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Abstract

Designers are identified, in industry 4.0, as the professional figures that have to design well performing new object. In order
to do this, it is necessary to take into account a series of properties called design objectives. Often the structural problem of
new design is underestimated or even not considered. This can be a real problem because this objective is in competitive and
in contrast with other design objectives. So, this can bring to substantial change in a design in the final phase and sometimes
to the complete change. In this paper is presented an optimization workflow that adopt a Multi Objective Optimization engine
so called “Octopus” and Karamba3D, that is a Finite Elements (FE) plug-in, typically used in structural simulations, these
extensions run in a software: Grassopper3D, that is a parametric design tool. The workflow allows designers to explore a
large range of solutions and at the same time permits to filter and sort the optimized models in order to analyze the tradeoff
of the resultant solution space, both qualitatively and quantitatively. In such way designers can obtain easily a lot of infor-
mation of the generate design and identify potential solution for immediate use or for further optimization. In this paper is
analyzed a design problem of an ergonomic chair in order to provide the efficiency of the workflow. The design criteria and
the structural problem for this type of design object are identified as the main optimization objectives in order to iteratively

improve the design solutions.

Keywords Parametric design - Genetic algorithms - Optimization tool - Industry 4.0

1 Introduction

To date, designers face the challenge of designing products
by improving the performance of objects using qualitative
and quantitative criteria. Using traditional design meth-
ods, the new class of designers are unable to produce and
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examine a large number of variants of the object, and they
cannot guarantee the performance criteria implemented in
the original design. The new graphical and computational
computer technologies have permit to develop design tools
that allows to explore and find a larger number of solution
in design subspace of optimum results [29]. A creative
optimization method is shown in this paper, employing a
multi-objective optimization engine called Octopus. This
optimization engine is implemented in Grasshopper3d, a
parametric modeling tools for Rhinoceros®. In Octopus,
the designer can filter and sort the solutions in order to
compare them and select the elements of the population
(set of solutions), to which to apply subsequent optimiza-
tions, making the optimization process interactive. Octo-
pus is based on an evolutionary system so called Genetic
Algorithm (GA). Some GA techniques allow designers
to act, if necessary, in the evolutionary optimization pro-
cess by selecting which elements of the population to
maintain and which to discard [14, 15]. For this reason,
these techniques are defined as IGA (Interactive Genetic
Algorithm) [34], while the evolutionary method is called
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Evolutive Multi-objective Optimization (EMO) [56]. Dif-
ferent design criteria are examined, in the production pro-
cess of the object, as optimization objective. The solu-
tions obtained are analyzed by the designer and are then
implemented again by the combined action between the
computer and the user. At the end of the process, It is
possible to identified as the system is based on two dif-
ferent elements that allow its success: the evolutionary
systems GA and user intervention [4, 20, 49]. The limited
traditional methods related to the design of objects have
led researchers to increasingly adopt the GA especially
in the initial stages of the project. To date, the design of
objects is a function of ever more complex geometries and
shapes. For example, the furnishing element taken into
consideration in this paper, the chair, must have a series of
characteristics that require important design choices to be
made by the user. In this way, human interaction with the
genetic algorithm becomes fundamental to ensure comfort
and increasingly complex geometries.

When a furniture company start to project a chair the
design criteria adopted are several and very often in conflict
with each other. These criteria include maximum comfort,
maximum resistance to loading, stability of the structure
and a minimum consumption of raw material in order to
minimize cost of production. In addition to these criteria,
the design constrains had to be take into account; these must
be seen as initial boundary conditions of the problem [48].
These constrains includes size constrains, that are linked
to the segment of product for which the design is intended;
and the shape constrains that reflect the creative will of the
designer and represent the qualitative and aesthetic control
parameter of the shape. The exploration in the design space
is limited by these boundary condition but they are also nec-
essary to define a path to develop the optimization of the
final product.

In traditional process for digital design, such as automo-
tive design, industrial design, appliance design and archi-
tecture the responsibility to develop and satisfy different
criteria is divided within different departments. Due to this
distribution of responsibility, to each criterion is not given a
formal weighting and the interaction between criteria remain
unexplored. For these reasons, a real process of design
improvement doesn’t take place. A long process of negotia-
tion between the various department is necessary to achieve
a univocal result and to prevent radical changes caused by
the prevalence of one department over the other. The build-
ing design problem is the clearest example of this, since the
design architectural department is always in contrast with
the engineers that design the concrete or steel supporting
structure of the building. This is not the only example that
it is possible to find in the different fields process of design.
In addition, the chair design example, permitted to demon-
strates the difficulty in the way of development of qualitative
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criteria (comfort parameters, shape) and the quantitative
ones (resistance to load, stability, cost of production).

This research project describes an optimization workflow
which combines an EMO engine (Octopus, a Grasshop-
per3D extension) with parametric design, ergonomic func-
tion, material consumption, static equilibrium and structural
analysis (using Karamba3D) to accelerate the design cycle
and systematically generate, evaluate and explore design
option in faster manner respect to conventional design pro-
cess. This type of workflow, in contrast with traditional prac-
tice, generate optimized 3D model computed parametrically
and developed algorithmically [19, 21, 39, 41]. Due to the
large number of alternatives produced the solutions are pre-
sented by multi-dimensional plot often related to a matrix
of semi render design representing the subspace of optimum
solutions. To demonstrate the efficiency of the proposed gen-
erative framework a complete chair optimization problem is
developed in Grasshopper3D. The purpose of the proposed
method is to show that concepts as EMO and FEM simula-
tion can be used in the design and construction of furnishing
objects, in order to optimize production processes.

The paper is divided in five sections: in the section two
the theoretical background is outlines; in the section three
the description of the optimization chair problem is provide;
in section four the result of the optimization process are
discusses and in the last section the conclusions are exposed.

2 Background

Parametric design system is a method to generate a design
by using an explicit dataflow in the form of a graph. This
graph is so called Direct Acyclic Graph (DAG) and represent
the geometric constrain and the grammar that describing
the 3D model in its all parts [13, 25, 26, 30, 31, 42, 43, 50].
The change of the model can be made by adjusting the input
parameters. In a previous work this theme of the implemen-
tation of the DAG in order to obtain different forms of a jew-
elry ring based on geometries coming from the chaos theory
was addressed by the authors [19, 21, 23, 24, 25, 26, 28, 30,
31, 36, 41]. Parametric design permits to fully describes
a design space that identifies all the possible combination
of the object analyzed and obtained by changing the input
parameters. In the case of a design project characterized by
N parameters the design space is represent as an N dimen-
sional space. The DAG, describe the design by associat-
ing parameters and functions, and govern how design space
be explored when input parameters are adjusted [6]. Each
design alternative obtained by this method represent a point
on the N-dimensional design space. The manual method of
search in parametric space allows to find and evaluate only
a small set of solutions. The introduction of computationally
intense, heuristic search of design allows to generate and
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then explore a very large number of solutions, and often,
permits to discover new and unexpected ideas [32].

2.1 Multi-objective optimization with genetics
algorithms

Multi-objective design optimization is defined as the prob-
lem of finding a vector of decision variables that optimizes
a vector function whose elements represent multi objective
function. The basis of multi objective optimization derive
from the need to achieve compromise decision-making in
a problem of many conflicting objectives. The aim of the
optimum search is to explore a suboptimal solutions space,
where each solution presents a different level of objective
satisfaction and not in order to find a singular optimum
solution.

The use of Evolutionary Computation (EC) is now a well-
established technique in multi-objective optimization prob-
lem. A multi-objective optimization problem implemented
whit EC is so called Evolutionary Multi-Objective Opti-
mization (EMO) [12]. In particular, a sub set of EC called
Genetic Algorithms (GA), a method inspired to biological
mechanism, has found large use in the problems of design
optimization [17, 18, 35]. In Fig. lis shown an example of
GA flow chat.

2.2 Multi-objective optimization in parametric
design

The application of EMO techniques in design found its
first experimentation in architecture [37] and, later, found
widespread use thanks to the integrated employment with
parametric modeling, that in the time becoming a discipline
identified as performance-based design [44]. Subsequently,
evolutionary optimization techniques were also applied to
industrial design problem. In the present work, the previ-
ous described techniques are applied at the creation and the
optimization of a parametric chair [33]. The design theme of
the chair is not a generic design problem, it is in fact one of
the themes most addressed by the designers of contemporary
history with a very great field of aesthetic and ergonomic
solutions. Chair design topic was also one of the main prob-
lem faced by the early automatic 3D modeling system, in
particular Bentley, in his work on evolutionary design [11,
12], used “clipped stretched cuboids” to create the repre-
sentation of design objects such as coffee tables [11]. How-
ever, the shape is the starting point and should be consider
as sketches of ideas rather than finished design. Recently
there has been considerable progress in computer graph-
ics [27, 40, 57], September) [14, 15], August) [16, 22], this
allows even more complex shape to be generated as shown
in the work of Reed and Gillies [52] that creates generative
system capable of producing a vast range of semi-realistic
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Fig. 1 Genetic algorithm flow chart

3D models. In the specific, the design optimization tools,
such as those used for the coffee table, are creation tools
that use parametric modeling, performance simulation and
mathematical optimization in order to systematically gener-
ate and evaluate design alternatives [46]. Another important
work to be taken into account is by Kolarevic, in his book
he developed a Performance-driven optimization tool that
produces a range of solutions in the design space based on
multiple performance targets [47]. The solutions obtained
through a qualitative and quantitative feedback system were
assessed, making this work the precursor of the optimization
tools commonly used today.

2.3 Octopus: multi-objective optimization engine

This paper is based on the development of a workflow of
an optimization tools consisting in the integration of three
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components: parametric design, simulation tools and genetic
algorithm [16, 22, 38]. The fulcrum of this workflow is the
optimization engine Octopus [58] capable to applying the
evolutionary algorithm to any parametric model created in
Grasshopper3D.

Pareto-based optimization Techniques are currently the
most used techniques. The solutions presented at the end of
the optimization process, Pareto Front, are mathematically
equivalent, and are characterized by high levels of satisfac-
tion of the objectives. Therefore, all well-performing solutions
allow designers to introduce subjective parameters to ensure
correct choice of the solution.

Octopus uses Strength Pareto Evolutionary Algorithm
(SPEA-2) [61] in combination with Hypervolume Estimation
Algorithm (HypE), in order to achieve multi objective opti-
mization [10]. The GA engine start an iterative process that
generates individuals (solutions), whose set constitutes a popu-
lation, at time t, the individuals constituting the population
will be the parents of the next generation solutions identified
at time t+ 1. This method, used in order to solving optimiza-
tion problem, emulate the biological evolution and adopt a
“fitness function” to coordinate the objective and improve the
fitness of solutions, generation after generation. Elitism, muta-
tion rate, mutation probability, crossover rate, population size
and maximum generation are the main parameters that can be
fixed by the designer, manually. The parameters listed above,
are necessary to identify the set of non-dominated solution that
constitute the Pareto optimal Set [59]

Multi objective optimization (MOO) allows to solve prob-
lems that present multiple objectives to be optimized even if
conflicting with each other, enabling to find mediated solutions
of these [8]. Although MOO has this important advantage,
allowing to take into consideration from the early design stages
the parameters that relate to the feasibility and performance
of the final object, it is not frequently used, especially in the
creation of industrial design objects. There are several reasons
which is why this technique is not widespread. The designers
must manually identify the solutions in the Pareto optimal set
in order to evaluate the compromises of modeling and this can
involve to analyzing a large amount of solutions. In addition,
a high computational burden is required to analyze and man-
age the information of the optimization process. In literature,
in the architectural sector, a workflow has been introduced. It
allows to manage, represent, sort and filter the large amount of
data obtained at the end of the optimization process in a more
effective way [8].

3 Methods

The main purpose of this paper is to apply well-established
techniques, used in the field of large-scale design, such as
the optimization tools, in the industrial design sector. This
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allows to demonstrate the great advantages of using these
methods in the development of projects in different sectors.
In particular, in the industrial design, where the performance
design of models, which is the behavior of an object sub-
jected to operating loads, is overlooked. Often, neglecting
these characteristics, involves important changes to be made
at the end of the process. To demonstrate the veracity of
this methodology, a complete example of Multi Objective
Optimization of a Chair was developed. As in the classic
optimization tools, also in this application, three elements
were combined: parametric modeling, simulation of the
behavior under operating loads, genetic algorithm. For the
realization of this complete example, existing plug-ins for
Rhinoceros have been used: Grasshopper3D for parametric
modeling, Octopus for MOO and Karamba3D for structural
analysis [51] (Fig. 2).

Karamba3d is a structural analysis plug-in for Grass-
hopper 3D that allows to combine the parametric design
environment whit structural analysis. The plug-in takes the
parametrized 3d model and model it into beams and shell
elements, allowing to associate different sections and joints.

In the structural program, it is possible to define force sys-
tems, representative of the loads, and constraint conditions
that limit the displacements of the structure. This allows the
conversion of the parameterized object into a parameterized
structure through this definition system. The structural frame
of the chair, which constitutes the seat load transmission
system, is constituted by the use of slender beams while
the seat was modelled by the use of shell elements. Spe-
cifically, the slender beams adopt circular hollow aluminum
sections. The thickness of the section is characterized by
two parameters that represent the objective optimization of
the displacement of the structure under load and the relative
consumption of raw material during the realization of the
object. The shell element characterized by a wooden sec-
tion, remained constant in the single numerical analysis, and
ranged through a numerical slider throughout the calculation
process. The material adopted for the modeling of the seat
has been assumed orthotropic with the layers orthogonal to
the load; the characteristic values of the wood used for the
seat are shown in Table 1.

3.1 Femintroduction

The FEM analysis were conducted with the plugin Karam-
ba3D, using an optimization approach at the numerical prob-
lem. The chair model was schematized using two different
structural elements, the beam model for the load-bearing
structure of the chair and the shell element for the seat. In
addition, the object was modeled by assigning two materials,
wood to the seat and aluminum to the structure. The use of
different materials led to the implementation of two differ-
ent perfectly plastic elastic constitutive laws, characterized
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Fig.2 Adopted workflow

Table 1 Value used for wood’s

orthotropic behavior definition Propriety Value (units)
El 1100 (kN/cm2)
E2 37 (kN/cm2)
G12 69 (kN/cm2)
G31 69 (kN/cm2)
G32 50 (kN/cm2)
Gamma 4 (kN/m3)
Fyl 3.6 (kN/cm2)
Fy2 2.4 (kN/cm?2)

by variation of the engineering constants of the individual
materials as shown in Table 1. E is the elastic modulus, G,,
the tangential elastic modulus in the x—y plane, G; tangential
elastic modulus along the z direction, f; is the tensile yield
strength and y the specific weight. In addition, it is useful to
highlight how two different behaviors have been assigned
to the materials: isotropic for aluminum and orthotropic

OBJECTIVE AND
PARAMETER IMPORT

for wood. This is due to the conformation of the different
materials; aluminum has the same behavior in all directions,
while wood, due to its conformation with overlapping layers,
exhibits different behaviors along the orthogonal directions.
As prescribed by the technical standard [3] the analysis was
carried out by applying the load in two different steps. in
the first the action of the force of gravity and the relative
weight of the structural components was applied to the chair,
and in the second step, the total weight of a person’s body
that the object should support was assigned, calculating the
deformation and the stress state of the elements. The techni-
cal standard restrictions that the analysis must be conducted
with a total weight of 110 kg and that it is distributed evenly
according to the human body on the seat and on the parts in
contact in N/mm?. In addition, every single element at the
end of the analysis must be in operation in the elastic phase
without ever plasticizing. This implies that the strain that
the chair has during the loading phase is reversible and that
it can return to its initial conformation. In order to be in a
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state of greater design security, the analysis was carried out
by applying a weight of 150 kg.

Parametric analysis was carried out by varying 10 param-
eters over time: seat depth, seat width, armrest height, arm-
rest rotation, backrest height, backrest rotation, rounding
edge, structural cross section diameter, cross section thick-
ness and seat thickness. The structural elements of the chair
were modelled using a circular hollow beam element char-
acterized by a control parameter for variation of the section
thickness. The Timoshenko beams model is implemented
and allow for transverse shear deformation. They can be
used for thick as well as slender beams [53]. For beams
made from uniform material, such the case of the structure
of the chair, shear flexible beam theory can provide useful
results for cross-sectional dimensions up to 1/8 of typical
axial distances. Beyond this ratio the approximations that
allow the member’s behavior to be described solely as a
function of axial position no longer provide adequate accu-
racy. The Timoshenko beam elements use cubic interpola-
tion functions, which makes them reasonably accurate for
cases involving distributed loading along the beam.

The moments of inertia with respect to the centroid are
defined as [53]

I ={(x2—x§)2dA (1
Iy = { (x1 _xlc)ZdA )
I, =/{ (22 = %) (3, =] )dA 3

where x; and x, are the position of the point in the local
beam section axis system and x,° and x,° are the position of
the centroid of the cross-sectional area.

Bending stiffness and rotary inertia contributions for a
meshed section profile are calculated using the two-dimen-
sional cross-section model. The following integrated proper-
ties are defined for the entire cross-section model meshed
with warping elements:

(EDyy = [ E(xy = 5)"dA @)
(EDy, = {E(xl _xlc)sz ®)
(EDyy = [ E(x, = 3) (x) = 27)dA 6)
(D = [ 7( - 2)’dA 7
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(rDy = /{ }’(xl _xrln)sz ®)

(rD, = 1{ J’(xz _x;n) (xl _xiln)dA )

where (x,", x,™) is the center of mass of the cross section,
E is the Elastic modulus and vy is the specific weight of the
material.

For closed thin-walled sections, the torsional constant is
calculated by the following equation:

4A3
J = 10
¢ Lds (10)
1

where t is the thickness of the section, a variable parameter,
A is the area enclosed by the median line of the section,
and s is the length of the median line, measured along the
circumference of the section in a counterclockwise direction.
The effective transverse shear stiffness of the section of a
shear flexible beam is defined with the following equation:

Ko =f7Kus (1)

where K_ is the section shear stiffness in the a-direction, I
is a dimensionless factor used to prevent the shear stiffness
from becoming too large in slender beam elements, K, is
the actual shear stiffness of the section; and a=1,2 are the
local directions of the cross-section, this element his char-
acterized by force units.

Linear section behavior of the element beam based on
Timoshenko approach, is characterized by axial force, N;
bending moments, M1 and M2 about the 1 and 2 beam
section local axes; torque, T; and bi-moment, W, that are
defined in terms of the axial stress and the shear stress with
the Egs. (12-16) without consider the contribute of tempera-
ture variation [60].

N =E(Ae.+Tx) (12)
M, = E(I, 1k, = I;5k;) (13)
M, = E(Izzkz _112k1) (14)
T = GJu/+Glpa)p (15)
W=E(Toe.+Tyx) (16)

where: A is the area of the section; I;; is the moment of
inertia for bending about the 1-axis of the section; I;, is
the moment of inertia for cross-bending; I,, is the moment
of inertia for bending about the 2-axis of the section; J is
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the torsional constant calculated with 10; I, is the sectorial
moment of the section; I'y, is the warping constant of the
section; €, is the axial strain measured at the centroid of the
section; k1 is the curvature change about the first beam sec-
tion local axis; k2 is the curvature change about the second
beam section local axis; y is the twist; y s the bi-curvature
defining the axial strain in the section due to the twist of the
beam and ), is the difference between the unconstrained
warping amplitude, @, and the actual warping amplitude,
o. In this case the section are closed thin-walled and I"y, I'y,;,
x and w, are equal to zero.

In order to create the finite element model of the seat,
another element was employed, the shell [54, 55]. These
elements are used to model structures in which one dimen-
sion, the thickness, is significantly smaller than the other
dimensions. Conventional shell elements use this condi-
tion to discretize a body by defining the geometry at a
reference surface. In this case, the thickness is defined
through the section property definition [7]. Conventional
shell elements are characterized by displacement and
rotational degrees of freedom. The “upper” surface of a
conventional shell element is the surface in the positive
normal direction and is referred to as the positive face for
contact definition. The “bottom” surface is in the negative
direction along the normal and is referred to as the nega-
tive face for contact definition. The positive normal direc-
tion defines the convention for pressure load application
and output of quantities that vary through the thickness
of the shell [54, 55]. A positive pressure load applied to
a shell element produces a load that acts in the direction
of the positive normal. In the shell element used that are
valid for thick shell problems or that enforce the Kirch-
hoff constraint numerically and in the finite-strain shell
elements it was computes the transverse shear stiffness
by matching the shear response for the case of the shell
bending about one axis, using a parabolic variation of
transverse shear stress in each layer [7]. The triangular
shell implemented in order to discretize the orthotropic
element was characterized by six degree of freedom per
node, a constant strain state for each layer and is not added
in-plane rotational stiffness.

The transverse shear stiffness of the section of a shear
flexible shell element is definite as:

Ky = 1K (17)

where K ;f 5 are the components of the section shear stiffness
(a,p=1,2 refer to the default surface directions on the shell,
as defined in “Conventions,” or to the local directions associ-
ated with the shell section definition); f, is a dimensionless
factor that is used to prevent the shear stiffness from becom-
ing too large in thin shells; K;jﬂ is the actual shear stiffness

of the section and is defined by the user.

1

= o 10-44 (18)
where A is the area of the element and t is the thickness of
the shell. When a general shell section definition not associ-
ated with one or more material definitions is used to define
the shell section stiffness, the thickness of the shell, t, is
estimated as:

Dy, + Dss + D,
;=\/12M (19)

Dy + Dy + Dy3

This parameter t was varied during the numerical ana-
lyzes in combination with the thickness of the circular
hollow section used to create the structure of the chair. It
is useful to underline how laminated plates and sandwich
constructions the K , are estimated by matching the elastic
strain energy associated with shear deformation of the
shell section with that based on piecewise quadratic vari-
ation of the transverse shear stress across the section,
under conditions of bending about one axis (Fig. 3).

3.2 Definition of constraints and loads

After the step in which all the parameters relating to geom-
etry are correctly set, for the definition of the structural
problem, the constraint conditions and the operating loads
must be defined. The user must do the setting of these
boundary conditions manually; more accurate is the math-
ematical representation of these conditions, more effective
the simulation will be. For the chair object, it was chosen
to impose interlocking constraints on the base; this con-
dition however does not allow taking into consideration
the static equilibrium of the structure. In order to prevent
possible overturning problems, the minimization of the
distance between the center of gravity in the deformed and
not deformed configuration of the chair has been intro-
duced as an optimization objective.

For the correct design of the chair, for identifying the
loads of use, the structural and geometric constraints, it
was decided to refer to recognized regulatory and perfor-
mance standards, called UNI standard (Italian National
Unification authority). Specifically, the adopted standard is
also recognized at European level by the CEN (European
Committee for Standardization). The performance stand-
ards for the seats are identified by UNI EN 1022: 2018
and more specifically by UNI EN 1335 which in its three
sections, listed below, defines the principles of ergonomics
and the minimum functional requirements

e1335-1 Size determination [1]

©1335-2 Safety requirements [2]
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Fig.3 a Beam element in its local system. N T M are Normal stress, Shear stress and Bending Moment. C is the centroid. b Flat Triangular shell

element, characterized by constant thickness in its local axis system

¢1335-3 Safety testing methods [3]
3.3 Optimization Loop

For this application, SPEA-2 is use for the multi-objective
optimization in Octopus, because the HypE algorithm
requires a high computational burden. In fact, the struc-
tural simulation tool necessitates to an extraordinary com-
puting power that cannot therefore be used for the genetic
algorithm.

The three-dimensional model is optimized in accord-
ance with the different fitness functions that Octopus mini-
mizes. The software allows the User to find the best trade-off
between several goals.

For the approach to the application of the "chair" object,
the following objectives have been introduced:

e Maximum displacement 9 in z direction of the chair

e Mass of aluminum used for the structure to reduce the
cost of the chair

e Ergonomic Parameters

¢ Distance between the projection of the center of gravity
in the initial and deformed condition (to ensure static
equilibrium)

There are 4 objectives and the first two are in contrast
to each other. The optimization problem is based on the
research of minimum of an unknown function, so, the opti-
mization process, returns as a solution a m-dimensional
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surface called "fitness landscape”. Where, m is the number
of objectives and the fitness landscape, in this case, is rep-
resented by a 4th-dimensional surface.

The parametric chair is represented by 10 independent
parameters adopted as genes for the optimization problem.
The genes selected as parameters of the problem are: seat
depth, seat width, armrest height, armrest rotation, backrest
height, backrest rotation, rounding edge, structural cross sec-
tion diameter, cross section thickness and seat thickness. The
space of genes is called Genotype, while the space of coded
solutions is called Phenotype.

From these last two definitions of the multi-dimensional
spaces, it is clear that both the parameter space and the
objectives space contain a set of numerical values for each
possible alternative. In these spaces, it is possible to repre-
sent a solution as a point in an n-dimensional space, where
with n it is possible to indicate respectively the number of
parameters or the number of objectives [59]. The spaces of
parameters and objectives can be connected in extremely
complex ways. For this reason, the greatest effort of search
and optimization algorithms will be to overcome the rela-
tionships imposed by algorithmic logic that link the spaces
of parameters and objectives [9].

As described in paragraph 2, the optimization procedure
is constituted by loops. The loop begins with the parameters
that form a geometry and a structural model, the algorithm
evaluates the solutions of all generations and each of them
assigned the level of satisfaction linked to each objective, the
fitness value. Before starting the next loop, the solutions are
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Fig.4 Optimization loop

Table 2 Parameters used for

multi-objective optimization Parameter Value
Elistism 0.5
Mutation probability 0.1
Mutation rate 0.5
Cross over rate 0.8
Population 100
Initial boost 2

ranked, and the best of them are crossed in order to generate
even better solutions. The described look is showed in Fig. 4.

This process is regulated by the parameters that can be
set by the user. The elitism setting means how much of
the non-dominated solutions are stored into the secondary
population. Mutation probability controls the chance that
an individual mutates. The cross-over rate determines how
much of the genes from the parent solutions is combined.
A cross-over rate equal to 0.5 means that half of the genes
come from either parent. Finally, the size of the population
can be chosen. All the values of the parameters, adopted for
the multi-objective optimization in Octopus, are shown in
Table 2.

The values used are in part default values provided by the
software, the user’s choices have been related to those that
refer to the population and the initial boost. The decision
to adopt these values, as suggested by the sector literature,
highlighted how it avoids local minimum problems [44, 45].

4 Results

For the case study an optimization run was conducted to
test the effectiveness of the method. Four objectives were
chosen to optimize the problem: Maximum displacement,
mass of aluminum used, ergonomic parameters and static
equilibrium of the object.

The Octopus optimization engine, described in the pre-
vious paragraphs, uses different input data. The first group
is represented by the numerical sliders that make up the
genes of the parameterized model; the second group of
data is represented by the objectives which are numerical
values representative of the fittness value of each solution.
This data group is always accompanied by a textual datum
which describes the objectives and identifies the axes of
the solution space. The last input is optional and consists
of a mesh representative of the phenotype. This last data
is necessary to display the geometry obtained in the solu-
tion space. However, the representation of the solution
presents a great disadvantage because complex meshes
cause an excessive computational burden of calculation
and risk ending the analysis before it ends [5]. in this light,
optimization techniques are often used in the initial phase
of the design process when the models are still sketchy and
simple. The case study is characterized by an advanced
definition level linked to a static behavior simulation com-
ponent; it was not possible to use the data relating to the
phenotype which was subtracted from the numerical analy-
sis. By eliminating the use of the phenotype data, it was
possible to complete the analysis and obtain the Pareto
Optimal Set. This present a great disadvantage, in fact,
the solutions obtained are represented by cubes and it is
not possible to directly display and compare the different
individuals obtained. From this process, however, a series
of raw data representative of the values assumed by the
genes (number slider) and by the objectives were obtained.
It is possible to manipulate and sort this data in Excel
and re-import it into grasshopper through a plug in called
lunchbox. Through these data it is possible to view, com-
pare and select the different individuals, as well as view
their performance, which identify, the levels of satisfaction
of the different objectives. In this way, the user can view
and evaluate each individual simultaneously, quantitatively
and qualitatively. the object is shown simultaneously in its
geometric shape and its performance, that are displayed
through radar chart or parallel coordinate plot chart.

Two distinct.gh files will be generated: the first file
compiled in the grasshopper environment, represented in
Fig. 5, is the fulcrum of the first phase of the workflow,
where, the three-dimensional modeling of the chair includ-
ing the creation of geometric constraints (1,2,3), the semi-
realistic representation component (4), the introduction
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of the simulation tool (7), the definition of optimization
objectives (5,6,7) are contained and modeled. All these
elements then converge in the octopus optimization engine
(8).

Raw data are obtained by two distinct methods. They
are exported both from the plug in Octopus and from the
insertion of data recorders. The latter have the function of
storing both the values of the parameters, which gener-
ate individuals in subsequent generations, and the values
assumed by each target for the specific individual

Fig.5 First gh file

Fig.6 Second.gh file

@ Springer

The second.gh file shown in Fig. 6 was created in order
to import the data obtained from the optimization process,
using the plug-in lunchbox. Before that, it was necessary
to operate on the raw data which are exported to text docu-
ments on excel in order to obtain ordered and usable data.
After this first phase, the data are analyzed by the func-
tional group (1), The number sliders making up the genes
are replaced from new sliders necessary to select generation
and individuals, that will correspond to a three-dimensional
geometry, a structural model and numerical values repre-
sentative of the fitness function. The functional groups (2,3)

7 AnATAana
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allow to sort the solution respect to global fitness value or
respect to a single objective. Groups (4,5) generate the dia-
grams as parallel plot chart and radar chart.

In the first.gh file, optimization is performed using the
parameters introduced inTable 2. At the end of the process,
the Pareto Optimal set is obtained, as specified several
times. Figure 7 shows the Pareto Front solutions which are
those represented by the Delanuy front mesh (1). The other
solutions, shown in Fig. 7 (1) are those of previous genera-
tions. The transparent color indicates the solution tempo-
rally farther compared to those of the Pareto Optimal set.
In point 2 of the figure, the Parameter distance graph are
represented by coupling the genetic variation of the solution
to a polyline. While in point (3) the convergence diagrams
are shown, one for each of the n objectives. These diagrams
represent the trend of the values assumed by each target over
time in a domain scaled between 0 and 1. The domain of
elite solutions is represented in light gray while the Pareto
front domain is represented in dark gray.

Octopus plots, in real time, on a three-dimensional graph
the optimization results using color and size scales in order
to represent the geometric dimensions higher than the third
(Fig. 7) Therefore, the software projects points with multi-
dimensional coordinates in three-dimensional space. Each
solution is represented by a cube which corresponds only
to the mathematical representation of its performance. In
light of this, the Pareto optimal set is difficult for the user to

Navigation | Export = Troubleshooting

understand since it is not possible to visually compare the
different designs. Furthermore, the performance of the solu-
tions, characterized by objectives of an order greater than
3, is difficult to evaluate. Precisely for these reasons it was
necessary to define a method that makes it possible to make
the data obtained from the analysis easy to comprehend.
This last component is show in Fig. 6.

This process allows to obtain, for each individual, struc-
tured information on different layers (Fig. 8). it is possible
to have the rendering of the geometric model (i) (Fig. 8a)
and also a structural model (ii) (Fig. 8b), consisting of beam
elements for the frame and shell for the seat, and the related
data to the fitness function (iii). Using these data, the cor-
responding solutions and performances are observed and
compared directly.

The run of the optimization was conducted with the
hypothesis of minimize the deformation of the chair under
load while maintaining at minimum the consumption of raw
material and respecting the requirements of the UNI 1335
standard of and In total 10 genes or design variable were
manipulated and a total of 5000 design solutions were gen-
erated whit an average run time of about 4.5 s for solution,
time required for the computational burden.

In Fig. 9a—c it is possible to observe the two distinct
approaches for visualizing the performance of each indi-
vidual. In order to build these figures, to compare the per-
formances for heterogeneous data, a new existence domain
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(a)

Fig. 8 Information layers: a rendered geometry; b structural model

has been generated by remap all the values assumed over the
generations in the range between 0 and 1, separately for each
objective. The new data thus constituted will continue to
represent performance visually and will make it possible to
clearly read the performance trend in the various individuals.
Figure 9a shows a radar chart where the performances of two
distinct individuals are compared. The fitness values, of the
all generations, have been remapped so that the minimum
values are closer to the unit, since the purpose of the optimi-
zation is to minimize the objectives, while the higher fitness
values, which identify lower performance, are close to 0. In
light of this, it is clear that the individual who corresponds to
a greater area in the radar chart (red area) will perform better
than the individual who corresponds to a minor underlying
area (blue area). In the Fig. 9b are showed the corresponding
design to the two different radar chart plotted in Fig. 9a. in
the specific the chair on the left, corresponding to red area,
and the chair on the right at the blue area. Figure 9c shows
the Parallel coordinate plot chart in which each of the paral-
lel axes corresponds to a different objective, also in this case
the domains have been scaled between O and 1. In this graph,
the performance trend of all individuals present in the Pareto
Optimal set is shown.

The case study, relating to the design of a chair, was
chosen to test the proposed workflow. This workflow leads
to the creation of an optimization tool, which, in addition
to three-dimensional models, returns plots of explanatory
graphs of the performance trend. The graphs and images
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presented allow to evaluate the impact that this tool has on
modeling both from a qualitative and quantitative point of
view. The coupling of numerical data and graphic solutions,
generated by the tool, allows the sorting of solutions based
on the different parameters. This sorting process, in fact, can
be carried out on the basis of the performance of the single
target, or on the basis of the area underlying the radar chart,
by ordering the best trade off solutions.

The results obtained from the sorting process are pre-
sented below. In Fig. 10a, b, c, d the upper quart percentile
with respect to the four different optimization parameters
are shown. For the generation of these results, reference was
made to the dock of all 5000 solutions produced over the
various generations. As can be seen, the extremes of the
single objective, for example individuals who minimize the
quantity of material, lead to economic solutions from the
construction point of view but which do not satisfy with
safety standards. However, taking into consideration the
solutions that present only the minimization of deforma-
tions, individuals with high material consumption and negli-
gible deformations characterized by structural oversizing are
identified. Figure 10e represents and reports the global fittest
solutions, that are the non-dominated solutions belonging
to the Pareto optimal set. These solutions are easily identifi-
able through the radar plot chart because they correspond to
the solutions that underlie the greater area. the extremism
of the different objectives always corresponds to individu-
als that cannot be used for the development of real objects,
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Fig.9 Objective representation (a) Radar chart (b) design confronted (c) Parallel coordinate plot chart

while the tradeoff solutions that present less marked differ-
ences between one individual and another make them usable
concretely.

5 Conclusion and future work

The principal aim of this paper is the creation of workflow,
in order to help spread the optimization techniques within
the manufacturing sectors in the process of industry 4.0. The
proposed methods, exemplified through the case study, can
be easily applied to any other definition of a three-dimen-
sional model in grasshopper. The use of parametric mod-
eling affects all production sectors; however, this process is

not coupled with the implementation of Genetic Algorithms.
This is due to the difficulty of interpreting the results and the
slowness of the method. The workflow and the data obtained
through the case study are a guide for designers in the sec-
tor who want to obtain and display optimized results, par-
tially overcoming the limitations of the process. The use of
this method for the chair object is nothing more than a first
preliminary study of the application of genetic algorithms
and generative systems to the prototipation and creation of
design models. This has been useful to underline and illus-
trate the potential of the graphic tools applied by the new
figures of computational designers who are insinuating into
industry 4.0.
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Fig. 10 Rapresentation of element in pareto optimal set
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