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Abstract. With the rapid development of computers and technology 
in the 20th century, the topological optimisation (TO) method has 
spread worldwide in various fields. This novel structural optimisation 
approach has been applied in many disciplines, including architectural 
form-finding. Especially Bi-directional Evolutionary Structural 
Optimisation (BESO), which was proposed in the 1990s, is widely used 
by thousands of engineers and architects worldwide to design 
innovative and iconic buildings. To integrate topological optimisation 
with artificial intelligence (AI) algorithms and to leverage its power to 
improve the diversity and efficiency of the BESO topological 
optimisation method, this research explores a non-iterative approach to 
accelerate the topology optimisation process of structures in 
architectural form-finding via conditional generative adversarial 
networks (GANs), which is named as OptiGAN. Trained with 
topological optimisation results generated through Ameba software, 
OptiGAN is able to predict a wide range of optimised architectural and 
structural designs under defined conditions. 

Keywords. BESO (Bi-directional Evolutionary Structural 
Optimisation); Artificial Intelligence; Deep Learning; Topological 
Optimisation; Form-Finding; GAN (Generative Adversarial 
Networks); SDG 12; SDG 9.  

1. Introduction 

Structural optimisation, including topology optimisation, plays a significant role in 
architectural design. It can increase the performance of structures and the efficiency of 
material use and thus reduce material waste and carbon impact in the fabrication and 
construction process. By integrating topology optimisation with artificial intelligence 
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(AI) for more efficient use of materials in the industry, it seeks to help achieve the 
United Nations Sustainable Development Goal 12: Ensure sustainable consumption 
and production patterns (United Nations, 2015). 

1.1. STRUCTURAL OPTIMISATION 
Structural optimisations aim to achieve the best structural performance while meeting 
the requirement of various constraints. Over the past three decades, high-speed 
computers and rapid improvements in algorithms have been used to develop better 
structural optimisation solutions by a number of engineering researchers. 

1.1.1. Topology Optimisation 

Topology optimisation is one of the most popular optimal structural design methods 
for discrete structures, such as trusses and frames. It is developed to search for the 
optimal spatial order and connectivity of the bars. Topology optimisation of continuum 
structures is to find optimal designs by determining cavities' best locations and 
geometries in the design domains.  

Topology optimisation can be readily used to perform shape optimisation by simply 
restricting the structural modification to the existing boundaries (Huang & Xie, 2010). 
In the field of topology optimisation, there are several notable methods based on finite 
element analysis (FEA) developed, such as the homogenisation method (Bendsøe & 
Kikuchi, 1988), the solid isotropic material with penalisation (SIMP) method (Bendsøe 
& Sigmund, 1999), the evolutionary structural optimisation (ESO) (Xie & Steven, 
1993), the bi-directional evolutionary structural optimisation (BESO) (Huang & Xie, 
2010; Huang et al., 2007) and the level-set method (LSM) (Wang et al., 2003). In this 
paper, bi-directional evolutionary structural optimisation (BESO) proposed by Huang 
and Xie (2010) is adopted to develop a new integrated topology optimisation algorithm 
(Figure 1). 

Figure 1 Bi-directional evolutionary structural optimisation (BESO) result 

1.1.2. Bi-directional Evolutionary Structural Optimisation (BESO) 
Bi-directional evolutionary structural optimisation (BESO) is the emerging technology 
that is an extension of evolutionary structural optimisation (ESO) developed by Xie 
and Steven in 1992 (Xie & Steven, 1993). Both ESO and BESO algorithms are based 
on finite element analysis (FEA) for topology optimisation of continuum structures. 
BESO algorithm aims to find the solution with the highest structural performance 
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under certain material limitations by removing or adding material elements step by step 
(Bao et al., 2020). The ESO method also inspires the Extended ESO method, widely 
used in architecture design projects, such as the Akutagawa River Side Project in Japan 
by Ohmori and Qatar National Convention Centre by Arata Isozaki, to generate an 
optimised model with not only high structural performance but also some different 
characteristics to meet more functional requirements or aesthetic preferences. In the 
past few years, Mike Xie and his team have modified many detailed control strategies 
for topology optimisation in architectural design and development during the process 
(Yan et al., 2021). 

1.1.3. Ameba Software 
Because of the benefit of form-finding through topology optimisation and Bi-
directional evolutionary structural optimisation (BESO), more and more designers and 
architects seek to use topology optimisation methods to design buildings and furniture. 
However, due to the complexity and slow speed to directly use the algorithm for 
architectural design, a new Rhinoceros plug-in named Ameba, a topology optimisation 
tool based on the BESO method and FEniCS open-source computing platform (Zhou 
et al., 2018), has been developed. More and more architects and designers have gained 
opportunities to use this intelligent method to work with computers interactively to 
create innovative, efficient, and organic architectural forms using Ameba. In this work, 
the authors use it as the topology optimisation tool to form the dataset for training 
generative adversarial networks to assist and investigate the research. 

1.2. GENERATIVE ADVERSARIAL NETWORK AND ITS APPLICATION 
IN TOPOLOGY OPTIMISATION 

Allowed by the development of deep learning algorithms and fast-growing 
computational power, artificial neural networks, including generative adversarial 
networks (GANs), have been increasingly used in architectural and structural 
explorations such as topology optimisation in the design process. 

1.2.1. Generative Adversarial Networks 

A generative adversarial network (GAN) is a particular artificial neural network that 
learns from a collection of examples and their probability distribution. It is then able to 
generate more examples from the estimated probability distribution (Goodfellow et al., 
2020). A typical GAN often consists of a generator that defines a prior probability 
distribution P(z) based on a vector z as input and a discriminator which examines 
whether data x is real (sampled from the training examples) or fake (sampled from the 
output of the generator).  

GANs can further be extended to conditional models (cGANs) where both the 
generator and discriminator are conditioned on extra information y as input (Mirza & 
Osindero, 2014). Besides examining whether x is real or fake, the discriminator of a 
cGAN also evaluates whether it matches the condition y. For example, when using 
cGANs to solve topology optimisation problems, x can be the expected optimisation 
results, given the corresponding boundary and load conditions of y. 
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1.2.2. Topology Optimisation via Deep Learning 

In recent years, there has already been some research into solving topology 
optimisation problems through artificial neural networks, especially GANs. For 
example, the TopologyGAN (Nie et al., 2021) is developed on a cGAN, whose 
generator combines a U-Net (Ronneberger et al., 2015) and ResNet (He et al., 2016). 
It takes displacement, load boundary conditions and target volume fraction augmented 
with dense initial fields computed over the unoptimised domain as the input to the 
model. By doing so, this method vastly improves the accuracy of predicting topology 
optimisation results compared to some baseline models. Another research by Yu et al. 
(2019) transforms the boundary conditions into multi-channel images as input to a 
convolutional-neural-network-based encoder to generate low-resolution topology 
optimisation results. It inputs the low-resolution results into a GAN to produce final 
results in high resolution. Differently, the proposed method utilises cGANs directly. It 
requires very brief input to keep the models easy to operate and thus broaden the 
potential range of users with or without professional structural knowledge.  

1.3. PROPOSED METHOD 

This research suggests an approach to accelerate the topology optimisation process of 
structures in architectural form-finding by replacing iterative calculation procedures 
with an end-to-end algorithm via conditional generative adversarial networks. This 
method is named OptiGAN by the authors as the ultimate goal is to generate topology 
optimisation results efficiently and accurately. Trained with a small number of 
topological optimisation results generated with Ameba software, the proposed method 
is able to predict a wide range of optimised two-dimensional structural forms under 
defined conditions. 

2. Methods 
To achieve the research target, a coarse-to-fine network of cGANs is developed and 
trained with a dataset collected by the authors.  

2.1. DATA COLLECTION AND PRE-PROCESSING 

To train OptiGAN, an original dataset of topology optimisation results is collected with 
Ameba software. In detail, the material is kept as steel during the data generating 
process, and the volume fraction is set to 0.5 consistently. The parameters that can vary 
from case to case are design domain, fixing edge and load conditions, which are the 
very parameters to use as input parameters of OptiGAN. In practice, in the Ameba 
script, the fixing edge of a square design domain is always set to the left edge as fixing 
at other edges are seen as the same as rotating left-edge-fixing conditions in the later 
data augmentation process when training the cGAN models. In the first stage of the 
research, a total number of 1385 optimisation results are included in the dataset.  
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During the pre-processing, the input parameters are translated into a three-channel 
input image at 256 * 256 pixels in size. By doing so, the model is provided with two-
dimensional spatial clues. Thus, the difficulty for training the model to predict two-
dimensional results can be reduced compared to using merely numerical inputs directly 
without spatial suggestions. Specifically, as Figure 2 demonstrates, the design domain 
and fixing edge are expressed in all three channels by assigning the value of 0 to the 
corresponding pixels representing the geometries. Load locations and load unit vectors 
projected onto the X and Y axis are documented in the first and second channel 
respectively in values remapped into a range between 0 and 255. Values of the other 
pixels are assigned 255 in all three channels by default.  

Figure 2 Translated input image of 1000*1000 mm design domain, fixing at the left edge, load one 
at (900, 1000) location in 45° angle, load two at (1000, 700) location in 180° angle. The values of 

the rest pixels are all 255. 

2.2. OPTIGAN ARCHITECTURE 

Unlike the previous researches mentioned in section 1.2.2, there are no dense initial 
fields, low-resolution results, or any other inputs than design domain, fixing edge and 
load conditions for the OptiGAN generator. Keeping the inputs simple can make it 
potentially as easy as adjusting a few number sliders for the OptiGAN users to operate. 
At the same time, it dramatically increases the difficulty for the generator to speculate 
the results by providing less input information. To respond to the conflict, OptiGAN 
adopts a coarse-to-fine network architecture. 

Specifically, as Figure 3 demonstrates, there are two generators and discriminators 
in the network. The initial input of conditions in the form of translated input images is 
first fed to the coarse generator, which then predicts a rough output examined by the 
coarse discriminator. Then the rough output together with the initial conditions are 
input to the fine generator, which outputs the final results. Although compared to 
conventional cGANs, the input of OptiGAN consists only the conditions y alone 
without vector z, the networks can also learn from only the conditions. This choice of 
input is also being suggested in Pix2Pix (Isola et al., 2017), one of the most successful 
image-to-image translation models. 

125



X. YANG ET AL. 

Figure 3 The architecture of OptiGAN 

2.2.1. Generators and Discriminators 

Both the coarse and fine generators used in OptiGAN are U-Net (Ronneberger et al., 
2015), which has a mirrored encoder-decoder network architecture with skip 
connections between symmetrical layers. It can work effectively with very few training 
data. Meanwhile, both discriminators are PatchGAN (Isola et al., 2017), which focuses 
on 156 * 156 patches as through testing, such patch size provides the best outcome in 
the tasks.  

2.2.2. Objective 

The objective that OptiGAN tries to optimise can be expressed as equation (1). It 
consists of two parts, the cGAN loss (equation (2)) and L1 loss (equation (3)). Besides 
generating images that look real, as the other goal is to eventually achieve results as 
close to the BESO optimisation outcomes as possible, L1 loss is added to the total loss 
with a considerable weight of λ to force the output to be close to the ground truth. L1 
loss is chosen out of L2 loss because it encourages less blurring effect of images 
compared to L2 loss. In the experiments, the weight is set to 125 (λ = 125) to emphasise 
the importance of L1 loss in this particular task.  

 

𝐺𝐺 = arg min
𝐺𝐺

max
𝐷𝐷

ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐺𝐺,𝐷𝐷) +  𝜆𝜆ℒ𝐿𝐿1(𝐺𝐺) (1) 

ℒcGAN(𝐺𝐺,𝐷𝐷)  =  𝔼𝔼𝑥𝑥,𝑦𝑦[log𝐷𝐷(𝑥𝑥,𝑦𝑦)] + 𝔼𝔼𝑥𝑥[log(1− 𝐷𝐷(𝑥𝑥,𝐺𝐺(𝑥𝑥))] (2) 

ℒ𝐿𝐿1(𝐺𝐺) = 𝔼𝔼𝑥𝑥,𝑦𝑦[‖𝑦𝑦 − 𝐺𝐺(𝑥𝑥)‖1] (3) 
 

2.3. TRAINING OPTIGAN 

OptiGAN is trained in two steps: the coarse generator and discriminator are trained 
first, after which the fine generator and discriminator are trained. Both parts of the 
network are trained for 200 epochs to achieve the demonstrated results. Following the 
conventions, instead of minimising log(1− 𝐷𝐷(𝑥𝑥,𝐺𝐺(𝑥𝑥)) , the trainings maximise 
log(𝐷𝐷(𝑥𝑥,𝐺𝐺(𝑥𝑥)) to avoid saturating log(1− 𝐷𝐷(𝑥𝑥,𝐺𝐺(𝑥𝑥)) in the early training stage. 
The initial learning rate is 0.0005 decaying to 0 in the last 100 epochs and the Adam 
optimiser is used. Figure 4 shows the history of the cGAN loss and L1 loss during the 
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two training procedures.  

Figure 4 The cGAN loss and L1 loss during the coarse training and fine training  

The coarse generator and fine generator take different types of input and are paired 
with different discriminators as introduced in section 2.1.1, so it is not considered 
practical to compare the absolute value of the corresponding cGAN losses of the coarse 
and fine models. Even though, the cGAN loss improves from the beginning to the last 
epoch in both cases, as shown in Figure 4. In contrast, for both generators, the L1 loss 
is calculated according to the same ground truth, and it can be discovered that the fine 
generator further decreases the L1 loss based on the coarse generator, which indicates 
that the fine generator is able to further improve the accuracy of predicted topology 
optimisation results by OptiGAN. 

3. Results 
During the training process, the L1 loss of OptiGAN reduced from over 80 to less than 
20. More importantly and precisely, the pixel-wise accuracy is used to evaluate the 
performance of the models. It is equal to the percentage of accurate pixels in a 
prediction out of the total pixels of that image. Tested with 150 randomly selected 
pieces of data different from the training set, the average pixel-wise accuracy of 
OptiGAN is able to achieve 83.15%. Figure 5 demonstrates some of the testing results 
in different load conditions with pixel-wise differences between the predictions and 
ground truth visualised for each case.  
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Figure 5 Some prediction results of OptiGAN with ground truth and pixel-wise difference 

4. Discussion  

OptiGAN demonstrates the ability of a novel approach and its application in 
architectural and structural form-finding. It is the extension of the SwarmBESO (multi-
agent-based topology optimisation) method proposed by Bao & Yan in 2020 (Bao et 
al., 2021) to improve the diversity of the topological optimisation generative method. 
It has the potential to significantly help architects and engineers save material and 
produce more efficient structural layouts and building envelopes. It is valuable to 
integrate two intelligent computational design methods, deep learning and topology 
optimisation, for designers in the conceptual design phases. 

However, the research is in a rudimentary phase and is temporarily constrained in 
a range of two-dimensional solutions. Although set as an input variable, the design 
domain in the current dataset includes only square geometries, despite that it can 
perform well in this geometric range, as demonstrated in the testing results. To truly 
diversify the spectrum of results and further increase the accuracy, it is very crucial that 
OptiGAN must be trained with much more data of various design domains and load 
conditions. Future line of research also includes further equipping the model with the 
ability to solve three-dimensional topology optimisation problems. 

5. Conclusion 

This research develops OptiGAN, a non-iterative method to accelerate the topology 
optimisation process of structures in architectural form-finding via conditional 
generative adversarial networks with high accuracy. It demonstrates the process of 
integrating topology optimisation and generative adversarial networks to establish an 
artificial intelligence (AI) based structural optimisation technique. This new 
methodology holds great potential for practical application in architecture and 
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engineering fields. It increases the diversity of outcome of the topology optimisation 
generative design such as the application of shell (Figure 6). 

Figure 6 Diverse BESO results of shell optimisation 
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