Aplysia: A Neuroevolutionary Generative Design Tool

David Gerber', Natalie Sham?, Edith Chow?, Farzad Ghaznavi’, and Jenessa Man®

'University of Southern California, Los Angeles CA 90007, USA
2 Arup, Toronto, ON M4W 3MS5, Canada
djgerber@post.harvard.edu, natalie.sham@arup.com,
edith.chow@arup.com, farzad.ghaznavi@arup.com,
jenessa.man@arup.com

Abstract. This work presents the development of a proof-of-concept generative
design tool for the AEC industry, named Aplysia. Aplysia has the capability to
provide the designer with the ability to produce emergent design solutions from
multi-objective criteria without the tradeoff between number of objectives and
computational resources. easily and rapidly produce varied, performance-
oriented geometries suited for concept design. The current inefficiencies with
existing generative design tools are primarily due to the underlying algorithms,
such as evolutionary algorithms which require significant computational
resources due to large search spaces, and inconsistencies between industry
requirements and provided features, such as requiring domain expert input to
use these tools which make it inaccessible to many users. We present the novel
use of a compositional pattern-producing network (CPPN) and the Neuro-
Evolution of Augmenting Topologies (NEAT) algorithm for a building-scale
structure. This paper details the software development methodology to build the
tool, driven by a user-centric approach. Requirements gathering, which framed
the scope of Aplysia, was completed through a use case study. The user and
technical requirements were translated into a modular system architecture and
user-friendly GUI. Aplysia was experimentally tested for the design of a
lightweight, free-standing canopy. Our initial findings show that Aplysia
improves the generative design workflow for the test case, which we argue is
more adaptable to real-world AEC design problems and outline further
improvements in the continual development of Aplysia.

Keywords: Parametric Design, Generative Design, Multi-Objective
Optimization, Artificial Neural Networks, CPPN-NEAT.

1 Introduction

The rate of growth of different parts of an organism, however small, is fundamental to
morphological shifts in physiology, as stated in “Growth and Form” by D’Arcy
Thompson [1]. The generation of physical forms is a dynamic system of parametric
interplay that is more accessible to designers today due to the increasing availability
of higher-performing computers and advances in computational approaches. These

technologies can foster a designer’s ability to explore a plethora of new forms.
Generative design is comprised of three factors: a design schema, an ability to create
variations, and a means of selecting desired outcomes. The main intentions of
generative design are automating exploration of the solution space and producing
design in concert with some defined optimization. Specifically, In the context of
Architecture, Engineering, and Construction (AEC) projects, generative design is
defined as exploring and/or optimizing the design space and then reporting to the user
which options can be further analyzed based on defined geometric parameters and
fitness goals [2]. Typically, a model is set up with quantitative goals and an initial
geometry. The model is then connected to an algorithm, usually a single or multi-
objective optimization algorithm, that receives the input parameters and searches
through the design space to find “high-quality designs” which are evaluated against
and driven by the fitness goals. The algorithms within existing tools significantly
affect the solutions generated, and they are investigated in-depth in this paper.

1.1 Algorithms in Generative Design Tools

Existing generative design tools primarily implement two main classes of
optimization methods: iterative and metaheuristic. Iterative optimization generates a
single point in every iteration, such as local direct search algorithms [3] like RBFOpt
[4]. Metaheuristic optimization methods uses a set of rules to produce near-optimal
solutions during multiple iterations with less computational effort, such as simulated
annealing [5], particle swarm optimization [6], and genetic algorithms [7] [8].

The two types of genetic algorithms used in existing generative design tools are
single-objective and multi-objective (MOGAs). MOGAs are well-suited for
generative design applications in AEC since they can provide a more realistic
representation of the complexity of a real-world design problem. A common approach
to optimizing a multi-objective problem is to search for a subset of solutions in the
Pareto-optimal set, or the Pareto front [9], which are non-dominated solutions (non-
dominated relative to each other). The Pareto front is a boundary where all solutions
are optimal but will have trade-offs between two or more objectives [10]. An example
of a MOGA which uses this approach includes the Strength Pareto Evolutionary
Algorithm (SPEA), introduced by Zitzler and Thiele in 1998 [11], as a technique for
finding the Pareto-optimal set for multi-objective optimization problems. SPEA-2 was
introduced in 2001 [11] and enhances SPEA by incorporating a fine-grained fitness
assignment strategy, a density estimation technique, and an enhanced archive
truncation method [11]. The Non-dominated Sorting Genetic Algorithm (NSGA),
introduced by Srinivas and Deb, focuses on distributing the population of solutions
over the entire Pareto-optimal regions [12]. NSGA-2 [13] is an improved version of
NSGA, addressing the high computational complexity of nondominated sorting, lack
of elitism, and the need for specifying a sharing parameter [13]. Evolutionary
algorithms, however, do not guarantee convergence to optimal solutions [14], and as
more objectives are involved, encodings become more complex and require domain
expert input [15]. This requires more computational resources, human expertise, and
makes it harder to find best fit solutions. Primarily Grasshopper and Dynamo plugins

were investigated as they are the most used in the AEC industry, including Galapagos,
Octopus, Wallacei, Biomorpher, Opossum, Silvereye, GOAT, and Refinery. The
algorithms analyzed were: SPEA-2 [11], SOGA [9], NSGA-2 [16], COGA [17],
MSRSM [3], Guttmann [3], PSO [18], BP [19], GANs [20], K-means [17], SVM
[21], HyperNEAT [10], and various nonlinear optimization algorithms [22].

Table 1. Existing generative design tools for Rhino and Revit and their associated algorithms.

Tool

Algorithm

Description

Octopus

Galapagos
Wallacei

Biomorpher

Opossum

Silvereye

GOAT

Refinery

SPEA-2, SVM, BP,
ES-HyperNEAT

SOGA
NSGA-2, K-means

COGA with K-means

MSRSM, Guttman

PSO

Various nonlinear
optimization algorithms
NSGA-2

SPEA-2: Strength pareto evolutionary algorithm;
finding the Pareto-optimal for multi-objective
problems

SVM: supervised learning models with learning
algorithms, for classification of data/regression
problems

BP: backpropagation; find loss function’s gradient
ES-HyperNEAT: extension of HyperNEAT to
evolve large-scale ANNs

SOGA: Single-objective genetic algorithm
NSGA-2: Non-dominated sorting genetic
algorithm; distribute population of solutions over
Pareto-optimal regions

K-means: clustering method

COGA: Cluster-Oriented Genetic Algorithms
K-means: clustering method

MRSM: searches the model for points that balance
improving the model’s accuracy, using a genetic
algorithm/random sampling/mathematical solvers
Guttmann: evaluates the surrogate model’s point
of largest curvature

Particle Swarm Optimization: seek good local
minimum of the similarity measure, conjugate
gradient used to find local minimum accurately,
not suited for multiple object tracking
Gradient-free optimization algorithms

Non-dominated sorting genetic algorithm:
distribute population of solutions over Pareto-
optimal regions

Architectural projects are complex with many functional, contextual, material,
economic, code, and client/stakeholder requirements. With the addition of coupled
parameter design tasks from other disciplines, the number of variables and objectives
will increase [23]. There is an interest in exploring the use of state-of-the-art
optimization methods using machine learning approaches. These approaches can be

better suited to search through large search spaces, to ensure convergence to optimal
solutions with advanced filtering techniques [24].

1.2 Neuroevolution

Current research on machine learning methods are focused on deep learning, where
neural networks weights are trained through backpropagation or stochastic gradient
descent. An alternate approach, neuroevolution (NE), is used to train neural networks
with evolutionary algorithms. Research has shown that NE algorithms produce more
diverse solutions as it is able to circumvent being stuck in local optima, and scales
well with model size and a large amount of data [25] [26]. Another distinction
between traditional machine learning approaches to training models and the use of NE
for training, is that it evolves an optimal “brain” for the problem instead of mapping.
NE approaches address some of the limitations common to many of the algorithms
used in existing generative design tools discussed earlier. Particularly in the AEC
design context, generative design using NE algorithms is yet to be fully explored.

An alternate approach, neuroevolution (NE), is used to train neural networks with
evolutionary algorithms. Research has shown that NE algorithms produce more
diverse solutions as it is able to circumvent being stuck in local optima, and scales
well with model size and a large amount of data [25] [26]. Another distinction
between traditional machine learning approaches to training models and the use of NE
for training, is that it evolves an optimal “brain” for the problem instead of mapping.
NE approaches address some of the limitations common to many of the algorithms
used in existing generative design tools discussed earlier. Particularly in the AEC
design context, generative design using NE algorithms is yet to be fully explored.

Neuroevolution algorithms generate solutions that are encodings of the structures
that are evaluated for fitness, commonly known as phenotypes, that are typically
neural networks. There are two types of encoding that maps a neuroevolution solution
to the structure itself: direct or indirect. A direct encoding maps the solution exactly to
the structure such that every node and connection is explicitly stated, whereas indirect
encoding specifies rules to how the structure should be formed. An indirect encoding
can compactly capture regularities such as symmetries in the network structure [25].

In 2007 Stanley [27] proposed a new type of indirect encoding called
Compositional Pattern-Producing Networks (CPPNs), which are structurally like
neural networks. CPPNs allow the use of a wider variety of activation functions (other
than Sigmoid and Gaussian functions used in neural networks) and its input nodes are
defined as coordinate system inputs, such as cartesian or polar coordinates [27]. The
combination of various activation functions such as sine waves and triangle functions
can allow for mathematical abstraction of common structural motifs such as
symmetry. These structural motifs can then be used to capture complex patterns.
CPPNs can be evolved using any neuroevolutionary algorithms. Neuro-Evolution of
Augmenting Topologies (NEAT) demonstrates the possibility for evolution to
optimize solutions and become increasingly complex over each generation [28].
NEAT is used to evolve CPPNs (CPPN-NEAT) into architectures of increasing

complexity from a simple form and the results show that patterns and regularities can
be discovered with this combination [25].

a
wi
&

L
==

w

o

IMAGE
NETWORK

-« Random mutation of weights & structure

)27

[3 |
O | ‘7‘ o
w4 Create New Population: All genomes have the same network but different connection weights
Perform a Generation: Network gets the highest fitness value

IMAGE

NETWORK GENERATED

IMAGE

Fig. 1. (A) Evolving 2D images encoded by CPPNs using a weight-space tour where every
progression is a random mutation of weights and structure of a single network. All simulations
were performed using the CPPNX tool [29]. (B) Evolving 2D images with the NEAT
algorithm, every progression both creates a new population of different connection weights,
and performs a generation where networks with the highest fitness value survive. Simulations
were performed using GeneticArt [30], an implementation of SharpNEAT (used in Aplysia).

Some variants of NEAT and CPPN have been used in several architectural,
structural, and urban design projects. An implementation of CPPN and NEAT was
used to map the network directly to the physical nodes and vectors of trusses for
digital fabrication to evolve efficient truss structures [14]. Richards and Amos [31]
used CPPNs to manipulate material properties and shell thicknesses of shell
structures, in response to automated finite element analysis and projected design
intentions. CPPNs evolved shell textures based on a specific loading case to stiffen
the shell structure. Vierlinger [32] used a variation of CPPN-NEAT in Grasshopper, a
plugin for Rhino, on agent behaviour based on position and distance to building
elements (cores, envelope, slabs, columns), with agents being capable of altering
direction and branching behaviour. Janssen [33] used CPPN-NEAT to generate and
evolve urban massing models. A developmental procedure was set up to generate
variations of urban models, using CPPN to find the four parameter fields: parks,
residential/commercial plot ratios, and rotation of blocks. The parameters were
mapped to each parcel, and the models were evaluated on predefined performance

criteria, quality of vista and location, with a single overall score assigned to each
model generated [33].

2 Aplysia

The design of the Aplysia generative design tool is centered on four components: use
of a novel algorithm in the generative design space; requirements gathering to
understand users’ needs; developing a user interface which provides engaging, high-
quality user interaction and experience; and an improved generative design workflow.
The tool is named “Aplysia”, a sea slug/sea hare, inspired by Kandel’s Nobel Prize
work on the organism’s biological mechanisms of storing memory and learning.

The research question was how to develop a tool that provides a user-friendly
interface for all skill levels and aid the AEC user to generate emergent design
solutions from an unlimited number of parameters, without a tradeoff between
computational resources and degrees of freedom. The reduced computation time will
not affect the production of scalable, performance-oriented, and buildable geometries.
A literature review was conducted on the intersection and application of generative
design and neural networks in architecture, structural engineering [15] [18], and urban
design, leading to neuroevolution methods [34], and generative tools and algorithms
[12] [35] [9] [17] with a focus on Grasshopper and Dynamo plugins. Following the
findings of the review, extensive research on CPPN and NEAT was conducted to
understand the connection between the algorithms, the problem space, and where the
algorithm fits into the optimization process. Ken Stanley, who developed the
algorithms, and Daniel Richards, who implemented them for evolving 2D and 3D
geometries, were contacted to better understand the algorithms.

2.1 Requirements Gathering

Requirements gathering is a tool used in the development of software projects that can
capture multidisciplinary views [36]. Aplysia aims to be an interactive system that can
support users in the generative design field in achieving their goals. The scope and
requirements of Aplysia was established using user-centered design methodologies in
data gathering and analysis for software development [36]. Use case analysis was
selected for identifying requirements due to its emphasis on user-system interaction
[37] [38], and . It is a method used in software development and is very effective at
defining the current and future actions of a product [39]. Semi-structured interviews
were conducted for gathering the respondents’ data in defining use cases and to gain
insight for the requirements. There were 26 questions, ranging from detailing each
project worked on using generative design processes, to specific questions about the
advantages and disadvantages of each software used. Interviewees were selected from
various disciplines (33% architects, 42% structural engineers, 16% digital specialists,
8% urban designers) globally with different levels of expertise in the generative
design field within the design/engineering firm.

Data was extracted from the documented interviews based on the type of work,
basic or advanced, per discipline. It was further dissected into activities for each user,
and preferred user requirements. The user requirements were translated into technical
requirements using the MoSCoW prioritization technique to understand and manage
core functionality and features, illustrated in table 2. Technical feasibility was
considered when prioritizing the user requirements into ‘must-haves’ for a proof of
concept to be completed within the allotted time frame.

Table 2. Results from the requirements gathering phase

User Requirements
MUST HAVE

Low learning barrier

Technical Requirements
SHOULD HAVE ~ NICE TO HAVE

Detailed Collect, compare,

Good software

Can consider many UX/UI visualization ofa and visualize history
objectives Feed inputs to specific solution of runs

Has data visualization CPPN-NEAT Grouping of design Input check and
options Run CPPN-NEAT goals validation

Can sort/filter solutions Sort, filter, ranking

Can export solutions to
usable formats

Can group objectives
Display/

visualization of search
error

Export function
Allow design goals
and constraints to be
turned on and off
Ability to set design
goals to min or max

A workflow mapping exercise was conducted for how a user typically interacts
with a generative design program. It was then modified to include Aplysia’s user
based technical requirements. A user typically begins by setting up the constraints,
objectives, etc. needed for the generative design. At this stage, a user may also want
to bring up saved settings or load up past data. Once the set-up is done, users will run
the algorithm and wait for the results. When the results are ready the users will
interact with some visualization of the results and may export them for further
analysis outside of the application.

SET-UP RUN RESULTS

Fig. 2. Aplysia workflow mapping diagram.

2.2 Distributed System Design

Aplysia is a system modularized such that a failure in one component can be
contained. As a result, algorithm failures will not cause Ul crashes and run times are
independent of users’ computer capabilities. Figure 3 illustrates the system
architecture comprised of frontend and backend components.

Another notable aspect of a distributed system is the ability to make updates
without taking down other parts of the system. Users will be able to run optimizations
on their models while the dashboard is down for updates or maintenance and the data
will still be stored properly. Access to past data is possible through the dashboard
through a web browser even if another component like the engine is going through an
update. The Grasshopper Component, seen in Figure 3, which will be detailed in
Section 2.3, is the GUI that Aplysia users interact with and it acts as an access point to
all the other Aplysia components. Analytical features or algorithm updates can be
added without users having to perform any updates to their Grasshopper.

(=]

2z GRASSHOPPER OPTIMIZATION DB API POSTGRESQL

E WEB SERVICE ENGINE DATABASE

(&)

S (2 Jare

m grasshopper
Rhino 7 WIP service to Optimization engineto = API for data access ~ Open-source relational
run GH scripts without run a CPPN&NEAT database management
opening the Rhino+GH algorithm. system to store data

user in}erface Using a SharpNEAT lib.

a v

B GRASSHOPPER WEB-BASED

E COMPONENT VISUALIZATION

> . 0

s = < .. S d[=

o Do *—

LL
User’s point of access Web-based visualization dashboard.

Displays the results of a single run by
pulling the data from the DB.
Allows users to interact with the results.

<---» http calls

Fig. 3. Aplysia system architecture

Grasshopper Web Service
This backend component (C#) was created to run specified grasshopper models with
sets of constraint values and return the resulting objective values. This is critical to
running an optimization algorithm on a grasshopper model. The current
implementation uses the Rhino 7 SDK and supported Grasshopper models are limited
to analytical tools compatible with this version.

Engine
The “Optimization Engine” (C#) currently contains an implementation of CPPN-
NEAT, it can theoretically optimize any model but in this case the fitness evaluation
part has been set to call the grasshopper web service to open run a specific
grasshopper file with a set of constraint values specified by the optimization
algorithm. The engine can be easily updated to improve the CPPN-NEAT algorithm
or include other optimization algorithms

Database
A PostgreSQL database was set up to store all optimization run data in a schema
designed to allow specific filters on results to be done quickly and easily. To protect
against direct access to the database, an API (Node JS) was created as a front for DB
access and exposes specific queries that is necessary for the system. Adding new
queries in for future features is relatively straightforward and therefore scalable.

Dashboard

A dashboard API (Node JS) was created to visualize the results. The current
visualization is limited to a table of all results, graphs of the objective values for all
the results, and the ability to visualize details of a single result in a radar plot.
Updating the dashboard to include other visualization and analytical tools can be done
without having to take down the rest of the system.

Aplysia GUI

The design process for the Aplysia UX/UI as a Grasshopper plugin focused on ease-
of-use with minimal button clicks and clear portrayal of information, with a focus on
content presentation, easy navigation, simple and responsive interface, consistent Ul
elements (font, colour scheme), and quick feedback mechanisms. The UI was initially
designed in Adobe InDesign and Illustrator, and an interactive mock-up created in
Balsamiq. Combining the visuals and functionality of both led to the final proof-of-
concept system that was reviewed by an internal UX expert.

Set Up

The first set-up tab shows a summary of the number sliders connected to
“Constraints”. The second tab shows the “Objectives”, to be minimized/maximized.
Since certain objectives correspond to different disciplines, an additional option for
selecting colour categories of each objective is available. The third set-up tab shows
options for algorithm settings which are currently under development and will aim to
simplify the settings in practical terms, so the user does not need prior knowledge of
the algorithm. The final set-up tab displays a summary of the previous tabs for a final
check.

10

Run
When the user clicks ‘Run’ once they have confirmed the settings, a message will
appear indicating that the backend is running the algorithm. Once the run is complete,
a message will show up indicating this along with a link to an external dashboard for
the user to view later. The results will also be displayed through the GUI
simultaneously.

Algorithm Implementation

There are two primary categories of topologies that a CPPN can represent: abstract
and physical. If a parametric model is represented using abstract CPPN topologies,
the geometric characteristics of the model (e.g. the distance between columns in a
canopy) will be encoded as independent inputs or nodes, which are not explicitly
defined in relation to other geometric parameters. In a physical topology
representation, the geometric characteristics of the model are defined relative to each
other. These characteristics are encoded in terms of its connectivity with other
components in the model (e.g. the position of one column is defined relative to all
other elements in the model). This complexity associated with encoding the problem
turned the focus onto using CPPN&NEAT with abstract networks, an extension of the
original implementation of CPPN-NEAT [27]. By mapping the geometry to an
abstract topology, the problem is shifted away from dimensionality and degrees of
freedom to the underlying problem structure. Aplysia’s optimization algorithm uses
SharpNEAT, an implementation of NEAT written in C# by Colin Green.

Aplysia implemented CPPN&NEAT by abstracting the parametric model with
multiple objectives into a simple topological relationship using a “state-space
sandwich” substrate configuration [40]. The sandwich is comprised of two layers: one
layer sends connections in a single direction to another layer. As the three-
dimensional structure is restricted, it becomes a four-dimensional CPPN (x1, yl1, x2,
y2). For instance (x1, yl) is on a layer/plane, and (x2, y2) is on another target
layer/plane. This structure allows CPPNs to find patterns within state-space sandwich
substrates [40].

PARAMETRIC MODEL APLYSIA
- N
¥
Geometric Geometry Geometric
Inputs: Created:
Wicttk: <10 m rief ians

Modified Geometric & Fitness
values

Population of
Geometries created:

< Fitness Funclions:
4

Outputs:

Fig. 4. Typical set-up of a parametric model and how CPPN&NEAT works with the model

11

Results
The results tab, shown in Figure 4, displays a table of all the
solutions. When a solution is selected, the results for that individual are displayed
with radar chart and graphs. Due to the project’s time frame, features in the
visualization component were not fully implemented but will be included
in the next phase of development.

2.3 Experimental Results

Aplysia was tested on a design problem in the conceptual design phase of a
lightweight, free-standing canopy for a transport hub. The problem is defined by 17
geometric parameters. The inputs are the position of the end and mid points for two
curves that generate one modular roof; the U, V divisions and depth of the space truss
structure; and the column radius. The canopy is modular for constructability and cost
effectiveness, where two parallel columns form one module that can be repeated. The
Four fitness objectives measure the entire canopy structure (1) to minimize the total
surface area of the membrane, (2) maximize shadow area under the canopy, (3) to
minimize displacement and (4) minimize self-weight. Solutions were generated over 5
generations, generating 35,000 individuals on an Intel Xeon(R) W-2145 CPU @
3.70GHz, with a 64.0 GB RAM, the optimum results are shown in Figure 8. For the
NEAT algorithm parameters, the default settings were used, where the initial species
count was set to 10, elitism and selection proportion was set to 0.2, offspring asexual
and sexual proportion was set to 0.5, and interspecies mating proportion was set to
0.01. The initial interconnections proportion was set to 0.5.

Curve 1 Parameters

Objectives

Column Radius
(] oo

Fig. 5. Initial canopy parameters corresponding to the sliders plugged into Aplysia.

12

PARAMETERS

GEOMETRIC CONSTRAINTS

17 PARAMETERS

CURVE X1
CURVE Z1
CURVE X3
CURVE Z3
TRUSS U DIVISIONS
TRUSS V DIVISIONS
TRUSS DEPTH
. CURVE2 Y1
B3 3 CURVE2 X2
CURVE2 Y2
CURVE2 Z2
COLUMN RADIUS
13 . CURVEL Y1
CURVEL X2
CURVEL Y2
CURVEL Z2
CURVEL Y2

RESULTS

No warnings or errors.

FITNESS GOALS

4 OBJECTIVES

CATEGORY
SHADOW AREA -
TOTALSURFACEAREA |
"V DISPLACEMENT

MASS

RESULTS

]

No warnings or errors.

Fig. 7. Objectives are listed with options to select/deselect objectives; minimize or maximize
objectives; colour categories correspond to different disciplines.

13

APLYSIA

3 i PRE-RUN SUMMARY

GEOMETRIC CONSTRAINTS FITNESS GOALS

SET-UP 17 PARAMETERS 4 OBJECTIVES SETTINGS

g8 2
k CURVE X1 = MIN/MAX ~ CATEGORY
CURVE Z1 0 SHADOW AREA MAX
CURVE X3 5 TOTALSURFACEAREA MIN]
CURVE 73 5 DISPLACEMENT MIN
TRUSS U DIVISIONS 1 MASS MIN
TRUSS V DIVISIONS 1
TRUSS DEPTH 0.1
CURVE2 Y1
CURVE2 X2
CURVE2 Y2
CURVE2 22
COLUMN RADIUS 0.1
Y . CURVEL Y1
CURVEL X2

RESULTS

CURVEL Y2
CURVEL 22

Running optimization algorithm...

RESULTS.

OBJECTIVES RESULTS #34968

displacesent

COLUMNRADIUS & CURVEX1

6.20559109006353 10

9.6714837205713 10

No varnings or errors.

Fig. 9. Results tab of the run with some visualization components implemented.
Figure 9 shows the normal distribution graphs for every objective. For minimizing
objective (1), the values are more spread out with a larger standard deviation. For
maximizing objective (2), the values are more likely to fall within the mean. For
objective (3) and (4), the solutions do not have a distribution with a low standard
deviation and appears to have converged. In terms of the visual display of each
individual, as generations increased, instead of becoming more optimized and
geometrically alike, the solutions had varying levels of complexity as displayed in
Figure 8, despite that some objectives have converged quantitatively, for example
objective (3). These initial experiments indicate that Aplysia has to potential to
generate visually complex, and buildable geometries. It demonstrates Aplysia’s ability
to create many individuals in a comparably shorter time frame without strain on
computational resources, and with user-friendly filtering functions, can be used by a
non-expert.

14

truss Grasshopper model.

SRS | mumess

Fig. 10. Perspective view of selected solutions in the most evolved run generated from the roof

ID # 33935

DISPLACEMENT

SHADOW AREA 179.5m?*

e MASS TOTAL S.A. 4918n7
SA. DISPLACEMENT 0.0004 m
MASS 213.6 kg
SHADOW
AREA
ID # 33909
DISPLACEMENT
N[\ \ [\ ToraL wass o TOTALSA M30me
. SA. DISPLACEMENT (0.00048 m
MASS 232 kg
SHADOW
AREA

ID # 33950

A

DISPLACEMENT

TOTAL A
SA. ‘> MASS

SHADOW
AREA

SHADOW AREA 49 4 m?
TOTAL S.A. 405.0 m”

DISPLACEMENT 000032 m

MASS 180.7 kg

Fig. 11. Top view of individuals with radar chart.

15

o %"

PROBABILITY DENSITY
NG
T
PROBABILITY DENSITY

00 100.0

PROBABILITY DENSITY
7
L4
PROBABILITY DENSITY
o

0, 1200 00003 00004

o 60 800 1000 190 1600 1800 20 0 0.0001 00062 o
TOTAL SHADOW AREA (M?) DISPLACEMENT (M

Fig. 12. The normal distribution graphs display how the values of a variable are distributed for
four objectives

3 Discussion

In the development of generative design tools, Aplysia offers a new opportunity for
web-based visualizations and analytics of optimization results within and outside of
the Rhino/GH platform. With this framework, a GUI on a different visual
programming platform like Dynamo can also be developed in the future and use the
same backend infrastructure. The engine aims to make full use of cloud-based parallel
computing to decrease run times and allow deployment or updates of algorithms with
no impact to users.

3.1 Opportunities for further work

In understanding how NEAT and CPPN works individually and together, Aplysia can
be further explored to make full use of CPPN&NEAT’s strength in exploiting
regularities. Since it would not be limited by an inherent search along the Pareto front
of all possible solutions, for example in NSGA-2 or SPEA-2, NEAT can focus more
on discovering diverse and novel solutions. Design exploration is likely the most
suitable use for this algorithm and can be a future Aplysia feature in addition to
optimization, to fully exploit the capabilities of CPPN and advance architectural
design.

A formal benchmarking study comparing Aplysia with other commonly used
generative design solvers will be conducted for further research, focusing on speed of
convergence and reliability of the solutions generated. Backend efficiencies such as
profiling optimization will be included to improve the run speed. Currently the
Development Team is deploying the tool to the cloud, to remove reliance on a local
server. It can then be accessed by the alpha test group, formed by the use case study

16

interviewees, for further feedback and to identify new pain points for improving the
tool.

4 Conclusion

Parametric design has allowed the architect and engineer to create forms that expand
the designer’s imagination and visualization capabilities and, combined with
optimization tools, designs can meet functional and performance-based criteria. The
emergence of machine learning algorithms into the domain is slowly bridging the gap
between optimality and obtaining new types of morphologies.

The work presented here is an initial proof-of-concept for a generative design tool
catered towards the AEC industry, that provides the capability to rapidly assess design
alternatives that foster diversity not constrained by number of degrees of freedom at
the concept stage for architectural, structural, and urban planning design problems. It
demonstrates which designs deliver the best value and balances complex requirements
to minimize costs downstream of the project. Aplysia has the capability to reduce
inefficiencies in existing tools and workflows, diminish the computational time for
models with many parameters and goals, minimize the learning curve for generative
design tools, and promote remote collaboration by means of visualizing results
through a web viewer. Future implementation of the tool will be applied to an
increased variety of design problems, such as generating urban blocks from form-
based codes, fagade modules to increase energy performance, office space planning,
and architectural programming with spatial composition requirements in metro
stations.

Acknowledgements. This research project is supported by the Invest In Arup fund.
We thank Nille Juul-Sorensen (Arup) for his tremendous support to the success of the
project, and Jared Stock, Arman Ayrapetyan who are currently working on cloud
deployment for Aplysia.

References

[1] D. Thompson, Growth and Form, Cambridge: University Press, 1959.

[2] D. Nagy, D. Lau, J. Locke, J. Stoddart, L. Villaggi, R. Wang, D. Zhao and D.
Benjamin, "Project Discover: An Application of Generative Design for
Architectural Space Planning," SIMAUD 'l7: Proceedings of the Symposium on
Simulation for Architecture and Urban Design, vol. 7, pp. 1-8, 2017.

[3] T. Wortmann, "OPOSSUM: Introducing and Evaluating a Model-based
Optimization Tool for Grasshopper," Proceedings of the CAADRIA 17, no. April,
pp. 283 - 292, 2017.

[4] A. Costa and G. Nannicini, "RBFOpt: an open-source library for black-box

17

optimization with costly function evaluations," Mathematical Programming
Computation, vol. 10, no. 4, pp. 597-629, 2018.

[5] D. Rutten, "Galapagos: On the Logic and Limitations of Generic Solvers,"
Architectural Design, vol. 83, no. 2, pp. 132-135, 2013.

[6] J. Cichocka, W. Browne and E. Rodriguez, "Evolutionary Optimization
Processes As Design Tools," in 31th International PLEA Conference
ARCHITECTURE IN (R)EVOLUTION, Bologna, 2015.

[7] D. J. Gerber, S.-H. Lin, B. Pan and A. S. Solmaz, "Design Optioneering:
Multi-disciplinary Design Optimization through Parameterization, Domain
Integration and Automation of a Genetic Algorithm," in Proceedings of the 2012
Symposium on Simulation for Architecture and Urban Design, Florida, Society
for Computer Simulation International, 2012, pp. 1-8.

[8] M. Latifi, M. J. Mahdavinezhad and D. Diba, "Understanding Genetic
Algorithms in Architecture," The Turkish Online Journal of Design, Art and
Communication, vol. 6, no. AGSE, pp. 1385-1400, 2016.

[9] S. Kocabay and S. Alagam, "Algorithm Driven Design: Comparison of
Single-Objective and Multi-Objective Genetic Algorithms in the Context of
Housing Design," in [7th Computer-Aided Architectural Design Futures
Conference, 2017.

[10] R. Vierlinger, "Multi Objective Design Interface," Vienna, 2013.

[11] E. Zitzler, M. Laumanns and L. Thiele, "SPEA2: Improving the Strength
Pareto Evolutionary Algorithm," Zurich, 2001.

[12] K. Deb and N. Srinivas, "Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms," Evolutionary Computation, vol. 2, no. 3, pp.
221-248, 1995.

[13] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist
multiobjective genetic algorithm: NSGA-IL" IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182-197, 2002.

[14] D. Richards and M. Amos, "Designing with gradients bio-inspired
computation for digital fabrication," in Association for Computer Aided Design
in Architecture, 2014.

[15] H. Salehi and R. Burguefio, "Emerging artificial intelligence methods in
structural engineering," Engineering Structures, vol. 171, pp. 170-189, 2018.

[16] "Wallacei Primer," [Online]. Available: https://www.wallacei.com/learn.
[Accessed 20 November 2020].

[17] J. Harding and C. Brandt-Olsen, "Biomorpher: Interactive evolution for
parametric design," International Journal of Architectural Computing, vol. 16,
no. 2, pp. 144-163, 2018.

[18] S. Chatterjee, "Structural Failure Classification for Reinforced Concrete
Buildings Using Trained Neural Network based Multi-Objective Genetic
Algorithm," Structural Engineering and Mechanics, vol. 63, no. 4, pp. 0-000,

18

2017.

[19] N. Khean, L. Y. Kim, B. D. J. Martinez, A. Fabbri, N. Gardner and M.
Haeusler, "The Introspection of Deep Neural Networks - Towards Illuminating
the Black Box," Proceedings of the 23rd CAADRIA Conference, vol. 2, pp. pp.
237-246, 2018.

[20] S. Chaillou, "Space Layouts & GANs: GAN-enabled Floor Plan Generation,"
Towards Data Science, 2020.

[21] R. Vierlinger, "SVM Learning (oSL)," [Online]. Available:
https://grasshopperdocs.com/components/octopus/sVMLearningoSL.html.
[Accessed 30 November 2020].

[22] V. Costa, N. Lourengo, J. Correia and P. Machado, "Neuroevolution of
Generative Adversarial Networks," in Deep Neural Evolution, Singapore,
Springer Nature Singapore Pte Ltd, 2020.

[23] F. Flager, D. J. Gerber and B. Kallman, "Measuring the impact of scale and
coupling on solution quality for building design problems," Design Studies, pp.
180-199, 2014.

[24] S. Adriaenssens, P. Block, D. Veenendaal and C. Williams, Shell Structures
for Architecture: Form Finding and Optimization, London: Routledge, 2014.

[25] K. O. Stanley, J. Clune, J. Lehman and R. Miikkulainen, "Designing neural
networks through neuroevolution," Nature Machine Intelligence, vol. 1, no. 1,
pp. 24-35, 2019.

[26] D. Richards and M. Amos, "Evolving Morphologies with CPPN-NEAT and a
Dynamic Substrate," in ALIFE Synthesis and Simulation of Living Systems,
Manhattan, 2014.

[27] K. O. Stanley, "Compositional pattern producing networks: A novel
abstraction of development," Genetic Programming and Evolvable Machines,
vol. 8, no. 2, pp. 131-162, 2007.

[28] Stanley Kenneth O. and R. Miikkulainen, "Evolving neural networks through
augmenting topologies," Evolutionary Computation, vol. 10, no. 2, pp. 99-127,
2002.

[29] F. Andrews, "CPPNX," 2016. [Online]. Available:
https://floybix.github.io/cppnx/.

[30] H. Ferstl, "SharpNEAT-based genetic art homepage," 2006. [Online].
Available: http://oldblog.holgerferstl.de/2006/02/08/GeneticArt.aspx. [Accessed
30 11 2020].

[31] D. Richards and M. Amos, "Encoding Multi-Materiality," in Mixed Matters: A
Multi-Material Design Compendium, Berlin, Jovis, 2016, pp. 40-49.

[32] R. Vierlinger, "Towards Al Drawing Agents," Modelling Behaviour, pp. 357-
369, 2015.

[33] P. Janssen, "Evolutionary Urbanism," in Computer-Aided Architectural
Design Research in Asia, Hong Kong, 2017.

19

[34] P. Koehn, "Combining Genetic Algorithms and Neural Networks: An
Encoding Problem," Knoxville, 1994.

[35] J. Bader and E. Zitzler, "HypE: An algorithm for fast hypervolume-based
many-objective optimization," Evolutionary Computation, vol. 19, no. 1, pp. 45-
76,2011.

[36] S. Lane, P. O’Raghallaigh and D. Sammon, "Requirements gathering: the
journey," Journal of Decision Systems, pp. 302-312, 2016.

[371 Y. Rogers, H. Sharp and J. Preece, Interaction Design: Beyond Human-
Computer Interaction, 3 ed., John Wiley & Sons Ltd, 2011.

[38] 1. F. Alexander and N. Maiden, Scenarios, Stories, Use Cases: Through the
Systems Development Life-Cycle, New York: John Wiley & Sons, 2005.

[39] A. M. Langer, Analysis and Design of Next-Generation Software
Architectures, Cham: Springer Nature Switzerland, 2020.

[40] K. O. Stanley, D. B. D'Ambrosio and J. Gauci, "A hypercube-based encoding

for evolving large-scale neural networks," Artificial Life, vol. 15, no. 2, pp. 185-
212, 2009.

