 
the geometric characteristics of the model (e.g. the distance between columns in a 
canopy) will be encoded as independent inputs or nodes, which are not explicitly 
defined in relation to other geometric parameters. In a physical topology 
representation, the geometric characteristics of the model are defined relative to each 
other. These characteristics are encoded in terms of its connectivity with other 
components in the model (e.g. the position of one column is defined relative to all 
other elements in the model). This complexity associated with encoding the problem 
turned the focus onto using CPPN&NEAT with abstract networks, an extension of the 
original implementation of CPPN-NEAT [27]. By mapping the geometry to an 
abstract topology, the problem is shifted away from dimensionality and degrees of 
freedom to the underlying problem structure. Aplysia’s optimization algorithm uses 
SharpNEAT, an implementation of NEAT written in C# by Colin Green. 

Aplysia implemented CPPN&NEAT by abstracting the parametric model with 
multiple objectives into a simple topological relationship using a “state-space 
sandwich” substrate configuration [40]. The sandwich is comprised of two layers: one 
layer sends connections in a single direction to another layer. As the three-
dimensional structure is restricted, it becomes a four-dimensional CPPN (x1, y1, x2, 
y2). For instance (x1, y1) is on a layer/plane, and (x2, y2) is on another target 
layer/plane. This structure allows CPPNs to find patterns within state-space sandwich 
substrates [40].  

Fig. 4. Typical set-up of a parametric model and how CPPN&NEAT works with the model 
 
 



11 

 Results 
The results tab, shown in Figure 4, displays a table of all the  
solutions. When a solution is selected, the results for that individual are displayed 
with radar chart and graphs. Due to the project’s time frame, features in the 
visualization component were not fully implemented but will be included 
in the next phase of development. 

2.3 Experimental Results 

Aplysia was tested on a design problem in the conceptual design phase of a 
lightweight, free-standing canopy for a transport hub. The problem is defined by 17 
geometric parameters. The inputs are the position of the end and mid points for two 
curves that generate one modular roof; the U, V divisions and depth of the space truss 
structure; and the column radius. The canopy is modular for constructability and cost 
effectiveness, where two parallel columns form one module that can be repeated. The 
Four fitness objectives measure the entire canopy structure (1) to minimize the total 
surface area of the membrane, (2) maximize shadow area under the canopy, (3) to 
minimize displacement and (4) minimize self-weight. Solutions were generated over 5 
generations, generating 35,000 individuals on an Intel Xeon(R) W-2145 CPU @ 
3.70GHz, with a 64.0 GB RAM, the optimum results are shown in Figure 8. For the 
NEAT algorithm parameters, the default settings were used, where the initial species 
count was set to 10, elitism and selection proportion was set to 0.2, offspring asexual 
and sexual proportion was set to 0.5, and interspecies mating proportion was set to 
0.01. The initial interconnections proportion was set to 0.5.  

 
Fig. 5. Initial canopy parameters corresponding to the sliders plugged into Aplysia. 



12 

 
Fig. 6. First set-up tab, all parameters and constraints are listed. 

 
Fig. 7. Objectives are listed with options to select/deselect objectives; minimize or maximize 

objectives; colour categories correspond to different disciplines.



13 

 
Fig. 8. Summary of all options before “run”.

 
Fig. 9.  Results tab of the run with some visualization components implemented. 

Figure 9 shows the normal distribution graphs for every objective. For minimizing 
objective (1), the values are more spread out with a larger standard deviation. For 
maximizing objective (2), the values are more likely to fall within the mean. For 
objective (3) and (4), the solutions do not have a distribution with a low standard 
deviation and appears to have converged. In terms of the visual display of each 
individual, as generations increased, instead of becoming more optimized and 
geometrically alike, the solutions had varying levels of complexity as displayed in 
Figure 8, despite that some objectives have converged quantitatively, for example 
objective (3). These initial experiments indicate that Aplysia has to potential to 
generate visually complex, and buildable geometries. It demonstrates Aplysia’s ability 
to create many individuals in a comparably shorter time frame without strain on 
computational resources, and with user-friendly filtering functions, can be used by a 
non-expert. 



14 

 
Fig. 10. Perspective view of selected solutions in the most evolved run generated from the roof 
truss Grasshopper model. 

 
Fig. 11. Top view of individuals with radar chart. 



15 

 
Fig. 12. The normal distribution graphs display how the values of a variable are distributed for 

four objectives 

3 Discussion 

In the development of generative design tools, Aplysia offers a new opportunity for 
web-based visualizations and analytics of optimization results within and outside of 
the Rhino/GH platform. With this framework, a GUI on a different visual 
programming platform like Dynamo can also be developed in the future and use the 
same backend infrastructure. The engine aims to make full use of cloud-based parallel 
computing to decrease run times and allow deployment or updates of algorithms with 
no impact to users. 

3.1 Opportunities for further work 

In understanding how NEAT and CPPN works individually and together, Aplysia can 
be further explored to make full use of CPPN&NEAT’s strength in exploiting 
regularities. Since it would not be limited by an inherent search along the Pareto front 
of all possible solutions, for example in NSGA-2 or SPEA-2, NEAT can focus more 
on discovering diverse and novel solutions. Design exploration is likely the most 
suitable use for this algorithm and can be a future Aplysia feature in addition to 
optimization, to fully exploit the capabilities of CPPN and advance architectural 
design. 

A formal benchmarking study comparing Aplysia with other commonly used 
generative design solvers will be conducted for further research, focusing on speed of 
convergence and reliability of the solutions generated. Backend efficiencies such as 
profiling optimization will be included to improve the run speed. Currently the 
Development Team is deploying the tool to the cloud, to remove reliance on a local 
server. It can then be accessed by the alpha test group, formed by the use case study 



16 

interviewees, for further feedback and to identify new pain points for improving the 
tool. 

4 Conclusion 

Parametric design has allowed the architect and engineer to create forms that expand 
the designer’s imagination and visualization capabilities and, combined with 
optimization tools, designs can meet functional and performance-based criteria. The 
emergence of machine learning algorithms into the domain is slowly bridging the gap 
between optimality and obtaining new types of morphologies.  

The work presented here is an initial proof-of-concept for a generative design tool 
catered towards the AEC industry, that provides the capability to rapidly assess design 
alternatives that foster diversity not constrained by number of degrees of freedom at 
the concept stage for architectural, structural, and urban planning design problems. It 
demonstrates which designs deliver the best value and balances complex requirements 
to minimize costs downstream of the project. Aplysia has the capability to reduce 
inefficiencies in existing tools and workflows, diminish the computational time for 
models with many parameters and goals, minimize the learning curve for generative 
design tools, and promote remote collaboration by means of visualizing results 
through a web viewer. Future implementation of the tool will be applied to an 
increased variety of design problems, such as generating urban blocks from form-
based codes, façade modules to increase energy performance, office space planning, 
and architectural programming with spatial composition requirements in metro 
stations. 
 
Acknowledgements. This research project is supported by the Invest In Arup fund. 
We thank Nille Juul-Sorensen (Arup) for his tremendous support to the success of the 
project, and Jared Stock, Arman Ayrapetyan who are currently working on cloud 
deployment for Aplysia. 
 

References 

 
[1]  D. Thompson, Growth and Form, Cambridge: University Press, 1959.  
[2]  D. Nagy, D. Lau, J. Locke, J. Stoddart, L. Villaggi, R. Wang, D. Zhao and D. 

Benjamin, "Project Discover: An Application of Generative Design for 
Architectural Space Planning," SIMAUD '17: Proceedings of the Symposium on 
Simulation for Architecture and Urban Design, vol. 7, pp. 1-8, 2017.  

[3]  T. Wortmann, "OPOSSUM: Introducing and Evaluating a Model-based 
Optimization Tool for Grasshopper," Proceedings of the CAADRIA 17, no. April, 
pp. 283 - 292, 2017.  

[4]  A. Costa and G. Nannicini, "RBFOpt: an open-source library for black-box 



17 

optimization with costly function evaluations," Mathematical Programming 
Computation, vol. 10, no. 4, pp. 597-629, 2018.  

[5]  D. Rutten, "Galapagos: On the Logic and Limitations of Generic Solvers," 
Architectural Design, vol. 83, no. 2, pp. 132-135, 2013.  

[6]  J. Cichocka, W. Browne and E. Rodriguez, "Evolutionary Optimization 
Processes As Design Tools," in 31th International PLEA Conference 
ARCHITECTURE IN (R)EVOLUTION, Bologna, 2015.  

[7]  D. J. Gerber, S.-H. Lin, B. Pan and A. S. Solmaz, "Design Optioneering: 
Multi-disciplinary Design Optimization through Parameterization, Domain 
Integration and Automation of a Genetic Algorithm," in Proceedings of the 2012 
Symposium on Simulation for Architecture and Urban Design, Florida, Society 
for Computer Simulation International, 2012, pp. 1-8. 

[8]  M. Latifi, M. J. Mahdavinezhad and D. Diba, "Understanding Genetic 
Algorithms in Architecture," The Turkish Online Journal of Design, Art and 
Communication, vol. 6, no. AGSE, pp. 1385-1400, 2016.  

[9]  S. Kocabay and S. Alaçam, "Algorithm Driven Design: Comparison of 
Single-Objective and Multi-Objective Genetic Algorithms in the Context of 
Housing Design," in 17th Computer-Aided Architectural Design Futures 
Conference, 2017.  

[10]  R. Vierlinger, "Multi Objective Design Interface," Vienna, 2013. 
[11]  E. Zitzler, M. Laumanns and L. Thiele, "SPEA2: Improving the Strength 

Pareto Evolutionary Algorithm," Zurich, 2001. 
[12]  K. Deb and N. Srinivas, "Multiobjective Optimization Using Nondominated 

Sorting in Genetic Algorithms," Evolutionary Computation, vol. 2, no. 3, pp. 
221-248, 1995.  

[13]  K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist 
multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary 
Computation, vol. 6, no. 2, pp. 182-197, 2002.  

[14]  D. Richards and M. Amos, "Designing with gradients bio-inspired 
computation for digital fabrication," in Association for Computer Aided Design 
in Architecture, 2014.  

[15]  H. Salehi and R. Burgueño, "Emerging artificial intelligence methods in 
structural engineering," Engineering Structures, vol. 171, pp. 170-189, 2018.  

[16]  "Wallacei Primer," [Online]. Available: https://www.wallacei.com/learn. 
[Accessed 20 November 2020]. 

[17]  J. Harding and C. Brandt-Olsen, "Biomorpher: Interactive evolution for 
parametric design," International Journal of Architectural Computing, vol. 16, 
no. 2, pp. 144-163, 2018.  

[18]  S. Chatterjee, "Structural Failure Classification for Reinforced Concrete 
Buildings Using Trained Neural Network based Multi-Objective Genetic 
Algorithm," Structural Engineering and Mechanics, vol. 63, no. 4, pp. 0-000, 



18 

2017.  
[19]  N. Khean, L. Y. Kim, B. D. J. Martinez, A. Fabbri, N. Gardner and M. 

Haeusler, "The Introspection of Deep Neural Networks - Towards Illuminating 
the Black Box," Proceedings of the 23rd CAADRIA Conference, vol. 2, pp. pp. 
237-246, 2018.  

[20]  S. Chaillou, "Space Layouts & GANs: GAN-enabled Floor Plan Generation," 
Towards Data Science, 2020. 

[21]  R. Vierlinger, "SVM Learning (oSL)," [Online]. Available: 
https://grasshopperdocs.com/components/octopus/sVMLearningoSL.html. 
[Accessed 30 November 2020]. 

[22]  V. Costa, N. Lourenço, J. Correia and P. Machado, "Neuroevolution of 
Generative Adversarial Networks," in Deep Neural Evolution, Singapore, 
Springer Nature Singapore Pte Ltd, 2020.  

[23]  F. Flager, D. J. Gerber and B. Kallman, "Measuring the impact of scale and 
coupling on solution quality for building design problems," Design Studies, pp. 
180-199, 2014.  

[24]  S. Adriaenssens, P. Block, D. Veenendaal and C. Williams, Shell Structures 
for Architecture: Form Finding and Optimization, London: Routledge, 2014.  

[25]  K. O. Stanley, J. Clune, J. Lehman and R. Miikkulainen, "Designing neural 
networks through neuroevolution," Nature Machine Intelligence, vol. 1, no. 1, 
pp. 24-35, 2019.  

[26]  D. Richards and M. Amos, "Evolving Morphologies with CPPN-NEAT and a 
Dynamic Substrate," in ALIFE Synthesis and Simulation of Living Systems, 
Manhattan, 2014.  

[27]  K. O. Stanley, "Compositional pattern producing networks: A novel 
abstraction of development," Genetic Programming and Evolvable Machines, 
vol. 8, no. 2, pp. 131-162, 2007.  

[28]  Stanley Kenneth O. and R. Miikkulainen, "Evolving neural networks through 
augmenting topologies," Evolutionary Computation, vol. 10, no. 2, pp. 99-127, 
2002.  

[29]  F. Andrews, "CPPNX," 2016. [Online]. Available: 
https://floybix.github.io/cppnx/. 

[30]  H. Ferstl, "SharpNEAT-based genetic art homepage," 2006. [Online]. 
Available: http://oldblog.holgerferstl.de/2006/02/08/GeneticArt.aspx. [Accessed 
30 11 2020]. 

[31]  D. Richards and M. Amos, "Encoding Multi-Materiality," in Mixed Matters: A 
Multi-Material Design Compendium, Berlin, Jovis, 2016, pp. 40-49. 

[32]  R. Vierlinger, "Towards AI Drawing Agents," Modelling Behaviour, pp. 357-
369, 2015.  

[33]  P. Janssen, "Evolutionary Urbanism," in Computer-Aided Architectural 
Design Research in Asia, Hong Kong, 2017.  



19 

[34]  P. Koehn, "Combining Genetic Algorithms and Neural Networks: An 
Encoding Problem," Knoxville, 1994. 

[35]  J. Bader and E. Zitzler, "HypE: An algorithm for fast hypervolume-based 
many-objective optimization," Evolutionary Computation, vol. 19, no. 1, pp. 45-
76, 2011.  

[36]  S. Lane, P. O’Raghallaigh and D. Sammon, "Requirements gathering: the 
journey," Journal of Decision Systems, pp. 302-312, 2016.  

[37]  Y. Rogers, H. Sharp and J. Preece, Interaction Design: Beyond Human-
Computer Interaction, 3 ed., John Wiley & Sons Ltd, 2011.  

[38]  I. F. Alexander and N. Maiden, Scenarios, Stories, Use Cases: Through the 
Systems Development Life-Cycle, New York: John Wiley & Sons, 2005.  

[39]  A. M. Langer, Analysis and Design of Next-Generation Software 
Architectures, Cham: Springer Nature Switzerland, 2020.  

[40]  K. O. Stanley, D. B. D'Ambrosio and J. Gauci, "A hypercube-based encoding 
for evolving large-scale neural networks," Artificial Life, vol. 15, no. 2, pp. 185-
212, 2009.  

 
 

 


