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Abstract

In the past years technological advances and the availability of inexpensive hardware
with sensing, communication and computational capacities have favored a trend of digi-
tization and automation in many industries. The fields of architecture, construction and
civil engineering, however, have hardly been affected by this trend so far. Challenging
operating conditions and complex tasks are key factors why the advances in automation
are not transferable to construction. The emerging field of digital fabrication aims at
introducing more efficient building processes, and enabling completely new methods in
design and architecture by leveraging tools from digital design and computation, ro-
botic fabrication and automation. This thesis deals with two main aspects of digital
fabrication: Firstly, the automation of complex construction tasks through efficient dis-
tributed control of multi-robot systems, and secondly, a completely new building process
for lightweight construction, enabled by the form control of a cable net based formwork.

Interconnected systems, such as cooperating multi-agent systems, have a great po-
tential of performing highly complex tasks. In the first part of this thesis, contributions
towards efficient scalable distributed control design for heterogeneous interconnected sy-
stems are presented. Based on a linear fractional representation of the system with a
decentralized part and an interconnection part, the full block S-procedure is applied for
controller synthesis. For scalability of the design, we introduce structural constraints
on the Lyapunov and multiplier matrices, which allows us to decompose the matrix
inequalities into smaller ones of the order of the individual subsystems. Furthermore,
a distributed solution method of the resulting coupled synthesis equations based on
the Alternating Direction Method of Multipliers is proposed. The design only requires
nearest-neighbor communication and no central coordination. The proposed methods
are applicable to general heterogeneous systems, and the communication topology of the
controller is a design choice. By introducing a new system classification consisting of
multiple groups of homogeneous subsystems and different interconnection types, a more
compact controller synthesis is derived with improved computational scalability. In order
to improve the control performance given a communication topology, the interconnected
controller design methods are applied to an augmented state space representation of the
system. The individual augmented subsystem models contain copies of states of neig-
hboring subsystems, which provides them with model information about their couplings.
This is particularly beneficial if the number of communication links is to be minimized.
Moreover, we present efficient methods for the design of minimum communication topo-
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Abstract

logies to eliminate all so-called fixed modes, which would prevent the system from being
stabilizable, or limit its performance, if not removed.

The second part of this thesis introduces a novel control application, where feedback-
based optimal control is introduced into the construction process. Tensioned cable nets
can be used as a component of lightweight flexible formwork for the construction of thin
concrete architectural shells. However, meeting the structural and mechanical specifica-
tions of such shells requires precise positioning of the nodes of the cable net to precisely
achieve the designed and optimized form. Therefore, the goal of the proposed control
method is to minimize the deviations of the tensioned cable net from the target form in
the presence of fabrication tolerances and model uncertainties. The form control is crucial
for enabling the use of this efficient lightweight formwork. It is based on measurements of
the nodal positions of the cable net and possible actuation of the boundary cable lengths.
Because taking measurements and making cable lengths adjustments is time-consuming
on the construction site, a two-step algorithm is proposed which exploits model know-
ledge and measurement data. In each control iteration, first, the measurements are used
to identify model parameters by a distributed optimization method. Second, for the con-
trol input computation, a sequential quadratic programming variant is proposed. For a
given identified model, it generates a sequence of feasible iterates for the form optimi-
zation problem. The efficient computations involve solving quadratic and second-order
cone programs. The algorithm is proved to converge to a Karush-Kuhn-Tucker point
of the form optimization problem. A sparsity-promoting optimization-based method is
proposed to further reduce the number of cable adjustments. The developed control
strategy is experimentally validated on a quarter-scale prototype of a flexible cable net
formwork for a doubly-curved roof shell.
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Zusammenfassung

Technologische Fortschritte und die Verfügbarkeit günstiger, mit Sensorik, Rechenleis-
tung und Kommunikationsfähigkeit ausgestatteter Hardware haben in den letzten Jahren
in vielen Industriezweigen einen Trend zur Digitalisierung und Automatisierung hervor-
gerufen. In den Bereichen der Architektur und der Bauindustrie ist dieser Trend aller-
dings kaum merkbar. Schwierige Arbeitsbedingungen und komplexe Bauprozesse sind
Gründe dafür warum die Automatisierung anderer Industriezweige nicht auf das Bau-
wesen übertragbar sind. Die Ziele des neuen Forschungsfeldes der Digitalen Fabrikation
sind zum Einen das Einführen effizienterer Bauprozesse, und zum Anderen das Ermög-
lichen komplett neuartiger Methoden sowie Design in der Architektur. Dies wird durch
Techniken der computergestützten Berechnung und Entwurfs, sowie des robotergestüt-
zten Bauens und der Automatisierung, ermöglicht. Diese Dissertation beschäftigt sich
mit zwei Aspekten der Digitalen Fabrikation: Zum Einen mit der Automatisierung kom-
plexer Bauprozesse durch effiziente verteilte Regelung von Multi-Roboter-Systemen, und
zum Anderen mit einem komplett neuartigen Bauprozess von Leichtbaustrukturen, der
durch die Formregelung einer Seilnetz basierten Schalung ermöglicht wird.

Verteilte Systeme, wie zum Beispiel kooperative Multi-Roboter-Systeme, haben ein
großes Potenzial komplexe Aufgabenstellungen zu bewältigen. Im ersten Teil der Dis-
sertation werden Resultate für eine effiziente skalierbare Synthese verteilter Regelalgo-
rithmen für heterogene verteilte Systeme präsentiert. Basierend auf einer Linear Fractio-

nal Representation des Systems in einen dezentralen Systemteil und einen Kopplungsteil,
wird die Full Block S-Procedure für die Reglersynthese angewandt. Für die Skalier-
barkeit der Synthese führen wir Bedingungen an die Struktur der Lyapunov und der
Multiplier Matrizen ein, was es uns ermöglicht die Matrix Ungleichungen in kleinere
in der Größenordnung der einzelnen Subsysteme zu zerlegen. Des Weiteren wird eine
verteilte Lösungsmethode der gekoppelten Regleersynthesegleichungen eingeführt, wel-
che auf der Alternating Direction Method of Multipliers basiert. Sie benötigt lediglich
Kommunikation zwisichen gekoppelten Nachbarsystemen, jedoch keinerlei zentralisierte
Koordination. Die Methoden sind auf heterogene Systeme anwendbar. Die Kommunika-
tionstopologie des Reglers kann bei der Reglerauslegung frei vorgegeben werden. Durch
die Einführung einer neuen Systemklasse, die aus mehreren Gruppen homogener Subsys-
teme mit verschiedenartigen Kopplungen bestehen, wird eine kompaktere Reglersynthese
mit verbesserter Skalierbarkeit abgeleitet. Um unter einer gegebenen Reglerstruktur die
Reglergüte zu verbessern, werden die Synthesemethoden des verteilten Reglers in ei-
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Zusammenfassung

nem erweiterten Zustandsraum angewandt. Die erweiterten Systemmodelle der einzelnen
Subsysteme enthalten Kopien von benachbarten Subsystemen, und somit Informationen
über deren Kopplungen. Das ist insbesondere dann von Bedeutung, wenn die Anzahl
der Kommunikationsverbindungen minimiert werden soll. Wir stellen effiziente Metho-
den für das Auslegen minimaler Kommunikationstopologien vor, die alle sogenannten
Fixed Modes eliminieren, welche die Stabilisierbarkeit des Systems verhindern oder die
erreichbare Reglergüte beschränken würden.

Der zweite Teil dieser Dissertation präsentiert eine neuartige Regleranwendung, in der
eine rückführungsbasierte optimale Regelung in den Bauprozess integriert wird. Vorge-
spannte Seilnetze können als Komponente einer flexiblen Leichtbauschalung für den Bau
dünner architektonischer Betonschalen verwendet werden. Um allerdings die strukturel-
len und mechanischen Anforderungen an die Schalen zu gewährleisten, ist eine präzise
Einhaltung der Seilnetzform unabdingbar um die entworfene und optimierte Form zu er-
reichen. Deshalb ist es Aufgabe der Regelung die Abweichungen der Netzseilkonstruktion
von der Sollform unter Unsicherheiten und Toleranzen zu minimieren. Die vorgestellte
Formregelung ist dadurch eine Schlüsselmethode, die die Verwendung solcher effizien-
ter Leichtbauschalungen ermöglicht. Die Regelung basiert auf Positionsmessungen der
Knotenpunkte des Seilnetzes und möglicher Aktuierung der Seillängen am Rand des Net-
zes. Da Messungen und Seillängenverstellungen auf der Baustelle zeitintensiv sind, wird
ein zweischrittiger Algorithmus vorgestellt, der Modellwissen, sowie die Information der
Messdaten ausnutzt. In jeder Iteration werden zuerst die Messdaten dazu genutzt die
Modellparamter durch einen verteilten Optimierungsalgorithmus zu bestimmen. Dann
wird für die Regeleingangsberechnung eine Sequential Quadratic Programming Variation
vorgeschlagen. Für ein gegebenes Modell wird eine Folge an Punkten generiert, die die
Nebenbedingungen des Formoptimierungsproblemes erfüllen. Die effizienten Berechnun-
gen bestehen im Lösen von quadratischen und konischen Optimierungsproblemen. Der
Algorithmus konvergiert zu einem Karush-Kuhn-Tucker Punkt des Formoptimierungs-
problems. Um die Anzahl der Seillängenänderungen weiter zu reduzieren wird eine opti-
mierungsbasierte Methode zur Berechnung dünnbesetzter Eingangsvektoren vorgestellt.
Die entwickelte Regelstrategie wird an einem Seilnetzbasierten flexiblen Schalungspro-
totypensystem experimentell validiert.
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Ḡ = {N , Ē} Graph of the cable net topology of all tensioned edges
Ns Set of adjacent nodes to node s

n Number of nodes
m Number of edges
r Nodal position coordinates, i.e., r = [x⊤, y⊤, z⊤]⊤

xviii



rI , rB, r̄B Interior, boundary, fixed boundary nodes coordinates
rmeas, r(k),meas Measured, k−th measured, configuration
r(des), r(ini), r(con) Desired, initial, controlled configuration
EA Material parameters: Young’s modulus × cross section area
l0,(s,t), l(s,t) Unstressed and actual length of edge (s, t), i.e., l(s,t) = ‖rs − rt‖2

u(s,t) Control input, i.e., change in edge length l0,(s,t)

l̄0,(s,t) Unstressed length of edge (s, t) after applying input u(s,t), i.e.,
l̄0,(s,t) = l0,(s,t) − u(s,t)

α Step length of line search
ρ Step length reduction factor of backtracking line search
c1, c2 Constants in Wolfe conditions
cc, cw, cc,1 Convergence bounds
∆uPocp,u GN step on Pocp,u

∆p GN step on Pocp, i.e., ∆p = [∆r⊤, ∆u⊤]⊤

R(u) Mapping u 7→ r, not explicitly known
H Hessian approximation
Qr Weighting matrix
V Energy function
g ≤ 0, h = 0 Inequality, equality constraints

Subscripts and Superscripts

(·)B, (·)I Related to boundary, interior (nodes, edges)
(·)κ Iteration within control input computation (SQP), or within ADMM
(·)ν Iteration within sparse input computation
(·)(k) k-th Configuration or input in complete control loop
(·)l1 Related to sparse input vector

Optimization Problems

PminE Energy minimization problem
Pocp,u, focp,u OCP and cost function in terms of u

Pocp, focp OCP and cost function in terms of r and u

Pκ
SQP, fGN

ocp QP approximating Pocp and GN-approximation of focp in SQP-iteration

fGN
ocp,u GN-approximation of focp,u in GN-iteration

xix



Notation

xx



CHAPTER 1
Introduction

1.1 Digital Fabrication

The availability of inexpensive hardware, computational power, and sensors has given
rise to a fast growing trend of digitization and automation in many domains. Digital
technologies, robotics and smart infrastructures increasingly dominate many industries
and applications: Service robots, the smart grid and self-driving cars are only a few of
the numerous examples. While many branches of industry have significantly benefited
from this transformation, others seem to have been far less affected. Obvious examples
of the latter are the fields of architecture, building construction and civil engineering. In
fact, many traditional processes in construction buildings have not changed much in the
last decades.

However, when analyzing automated manufacturing processes, it can be noted that
robots in automated production lines are limited to highly structured, static and con-
trolled environments. Furthermore, the tasks are repetitive and predefined. Most of
the tasks involve manipulating small objects which can easily be handled by one or
two robots. All of this reduces uncertainties in the tasks and eliminates some of the
major control challenges. In contrast, the conditions in building construction or civil
engineering cause some unsolved challenges. Many of them arise due to highly unstruc-
tured, uncertain and dynamic environments and large fabrication tolerances. Building
processes involve complex tasks and heavy objects of large dimensions. Safety of human
workers who possibly share the workspace with robots also needs to be considered. The
advances in automation of many other industries are not easily transferable to these
demanding conditions. However, developing methods that can cope with the outlined
challenges will have a tremendous impact on building construction and civil engineering.
This is the goal of the new emerging field of digital fabrication.

Digital fabrication aims at revolutionizing the way buildings will be designed and built
in the future. Besides allowing for more efficient and precise construction processes,
completely new ways of designing and building will be enabled. Furthermore, digital
fabrication can have an impact on the sustainability of building processes [1], [2]. This
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field has recently seen a lot of innovation, such as robotic on-site fabrication [3]–[8],
cooperative robotic fabrication [9], and new ways of designing reinforcement structures
[10], [11]. However, commonly applied processes lack digitization and many challenges
remain to be solved. The following section outlines how this thesis addresses some of
the highlighted challenges.

1.2 Scope and Contribution

This thesis is structured into two main parts and provides contributions to two areas
of digital fabrication. In particular, Part II is motivated by enabling automated con-
struction processes through an efficient control of large-scale multi-robot systems, and
Part III provides a control method that achieves precision in lightweight construction.

Many of the highly complex tasks in pre-fabrication or on-site fabrication seem to be
too difficult for a single robot. Such tasks, for example, involve manipulating objects,
holding in place and fixing elements, or stabilizing and assembling large structures.
Cooperative multi-robot systems are well suited for these tasks. While the individual
robots can be simple, an interconnected system of many, possibly different (heteroge-
neous), subsystems has the potential to perform very complex tasks. Efficient scalable
control of heterogeneous large-scale systems however still poses open research questions.
Limited infrastructure and disturbances are other challenges that are specifically related
to the construction site and limit the available communication capabilities. The first part
of this work thus focuses on scalable distributed control of heterogeneous interconnected
systems with potentially reduced communication.

Apart from rendering building processes more efficient, another significant goal of
digital fabrication is to enable completely new approaches in architecture by combining
the potential of digital design, computation and automation. Motivated by lightweight
construction and enabled by digital design tools, building structures are commonly op-
timized in their form with respect to minimal material use and maximal mechanical
stability. However, such optimized structures are typically not very robust to uncertain-
ties and deviations in their form. Due to large fabrication tolerances it is challenging
to precisely achieve the designed form. High-precision construction processes which aim
at minimizing deviations from the optimized form are therefore required. The second
part of this work presents a novel construction method which introduces feedback-based
optimal control to on-site construction in order to obtain a high-precision formwork that
can be used for lightweight construction.

The thesis is structured as follows. Part I provides mathematical preliminaries.
Part II focuses on scalable distributed control of interconnected systems. In Chapter 4, a
detailed introduction, literature review and outline of the contributions related to Part II
are given. The main results of Part II are given in Chapters 5 - 8. Part III addresses
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the form control of a cable net based formwork. In Chapter 9, an introduction to the
topic, and outlines of related work and of the contributions of Part III are provided.
Chapters 10 - 13 present the main results of Part III. Part IV gives conclusions and an
outlook.

1.3 Publications

The work presented in this thesis is the result of collaborations with many colleagues.
The thesis is mainly based on the following publications.

1.3.1 Publications Related to Part II

• Yvonne R. Stürz, Annika Eichler and Roy S. Smith. “A framework for distribu-
ted control based on overlapping estimation for cooperative tasks”. IFAC World

Congress, pp. 14296–14301, July, 2017 [12].

• Yvonne R. Stürz, Annika Eichler and Roy S. Smith. “Fixed mode elimination
by minimum communication within an estimator-based framework for distributed
control”. IEEE Control Systems Letters, vol. 1, no. 2, pp. 346–351, June, 2017 [13].

• Yvonne R. Stürz, Annika Eichler and Roy S. Smith. “Scalable controller synthe-
sis for interconnected systems with heterogeneous subsystems and heterogeneous
interconnections applicable to an overlapping control framework”. IEEE European

Control Conference, pp. 2561–2568, June, 2018 [14].

• Yvonne R. Stürz, Annika Eichler and Roy S. Smith. “Distributed control design
for heterogeneous interconnected systems”. Transactions on Automatic Control,

[under review] [15].

1.3.2 Publications Related to Part III

• Yvonne R. Stürz, Manfred Morari and Roy S. Smith. “Sequential quadratic pro-
gramming for the control of an architectural cable net geometry”. American Control

Conference, pp. 3503–3508, July, 2016 [16].

• Yvonne R. Stürz, Manfred Morari and Roy S. Smith. “Two methods for the iden-
tification of uncertain parameters of an architectural cable net geometry”. IEEE

Conference on Control Applications, pp. 3503–3508, September, 2016 [17].

• Andrew Liew, Yvonne R. Stürz, Sébastien Guillaume, Tom Van Mele, Roy S.
Smith, and Philippe Block. “Active control of a rod-net formwork system pro-
totype”. Automation in Construction, vol. 96, pp. 128–140, December, 2018 [18].
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• Yvonne R. Stürz, Manfred Morari and Roy S. Smith. “Control of an architectu-
ral cable net geometry”. IEEE Transactions on Control Systems Technology, to
appear, 2019 [19].

1.3.3 Other Publications

The following articles were published by the author during her PhD studies. However,
they do not contribute to the content of this thesis.

• Yvonne R. Stürz, Lukas M. Affolter and Roy S. Smith. “Parameter identification
of the KUKA LBR iiwa robot including constraints on physical feasibility”. IFAC

World Congress, pp. 6863–6868, July, 2017 [20].

• Angel Romero, Paul N. Beuchat, Yvonne R. Stürz, Roy S. Smith, John Lygeros.
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CHAPTER 2
System Theory

In this chapter, some fundamental properties of continuous-time linear time-invariant
(LTI) systems are introduced. The discussion is focused on results which will be used in
Part II of this thesis.

2.1 LTI System Representation

We consider linear time-invariant (LTI) systems with continuous time dynamics given
by

ẋc(t) = Axc(t) + Bw(t),

z(t) = Cxc(t) +Dw(t),
(2.1)

where xc ∈ Rnxc is the state vector, w ∈ Rnw is the input vector, and z ∈ Rnz is the
output vector. In the following, we will not explicitly indicate the dependency on the
time variable t. The system in (2.1) can be represented by the following state-space
description

G :

[

ẋc

z

]

=

[

A B
C D

] [

xc

w

]

. (2.2)

2.2 Lyapunov Stability

The system in (2.1) is stable if and only if there exists a symmetric, positive definite
matrix X that satisfies [23]

A⊤X + XA < 0, (2.3)

which can equivalently be formulated as

[

I A⊤
]
[

0 X
X 0

] [

I

A

]

< 0. (2.4)

The matrix X is referred to as Lyapunov matrix.
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G zw

Figure 2.1: System with performance channel from w to z.

2.3 System Performance Measures

We consider the system in Figure 2.1, with a stable transfer function matrix G(s). The
performance is typically measured in terms of the input output behavior, i.e., by a
measure of how large the output z can become for given allowed inputs w. In this work,
we will mostly use the induced L2 system norm. In the case of LTI systems, this norm
reduces to the H∞ system norm, which is defined in the following.

2.3.1 H∞ System Norm

Definition 2.1. [23] Given a proper and stable LTI system G(s), the H∞ norm is the

induced L2 norm, defined in the frequency domain as

‖G‖H∞
:= sup

ω∈R
σmax (G(iω)) = sup

ω∈R
‖G(iω)‖2. (2.5)

Alternatively, in the time domain, the following characterization can be used,

‖G‖H∞
= sup

w 6=0

‖z‖2

‖w‖2

= sup
‖w‖2=1

‖z‖2. (2.6)

In the course of this work, it will be of interest to provide an upper bound on the
performance in terms of the performance index γ as follows

‖z‖2 ≤ γ ‖w‖2. (2.7)

For an LTI system, this performance specification is equivalent to the system being
strictly dissipative with respect to the supply rate s(w, z) = γ2‖w‖2

2 − ‖z‖2
2 [24]. In this

case, it holds that
∫ ∞

0

[

w⊤ z⊤
]
[

Qp Sp

S⊤
p Rp

] [

w

z

]

dt ≤ 0, (2.8)

with [

Qp Sp

S⊤
p Rp

]

=

[

−γ2I 0
0 I

]

.

2.3.2 H2 System Norm

Instead of the H∞ norm, the H2 norm can be used as performance measure, which is
defined as follows.
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2.4 Interconnected LTI Systems

Definition 2.2. [23] Given a strictly proper and stable LTI system G(s) in state space

realization, the H2 system norm is defined as

‖G(s)‖H2 :=

√

1
2π

∫ ∞

−∞
tr (G(iω)HG(iω)) dω (2.9)

where H indicates the conjugate transpose and tr indicates the trace, i.e., the sum of the

diagonal elements.

2.3.3 Bounded Real Lemma for LTI Systems

Using (2.4) and (2.8), the following necessary and sufficient conditions for stability and
performance can be derived, similar to the Bounded Real Lemma:

Lemma 2.1. [24] The LTI system G in (2.1) is stable and has an L2 gain less than γ,

i.e., ‖G‖H∞
< γ if and only if there exists a symmetric matrix X > 0 that satisfies

[

I A⊤ 0 C⊤

0 B⊤ I D⊤

]









0 X 0 0
X 0 0 0
0 0 −γ2I 0
0 0 0 I

















I 0
A B
0 I

C D









< 0. (2.10)

2.4 Interconnected LTI Systems

In Chapters 5 and 6, so-called interconnected systems that are assemblies of coupled
subsystems will be considered, which will be defined in more detail in Chapter 4. We
will use tools from robust control, which allows us to exploit the system structure to
reduce the complexity of the controller synthesis. In the following, we briefly introduce
the required tools.

2.4.1 LFR of an Interconnected System

We consider the interconnection of system Gd with P as illustrated in Figure 2.2. This
interconnection has the same structure as usually encountered in robust control or linear-
parameter-varying (LPV) control. In these cases, P is an uncertainty or a system part
that depends on time-varying parameters, usually denoted as ∆. We will use this system
structure to model interconnected systems, which are assemblies of coupled subsystems.
In this case, Gd represents the decentralized system part, and P is introduced as an
interconnection operator, which is assumed to be a static linear operator, i.e., a matrix,
in the following. The interconnection of system Gd with P can be described by a linear
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Gd
zw

G

qp
P

Figure 2.2: Interconnection of system Gd with P.

fractional representation (LFR) given as

G :







Gd














ẋc

z

qc








=








A B1 B2

C1 D11 D12

C2 D21 D22















xc

w

pc








,

pc = Pqc.

(2.11)

2.4.2 Full Block S-Procedure

In order to exploit the structure of the system in (2.11), the Full Block S-Procedure
(FBSP) can be applied, which is a tool from robust control and LPV control. In these
cases, interconnections of systems with uncertainties or with time-varying parameter
dependencies are analyzed. In the case of system (2.11), the interconnection operator P
plays the role of the uncertainty. The FBSP for the system in (2.11) is given as follows.

Theorem 2.1 ([25]: Bounded Real Lemma with Full Block S-Procedure). Given the

stable continuous-time LTI system as in (2.11), the system has an L2-gain from w to z

smaller than γ if and only if there exist matrices X = X⊤ > 0, R = R⊤, Q = Q⊤ and S

of appropriate dimensions such that

[

⋆
]⊤
[

Q S

S⊤ R

] [

P
I

]

> 0, (2.12)

[

⋆
]⊤














0 X 0 0 0 0

X 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q S

0 0 0 0 S⊤R



























I 0 0

A B1 B2

0 I 0

C1 D11 D12

0 0 I

C2 D21 D22














< 0. (2.13)

Equations (2.12) and (2.13) in Theorem 2.1 are referred to as multiplier and nominal
conditions, respectively.
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2.4 Interconnected LTI Systems

The matrices Q, R, and S in the conditions in Theorem 2.1 are called the multiplier
matrices. For full multipliers, i.e., with no assumptions on Q, R, and S, the conditions
in Theorem 2.1 are equivalent to the ones in Lemma 2.1, i.e., they represent necessary
and sufficient conditions for Lemma 2.1 to be satisfied.

In contrast to full block multipliers, structural conditions can be imposed, similar to
the so-called D scalings and DG scalings in robust control. For D scalings, it is assumed
that R > 0, Q = −R and S = 0, and for DG scalings it is assumed that R > 0, Q = −R

and S = −S⊤. In the case of D scalings, it is easy to see that for |P| < 1 and RP = P R,
(2.12) holds. And for DG scalings, the same is true with the additional assumptions of
S P = P S and P = P⊤. The FBSP with full multipliers will be used in Chapters 5
and 6 in order to exploit the sparse structure of interconnected system matrices in the
controller synthesis.
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CHAPTER 3
Convex and Numerical Optimization

This chapter gives a brief overview about formulations and tools from convex and nu-
merical optimization which will be relevant in the course of this thesis.

3.1 Function Definitions

Definition 3.1 (Convex Function). A function f(·) : D 7→ R is convex if its domain

D ⊆ Rn is a convex set and if for any x1, x2 ∈ D and any λ ∈ [0, 1], it holds that

f(λ x1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2). (3.1)

The function is called strictly convex if inequality (3.1) is strict for any x1, x2 ∈ D and

any λ ∈ [0, 1].

Definition 3.2 (Concave Function). A function f(·) : D 7→ R is concave if the function

−f(x) is convex.

Definition 3.3 (Lipschitz Continuous Function). A function f(·) : D 7→ R with domain

D ⊆ Rm is Lipschitz continuous if there exists a constant γ > 0, such that for all

x1, x2 ∈ D, the following holds:

‖f(x1)− f(x2)‖2 ≤ γ ‖x1 − x2‖2. (3.2)

Definition 3.4 (Monotone Function [26]). A set function f : 2E → R is monotone, if

for every T1 ⊆ T2 ⊆ E, it holds that

f(T1) ≤ f(T2).

Definition 3.5 (Submodular Function [26]). A set function f : 2E → R is submodular,

if for every T1, T2 ⊆ E, it holds that

f(T1 ∩ T2) + f(T1 ∪ T2) ≤ f(T1) + f(T2).

Equivalently, a set function f : 2E → R is submodular, if for every T1 ⊆ T2 ⊆ E, and

e ∈ E \ T2, it holds that

f(T1 ∪ {e})− f(T1) ≥ f(T2 ∪ {e})− f(T2).

13
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This definition shows a diminishing returns property, i.e., increasing a set argument T2

by an element e cannot give a larger increase than increasing a subset of the set argument
T1 ⊂ T2 by e. The expression f(T1∪{e})− f(T1) is also referred to as the marginal gain
of the function f at T1 with respect to e.

3.2 Terminology in Optimization

A mathematical optimization problem consists of a cost function f(·) : Rn 7→ R, and a
constraint set S ∈ Rn in which the argument of the cost function is constrained to lie.
The objective is to find a feasible decision x ∈ S which minimizes the cost f(x). This is
denoted as the program

min
x

f(x)

s.t. x ∈ S.
(3.3)

A feasible decision which has the minimum cost is denoted as a minimizer x∗. The
problem is called feasible if the set S is non-empty, otherwise it is called infeasible.
Similarly, the point x is called feasible if x ∈ S, and otherwise it is infeasible. If S = Rn

the problem is unconstrained. It is called unbounded if for any M > 0 there exists a
point x ∈ S such that f(x) < −M . A point x∗ is a global minimizer if f(x∗) ≤ f(x) for
all x ∈ S. A point x∗ is a (strict) local minimizer if there exists a neighborhood N (x∗)
of x∗ such that f(x∗) ≤ (<) f(x) for all x ∈ N (x∗) ∩ S. For general cost functions and
constraint sets, the optimization problem (3.3) can be hard to solve. Efficient solution
methods exist for some common classes of convex optimization problems which will be
of relevance in the course of this work. Therefore, they are introduced in the following.

3.3 Convex Optimization Problems

A significant advantage of convex optimization problems is that any local minimizer is
also a global minimizer. Some common convex optimization problems which are relevant
for this thesis are introduced in the following. For these classes of problems efficient
solvers exist. For further details, the reader is referred to [27].
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3.3 Convex Optimization Problems

3.3.1 Quadratic Program

A quadratic Program (QP) has a quadratic cost function that is to be minimized subject
to affine inequality constraints. A possible representation is the following,

min
x

x⊤Hx + c⊤x

s.t. Ax = b,

Cx ≤ d,

(3.4)

where H ∈ Rn×n is required to be positive semi-definite in order for the program to be
convex. If H is positive definite the program is strictly convex.

3.3.2 Linear Regression and Least-Squares

An example of a QP with a wide range of application is the so-called linear least-squares
problem, or linear regression problem. The objective is to minimize the convex quadratic
function

min
x
‖Ax− b‖2

2.

If the problem is unconstrained, it can be solved analytically as x∗ = A†b. However,
if affine equality and inequality constraints are added, it no longer has an analytical
solution. This problem will be of relevance in Chapter 11.

3.3.3 Second-Order Cone Program

A second-order cone program (SOCP) is characterized through a linear cost function that
is to be minimized, subject to second-order cone constraints. The standard second-order
cone of dimension n is defined as

Kn =







[

v

t

]
∣
∣
∣
∣
∣
∣

v ∈ Rn−1, t ∈ R, ‖v‖2 ≤ t






. (3.5)

An SOCP can be written as

min
x

c⊤x

s.t. Ax = b,

‖Pix + qi‖2 ≤ r⊤
i x + si, i = 1, ..., N,

(3.6)

where Pi ∈ R(ni−1)×n, qi ∈ Rni−1, ri ∈ Rn and si ∈ R form a second-order cone constraint

of dimension ni, which can equivalently be written as

[

Pi

r⊤
i

]

x +

[

qi

si

]

∈ Kni
. For more

details on SOCPs the reader is referred to [28]. SOCPs will be of relevance in Chapters 10
and 12.
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3.3.4 Semi-Definite Program

A semi-definite program (SDP) consists of a linear cost function that is to be minimized,
subject to linear matrix inequality (LMI) constraints. It can be represented as

min
x

c⊤x

s.t. M0 +
n∑

i=1

xiMi ≥ 0,
(3.7)

where xi ∈ R, x = [x1, ..., xn]⊤ ∈ Rn and Mi ∈ Rn×n, ∀i = 1, ..., n. The constraint is an
LMI and the left-hand side is thus constrained to be positive semi-definite. As the set
of positive semi-definite matrices is a convex cone, SDPs are convex programs.

A variety of problems in control and system theory can be formulated as or relaxed
to convex problems that involve LMIs. While for only some of these problems analytical
solutions exist, they can be efficiently solved numerically, for example by interior-point
methods [29]. The reader is referred to [24], [30] for an overview of LMIs and their
applications in control and system theory. In this thesis, LMIs will be of importance in
Chapters 5 and 6.

3.4 Lagrangian Duality

The general optimization problem in (3.3) can take the form

min
x

f(x)

s.t. h(x) = 0,

g(x) ≤ 0,

(3.8)

where f(x) is assumed to be bounded below, and the equality and inequality constraint
functions, h(x) : Rn 7→ Rm and g(x) : Rn 7→ Rp, respectively, are allowed to be non-
convex. The so-called Lagrangian of (3.8) is defined as

L(x, ν, λ) = f(x) + λ⊤h(x) + ν⊤g(x), (3.9)

where ν and λ are referred to as Lagrange multipliers or dual multipliers.

The associated dual program of (3.8) is defined as

max
ν≥0, λ

d(ν, λ), (3.10)

with
d(ν, λ) = min

x
L(x, ν, λ).

The dual function is a pointwise minimum over affine functions in the Lagrange mul-
tipliers ν and λ, and is thus a concave function. For primal feasible points x̄, the
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Lagrangian with ν ≥ 0 is a lower bound on the primal function value, i.e., L(x̄, λ, ν) ≤
f(x̄), ∀(x̄ ∈ S, ν ≥ 0, λ). This implies that also the dual function is an under-estimator
of the primal function value, i.e., d(ν, λ) = min

x
L(x, ν, λ) ≤ f(x), ∀(x ∈ S, ν > 0, λ). In

particular, the maximum of the dual problem in (3.10) always provides a lower bound
on the minimum of the primal problem. If the maximum of the dual problem is equal
to the minimum of the primal problem, so-called strong duality holds.

3.5 Distributed Optimization

If large-scale optimization problems are considered, first-order methods are particularly
efficient. The computations in the iterations are typically inexpensive and can be execu-
ted in a distributed manner if the problem has some structure that can be exploited for its
decomposition. Numerous methods for distributed optimization exist in the literature.
For a comprehensive overview, the reader is referred to [31]. In this thesis, the Alterna-
ting Direction Method of Multipliers (ADMM) is chosen due to its fast convergence in
practice.

3.5.1 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) is a Lagrangian based first-
order method. It relies on a splitting of the optimization variables in order to decompose
the problem into subproblems, which exhibit some (ideally sparse) coupling.

In this thesis, the consensus form ADMM is used in Chapters 5 and 11. It is assumed
that a partitioning of the so-called global optimization variable vector x = [x⊤

1 , ..., x⊤
N ]⊤ ∈

Rn into N global variable vectors xi ∈ Rni associated with N subproblems is possible.
The constraint set S is assumed to be decomposable into N constraint sets Si which
only depend on so-called local variables yi. The objective function is decomposable
into a sum of N objective functions that depend on only the local variables yi, i.e.,
f(x) =

∑N
i=1 fi(yi). In the consensus ADMM, the local variables yi usually contain

copies of entries of the global variable vector x. This introduces equality constraints, the
so-called consensus constraints. The decomposed problem can be written in the form

min
x,y1,...,yN

N∑

i=1

fi(yi)

s.t. yi ∈ Si, ∀i = 1, ..., N,

yi = Eix, ∀i = 1, ..., N,

(3.11)

where Ei are selector matrices, which for each local variable yi select entries from the
global variables of the vector x.
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For ADMM the so-called augmented Lagrangian is of importance. It is denoted by Lρ

and is defined similarly to the Lagrangian in (3.9), with an additional quadratic term.
The augmented Lagrangian for problem (3.11) is given as

Lρ(x, y, λ) =
N∑

i=1

(

fi(yi) + ISi
(yi) + λ⊤

i (yi − Eix) +
ρ

2
‖yi −Eix‖2

2

)

, (3.12)

where ISi
(yi) is the indicator function for the constraint yi ∈ Si, and ρ > 0 is the so-

called penalty parameter. This decomposition of the augmented Lagrangian into the
sum Lρ(x, y, λ) =

∑N
i=1 Lρ,i(x, yi, λ) in (3.12) is possible due to the problem structure

in (3.11). The individual terms Lρ,i are referred to as the partial or local augmented
Lagrangians.

ADMM is an iterative minimization scheme for computing a saddle point of the aug-
mented Lagrangian. The distributed consensus ADMM steps are given in Algorithm 3.1.
Often, the minimization step in x can be simplified by exploiting the (potentially sparse)

Algorithm 3.1 Distributed Consensus ADMM [32].

1: Input: Parameter ρ > 0,
2: Initialization: Set κ = 0, λ(0) = 0, x(0) = 0,
3: while primal, dual residuals not converged do

4: y
(κ+1)
i = argmin

yi

Lρ,i(yi, x(κ), λ(κ)), ∀i = 1, ..., N ,

5: x(κ+1) = argmin
x

∑N
i=1 Lρ,i(y

(κ+1)
i , x, λ

(κ)
i ),

6: λ
(κ+1)
i = λ

(κ)
i + ρ(y(κ+1)

i − Ei x(κ+1)), ∀i = 1, ..., N ,
7: κ = κ + 1,

8: end

coupling structure of the subproblems. Furthermore, the λ-update step is only coupled
through the Eix terms. Some communication between coupled subproblems is required
for the steps in line 5 and 6 in Algorithm 3.1, however.

If the cost functions fi(yi) are closed, proper and convex, and the unaugmented La-
grangian has a saddle point, i.e., there exists a point (x∗, y∗, λ∗), such that Lρ(x∗, y∗, λ) ≤
Lρ(x∗, y∗, λ∗) ≤ Lρ(x, y, λ∗) [32], and if additionally local solutions to the x and yi update
steps in line 4 and 5 of Algorithm 3.1, respectively, exist [33], then strong duality holds
for the problem. In this case, the cost function

∑N
i=1 fi(yi) asymptotically converges to

the primal optimum [32]. As convergence criteria, the so-called primal and dual residuals
can be defined as r

(κ+1)
i = Eix

(κ+1) − y
(κ+1)
i and s

(κ+1)
i = ρEi(x(κ+1) − x(κ)), respectively,

which asymptotically converge to zero. Note that the cost function does not need to be
differentiable. In particular, the cost function can contain indicator functions of closed
nonempty convex sets.
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3.6 Optimality Conditions

3.6 Optimality Conditions

The following results are used to characterize a solution of an optimization problem.

3.6.1 Linear Independence Constraint Qualifications

Given the optimization problem in (3.8), the active constraint set at a point x̄ is defined
as the union of the set of all equality constraints and the set of those inequality constraints
that are active at x̄, i.e., that hold with equality at the point x̄.

Definition 3.6. Let us consider the optimization problem (3.8). Given a point x̄ and

the active constraint set at that point x̄, then the linear independence constraint quali-

fication (LICQ) holds if the set of active constraint gradients {▽hi(x), i = 1, ..., m} ∪
{▽gj(x), j | gj(x) = 0} is linearly independent.

The LICQ implies that at a feasible point, the set of first-order feasible directions coincide
with the tangent cone of the feasible constraint set.

3.6.2 Karush-Kuhn-Tucker Conditions

The first-order necessary optimality conditions for problem (3.8) with the Lagrangian
defined in (3.9) are the following:

▽xL(x, λ, ν) = 0,

h(x) = 0,

g(x) ≤ 0,

νigi(x) = 0, ∀i = 1, ..., p,

ν ≥ 0,

(3.13)

where ν and λ are the Lagrange multipliers as introduced before. The conditions in (3.13)
are known as the Karush-Kuhn-Tucker (KKT) conditions. They imply stationarity,
primal and dual feasibility, and complementary slackness. If the constraint νigi(x) = 0 is
such that exactly one of the values, νi or gi(x) are zero, then strict complementarity holds.
Together with the LICQ, these conditions guarantee that the optimal dual multipliers
λ∗, ν∗ are unique.

3.7 Numerical Optimization: Line Search Methods

in Unconstrained Optimization

Except for special problems, finding an analytical solution of an optimization problem is
in general not possible. Therefore, numerical methods are employed to find an approx-
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imate solution in an iterative manner. Typically, a sequence of iterates is constructed
that starts from an initial point and terminates at an approximate minimizer in a fi-
nite number of iterations. A necessary assumption is that the problem is feasible and
tractable for the chosen optimization algorithm. In Chapter 12, line search methods
will be used. For simplicity, let us consider an unconstrained problem as in (3.3) with
S = Rn. Then, line search methods consist of iterations where first a descent direction
is computed at the current iterate and then a step length is chosen. The iterations are
given as

xκ+1 = xκ + ακ∆xκ, (3.14)

with the chosen step length ακ > 0 and the descent direction ∆xκ of iteration κ. The
descent direction is often chosen as

∆xκ = −B(xκ)−1▽f(xκ), (3.15)

with B(xκ) being a symmetric and nonsingular matrix. For example, in the steepest
descent method, B(xκ) is the identity matrix, i.e., the descent direction is chosen to be
the negative gradient of the cost function.

3.7.1 Newton’s Method for Unconstrained Optimization

In Newton’s method, the term B(xκ) in (3.15) is motivated by a Taylor approximation
and coincides with the Hessian, i.e., the descent direction ∆xκ is computed by solving

▽2f(xκ)∆xκ = −▽f(xκ). (3.16)

However, the computation of the exact Hessian can be computationally expensive. Met-
hods with inexact Hessian approximations, such as the Gauss-Newton method, can be
used instead. Necessary assumptions for the application of the Newton method are that
the problem is strongly convex, i.e., the Hessian is positive definite, and the cost function
is Lipschitz continuous with a small Lipschitz constant, such that the Taylor approxi-
mation represents a good approximation of the problem. Then, a quadratic convergence
rate can be reached by this method.

3.7.2 Gauss-Newton Method for Unconstrained Nonlinear Least-

Squares

The cost function is considered to be the following nonlinear least squares problem

f(x) =
1
2

N∑

i=1

r2
i (x), (3.17)
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where ri(x) are the so-called residuals. The Gauss-Newton (GN) method differs from
the Newton method by the approximation of the Hessian

▽2f(xκ) ≅ ▽r(xκ)⊤▽r(xκ), (3.18)

where ▽r(xκ) is the Jacobian of r(x) = [r1(x), ..., rN(x)]⊤ with respect to x. A GN step
is thus computed by solving

▽r(xκ)⊤▽r(xκ) ∆xκ = −▽f(xκ). (3.19)

The advantage of the GN method is that no exact Hessian information is required. In
problems where the second order term in the Hessian is small, i.e., where the residuals
ri(xκ) are nearly affine or small, the approximation is close to the real Hessian and the
convergence rate is similar to Newton’s method. Furthermore, if the Jacobian ▽r(xκ)
has full rank and the gradient ▽f(xκ) is non-zero, the GN direction is always a descent
direction. This can be seen by first noting that ▽f(xκ) = ▽r(xκ)⊤r(xκ), which we then
use, together with (3.19), to derive the following relation,

∆xκ⊤▽f(xκ) = ∆xκ⊤▽r(xκ)⊤xκ

= −∆xκ⊤▽r(xκ)⊤▽r(xκ)∆xκ

= −‖▽r(xκ)∆xκ‖2
2 ≤ 0.

(3.20)

The last inequality is strict unless ▽r(xκ)∆xκ = 0. In that case, with the assumption of
▽r(xκ) being full rank, we have that ▽f(xκ) = 0, and xκ thus is a stationary point.

Alternatively to solving (3.19), the GN direction can also be computed by solving
the problem

min
∆xκ

=
1
2
‖r(xκ) + ▽r(xκ)∆xκ‖. (3.21)

The reader is referred to [34] for more details and related proofs. This method is exploited
in Chapter 12.

3.7.3 Backtracking Line Search

In order to determine a step length ακ, different methods can be used. If an uncon-
strained problem is considered, the line search needs to ensure that sufficient progress is
made in terms of a sufficient decrease in the cost. If a constrained optimization problem
is considered, the line search additionally needs to guarantee that the iterates do not
become “too infeasible”. In constrained optimization, the line search is therefore perfor-
med on a merit function Φ(x) which consists of a penalty term for the cost and a penalty
term for the infeasibility of the point x. In general, computing an exact step length, i.e.,
computing the solution to the problem

α∗ = min
α

Φ(xκ + α∆xκ) (3.22)
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is expensive. Inexact line search methods can be used instead. Such inexact methods
aim at computing “good” step lengths α that satisfy conditions guaranteeing sufficient
progress. A common inexact line search method is the so-called backtracking line search.
Starting from the unit step length, i.e., α = 1, the step length is iteratively reduced by
a factor ρ with 0 < ρ < 1, until some conditions for sufficient progress of the next
iterate xκ + α∆xκ are satisfied. These conditions can for example be the so-called Wolfe
conditions described in the following.

3.7.4 Wolfe Conditions

Wolfe conditions are commonly used conditions to determine the step lengths in inexact
line search and are defined as follows

f(xκ + ακ∆xκ) ≤ f(xκ) + c1α
κ▽f(xκ)⊤∆xκ,

▽f(xκ + ακ∆xκ)⊤∆xκ ≥ c2∇xf(xκ)⊤∆xκ,
(3.23)

with 0 < c1 < c2 < 1. The first condition, the so-called Armijo’s condition ensures a
sufficient decrease in the cost, and the second condition ensures that the step length
is large enough. While in (3.23), the Wolfe conditions are given in terms of the cost
function f(x), in constrained optimization, they usually need to be satisfied for a merit
function Φ(x), as discussed before.

3.7.5 Convergence of the Gauss-Newton Iteration

The following assumptions are required for convergence of the GN-iteration from Sec-
tion 3.7.2 to a stationary point of f(x). The Jacobians ▽r(xκ) are assumed to have
their singular values uniformly bounded away from zero in the region of interest, i.e.,
∃ γ > 0 such that ‖▽r(xκ)∆xκ‖2 ≥ γ ‖∆xκ‖2 for all ∆xκ and for all xκ in a neigh-
borhood of the bounded level set L = {xκ | f(xκ) ≤ f(x0)} with x0 the starting point
of the iteration. Furthermore, f is assumed to be bounded below and continuously
differentiable in an open set containing the level set L. The residual functions ri(xκ) are
assumed to be Lipschitz continuously differentiable in a neighborhood of the bounded
level set L, which implies that ▽f(xκ) is Lipschitz continuous in some neighborhood of
L. Then, the iterates xκ generated by the GN-method with step lengths ακ satisfiying
the Wolfe conditions in (3.23), converge to a stationary point of f(xκ), i.e., it holds that
lim

k→∞
▽r(xκ)⊤xκ = 0.

A sketch of the proof is the following. The GN direction ∆xκ is guaranteed to be
a descent direction as noted in (3.20). Then, the proof consists of showing that the
angle between the search direction ∆xκ and the negative gradient −▽f(xκ) is uniformly
bounded away from π

2
. Next, the so-called Zoutendijk condition implies that the gradient

norms converge to zero since the search directions are not too close to orthogonality with
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the gradient. For the detailed proof, the reader is referred to the proof of Theorem 10.1
in [34].

3.8 Sequential Quadratic Programming

Let us consider problem (3.8) again where f(x), g(x) and h(x) are allowed to be non-
convex. A possible solution method for the problem is Sequential Quadratic Program-
ming (SQP). This algorithm generates a sequence of iterates by solving QPs. The QPs
are approximations of the original optimization problem (3.8) at the current iterate. At
iteration κ, the following QP is solved

min
∆x

1
2

∆x⊤Hκ∆x + ▽f(xκ)⊤∆x

s.t. h(xκ) + ▽h(xκ)⊤∆x = 0,

g(xκ) + ▽g(xκ)⊤∆x ≤ 0,

(3.24)

where Hκ is the Hessian of the Lagrangian or an approximation thereof. The sequence
of iterates is then updated according to

xκ+1 = x + ακ∆xκ, (3.25)

where ακ is a step size that, for example, satisfies the Wolfe conditions for a chosen
merit function, and ∆xκ is the minimizer of (3.24). Some assumptions on regularity and
boundedness of Hκ, f , g, h and their first and second derivatives need to be satisfied in
order to guarantee convergence. The reader is referred to [35] for details. Chapter 12 will
introduce an SQP variant with feasible iterates and convergence is shown in Section 12.2.
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CHAPTER 4
Introduction to Interconnected Systems

This chapter gives an introduction to the topic of interconnected systems and a literature
review about related work. Then, an overview about the contributions of Part II of this
thesis is provided.

4.1 Interconnected Systems

Interconnected systems refer to systems that can be modeled as an ensemble of multiple
subsystems which can be interconnected in different ways. In particular, the intercon-
nections can be related to coupling in the dynamics, to a common task, i.e., a performance
objective, or to sensing or communication.

Multi-agent systems (MAS) [36], [37] are a subclass of interconnected systems. The
subsystems, or agents, are usually dynamically decoupled, as for example in groups of
autonomous robots, formations of unmanned aerial vehicles (UAVs), satellites, underwa-
ter vehicles or vehicle platoons. In cooperative robotics, coupling forces may, however,
arise through the manipulation of objects that can be interpreted as a coupling of the
dynamics.

4.1.1 Cooperative Multi-Robot Systems in Digital Fabrication

Large-scale interconnected systems offer the potential of performing complex tasks while
the system can be an assembly of simple subsystems. This gives multi-robot systems the
potential to perform automated fabrication tasks in construction processes. In particular,
complex tasks for constructing buildings, such as the manipulation of heavy or large
objects, can be achieved by cooperative multi-robot systems [9].

Articulated robots, such as robotic arms with several rotary joints are often used
for manipulation tasks. Even though they have highly nonlinear dynamics [38], [39],
usually a hierarchical control architecture is used for manipulation tasks, where local
lower-level controllers of the individual robots perform a feedback linearization. Lower-
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(a).
Heterogeneous

system

(b).
α-β-Heterogeneous

system

(c).
Homogeneous

system

.

Subsystems

Couplings

Figure 4.1: Classification of subsystems and interconnections with respect to homoge-
neity. Different box colors, and different arrow types symbolize different subsystems and
different interconnections, respectively.

level impedance controllers, for instance, transform the closed-loop dynamics into virtual
mass-spring damper systems [40]. This enables the control of the ratio between the force
and the position of the end-effectors which is beneficial in two aspects: For the control
task, it prevents from exerting high end-effector forces in the presence of uncertainties in
the cooperation. For the higher-level control design, the robotic arm can be modeled as
a linear time-invariant (LTI) system. This work therefore focuses on interconnected LTI
subsystems which can be physically coupled as for example in cooperative manipulation
tasks. More details about the subsystems and the interconnections are given in the
following.

4.1.2 Classification of Subsystems and Interconnections

In this work, systems that consist of N interconnected finite-dimensional LTI subsys-
tems are considered. While a homogeneous system consists of identical subsystems and
identical interconnections, a heterogeneous system consists of subsystems and intercon-
nections which may all be different. In Chapter 5, a new characterization of systems that
parametrizes the structure of the interconnection is proposed, which is referred to as α-
β-heterogeneous systems. They consist of α groups of homogeneous subsystems with
β different types of interconnections. The different classes of systems are illustrated in
Figure 4.1. We will refer to neighbors of a subsystem as those subsystems to which it is
coupled.

4.1.3 Controller Architectures

Different approaches for the control of interconnected systems have been proposed. A
centralized approach is able to find optimal control inputs by exploiting the full informa-
tion about the system. However, the complexity, large scale and spatial distribution of
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(a).
Centralized

controller

(b).
Decentralized

controller

(c).
Distributed

controller

Subsystems and
Couplings

Subcontrollers and
Communication

Figure 4.2: Classification of controller architectures for an examplary interconnected
system. Centralized control unit (a) and subcontrollers without (b) and with (c) com-
munication to neighboring subcontrollers.

such systems make the control by a central unit intractable. In contrast, a decentralized
approach, where each subsystem has an individual subcontroller which computes its in-
puts based on local information, has less computational requirements [41], [42]. However,
depending on the system and the task, the control performance may be unsatisfying. As
a remedy to the downsides of both centralized and decentralized approaches, distributed
architectures have been proposed [43], [44], where the subsystems have local sensing,
control, and communication capacities. In contrast to decentralized control, communi-
cation between neighboring subcontrollers is introduced in distributed control to account
for the coupling of the system and to increase the control performance. The different
controller architectures are illustrated in Figure 4.2.

4.1.4 Challenges and Open Problems

In both the distributed controller synthesis and the implementation major open chal-
lenges exist. Distributed control design is a non-trivial task because of informational
constraints [45]–[47], possible heterogeneity of the systems, and the coupling through
dynamics, constraints or the objective. Furthermore, if large-scale systems are conside-
red, centralized synthesis methods become computationally intractable. If the problem
is solved in a distributed way, many design choices concerning the decomposition of the
system or the communication topology need to be made. These choices imply a trade-
off between the computational effort, the amount of communication and the achievable
performance. In decentralized control schemes, so-called fixed modes can prevent the
stabilizability of the system or limit the achievable performance [48], [49], which makes
a minimum of communication necessary.

Some proposed algorithms rely on a distributed optimization that is performed on-
line, or on information about future trajectories of neighboring subsystems, which requi-
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res extensive communication [50], [51]. In many applications, however, communication
between the subsystems however is unreliable, delayed, or restricted, which makes dis-
tributed control methods that rely on extensive communication schemes intractable.
Examples of such applications are autonomous underwater vehicles, spacecraft formati-
ons, mining, or any applications with limited bandwidth and a large number of agents
[52], [53]. Challenges related to the unreliability of communication potentially also arise
on the construction site. They can be caused by missing infrastructure, by obstructions
due to iron reinforced walls, or by disturbances from electromagnetic radiation, e.g.,
originating from welding processes.

4.2 Related Work

This section provides an overview of the state-of-the-art approaches for the topics related
to the first part of this thesis. Specifically, related work on distributed control of complex
interconnected systems, overlapping control, and decentralized fixed modes is presented.
This overview is not exhaustive. The particular focus lies on approaches that will be
relevant in the course of this work.

4.2.1 Modeling Approaches for Interconnected Systems

As large-scale distributed systems in general have high-dimensional state, input and out-
put spaces, a centralized state-space representation is prohibitive and not useful for a
scalable controller synthesis. In fact, the modeling of interconnected systems is closely
linked to the distributed controller synthesis. Therefore, it is beneficial to model dis-
tributed systems as interconnected systems composed of a decentralized part and an
interconnection part. The decentralized part is the ensemble of the individual subsys-
tems, and the interconnection part can be modeled through an interconnection operator.

A general representation based on a linear fractional representation (LFR) of the sy-
stem has been introduced by [54] and [55] for gain-scheduled and decentralized controller
design, respectively, and later on has been used in [56] and [57] for distributed control
design. In [43], [44], [58] similar models have been used to represent spatially intercon-
nected systems by means of spatial shift operators. In these approaches, distributed
controllers of heterogeneous systems over undirected graphs are synthesized, where the
interconnection structure of the controller is assumed to be equal to the one of the plant.

In [59], [60] so-called decomposable systems are introduced, which can be modeled
as an LFR resulting in a compact system model. The systems are required to be homo-
geneous and the interconnection topologies are restricted to be diagonalizable. Genera-
lizations have been made that extend the approach to different groups of homogeneous
subsystems [61], to time-varying subsystems [62], and to directed interconnection graphs
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[63]. The system models in [61]–[63] are however restricted to equal interconnections
within the groups of homogeneous subsystems.

4.2.2 Controller Synthesis for Interconnected Systems

Due to the described complexity of the problem, the controller synthesis for intercon-
nected systems requires some form of decomposition. Based on the previously described
modeling approaches which separate the system into a decentralized part and an intercon-
nection part, tools from robust and gain-scheduled controller synthesis have successfully
been applied [64], [65].

In [36], a consensus protocol for MAS is considered. A signal transformation in form
of a Schur transformation is used to decouple the synthesis for homogeneous multi-agent
LTI systems into synthesis conditions of the order of the subsystems that only differ
by the Laplacian eigenvalues. This approach is limited to MAS. Furthermore, only
stability guarantees are provided. In [66], the approach from [36] is extended to include
performance objectives in form of the H∞-norm. In [67] an approach for distributed
stabilizing controller synthesis is presented, where a chordal decomposition is applied
and a sequential design procedure is performed. However, if a performance criterion is
to be optimized, this approach can in general lead to conservatism or infeasibility.

While the approaches in [36] and [66] are limited to dynamically decoupled MAS, a
diagonalizing signal transformation to decomposable systems, which may be dynamically
coupled, is applied in [60]. This allows for the system to be modeled as an LFR, to
which the full block S-procedure (FBSP) can be applied [25], [68]. Under structural
assumptions on the Lyapunov and multiplier matrices [60], this approach allows the
decomposition of the synthesis matrix inequalities into equations of small dimensions for
the individual subsystems. For the case of multiple groups of homogeneous subsystems
interconnected over undirected graphs, applying a singular value decomposition (SVD)
is proposed in [61] which results in a similar decomposition but potentially introduces
more conservatism compared to applying the FBSP. Instead of the signal transformation
in [59], a congruence transformation is proposed in [62] to cope with time-varying and
heterogeneous subsystems. Groups of homogeneous subsystems are considered, which
are required to be interconnected by undirected interactions within the groups and by
directed ones between the groups. In [63], a transformation which can deal with directed
graphs is introduced. The approaches in [61]–[63] however cannot handle different types
of interconnections within the groups of homogeneous subsystems.

In addition to structural assumptions on the Lyapunov and multiplier matrices, struc-
tural constraints as in DG scalings are imposed in [56], which in general introduces further
conservatism. Together with the assumption of undirected interconnections, synthesis
equations for each subsystem are derived which are coupled to the equations of neig-
hboring subsystems. The synthesis needs to be solved in a centralized way. In [69],
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a distributed algorithm for controller synthesis is proposed which is based on a primal
decomposition and subgradient method. Couplings in the synthesis equations given in
[56] correspond to interconnections between subsystems. For each such connection, both
involved subsystems compute subgradient information for the distributed synthesis al-
gorithm, where the updates occur sequentially. The work in [57] makes use of a similar
framework as in [56] for synthesizing a controller with an interconnection structure which
does not need to replicate the structure of couplings in the plant. The FBSP is applied,
however, no distributed synthesis method is proposed.

In [70]–[72] decentralized state feedback control design methods are introduced where
not only the gains, but simultaneously the controller structure is optimized. The appro-
aches iteratively solve convex relaxations of the design problem. In [73], these so-called
sparsity-promoting control ideas are extended and applied to the control of power net-
works. In [74], gradient based methods are used in order to design the control gains and
the control structure by means of placing virtual inertia in power grids.

Other distributed control approaches have been proposed in the framework of distri-
buted model predictive control (MPC). Some cooperative distributed MPC schemes rely
on extensive communication between the subcontrollers [75], [76]. Other directions have
been explored where the subsystems are robust against the coupling in the system, such
as in tube-based MPC [77], [78], where less communication is required. Plug and play
schemes [79]–[81] hinge on the existence of weak interconnections in the system, which
makes the system robust against certain changes in the interconnection topology.

In the so-called System Level Synthesis approach [82], the controller synthesis is
transformed to an optimization problem over the closed-loop system responses. Based on
the assumption of finite impulse responses, convex subspace constraints for the problem
can be formulated, and the distributed structure of the system response can be included,
as shown in [83].

4.2.3 Augmented Overlapping Control and Estimation

In numerous applications strong coupling between subsystems exists. Examples include
physical coupling between robots, such as in cooperative manipulation tasks, or coupled
control goals as in formation control. In these cases, completely decentralized controllers
typically achieve a poor control performance. With the concepts that are introduced
in [84], and extended in [42], [85], [86] and related literature, it has been shown to be
beneficial to design decentralized controllers in an augmented overlapping state space,
so that the augmented subsystems incorporate information about the strong coupling of
the system.

The concept of overlapping decompositions is based on the Inclusion Principle [42],
and has been intensively studied in the literature [42], [84], [85]. The goal in [42], [86]
and related work is a tractable control design for large-scale systems. The computational
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tractability is achieved through a decentralized controller synthesis in an augmented
state space where the strong dynamic couplings are moved to the diagonal blocks of
the overall augmented system matrices. Therefore, the subsystems are only coupled by
weak interconnection terms on the off-diagonal blocks of the system matrices, which
are neglected in the decentralized controller design. After the decentralized controller
synthesis, the controller is contracted back to the original state space for implementation.
The contracted controller has a distributed structure and thus potentially achieves a
better performance than a decentralized controller in the original state space.

Distributed dynamic output feedback control can be viewed as a decentralized or dis-
tributed control scheme which is based on distributed estimation. Distributed estimation
has been studied in the literature [87]–[89], with the goal of estimating the overall state of
a plant with a consensus approach. In [90], [91], distributed moving horizon estimation
schemes were proposed. In [52], distributed control is proposed based on parallel esti-
mation where each subsystem estimates the whole system state. As the computational
requirements of the individual subsystems scale linearly with the number of subsystems,
this architecture becomes intractable for large-scale systems.

In [12], a distributed control scheme based on overlapping estimation is introduced.
Instead of explicitly communicating states of interest to neighboring subsystems, the
latter can implicitly gain information on states of interest by estimating them in addition
to their own local states. As the computational requirement for each subsystem stays
constant for a constant degree of overlap, the complexity scales linearly with the number
of agents, which is beneficial for the control of larger systems. In [12], systems are
considered which are small enough for centralized controller and estimator design but
require decentralized implementation and communication. Implementing a distributed
Kalman filter may require a lot of communication in general. Therefore, the structure of
the estimator gains is a design choice, which corresponds to choosing the communication
structure.

4.2.4 Fixed Modes and Minimum Communication Design

Decentralized fixed modes (DFMs) are defined in [48] as the modes of the system which
are fixed under any decentralized controller. The concept of fixed modes (FMs) thus cor-
responds to the concept of decentralized controllability and observability. In [92], [93],
different methods for the characterization of FMs are given. The method in [93] is based
on rank tests. In [53], decentralized overlapping fixed modes (DOFMs) are introduced as
FMs which cannot be moved by a controller of a given decentralized overlapping struc-
ture, corresponding to a distributed structure of the contracted controller. A method for
their detection based on bipartite graphs is proposed. In [94] and subsequent work of the
same authors, a measure of decentralized controllability is considered to give a metric
for how far a system is away from having FMs. In [95], pole-placement for non-FMs is
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addressed, which stabilizes the system if all FMs lie in the left half plane. In [96] an
approximate DFM measure is used to improve the control performance.

If FMs exist that are not stabilizable or unacceptably limit the performance, they
need to be removed. Methods to eliminate FMs have been considered in the literature,
for example by changing the structure of the feedback matrix, [97] , or by approaches that
are more general than LTI control for special cases of FMs [98]. Finding a minimum
cost feedback pattern, i.e., an interaction structure of local LTI controllers with no
structural FMs, is considered in [99]. The problem formulation is based on a graph-
theoretic approach. In [100], finding an optimal information structure for overlapping
systems is considered. Based on the characterization of DFMs in [53] the method can
only handle unrepeated DFMs. In [101] a minimum cost constrained input-output and
control configuration problem is stated that minimizes the required sets of inputs, outputs
and feedback links that result in no FMs. Based on a graph-theoretic description, the
problem is reduced to a maximum matching problem. In [102], FMs within a parallel
estimation scheme of [52] are considered and a combinatorial search algorithm to find a
minimal set of communication links is given.

4.2.5 ADMM for Distributed Control and Optimization

In the area of distributed control and optimization, ADMM, as introduced in Section 3.5,
has become a widely used method [32]. It combines the advantages of dual decomposi-
tion, such as parallel and distributed computation, with the advantages of the method
of multipliers, such as convexification. ADMM has been used in numerous applicati-
ons, such as in electrical power systems [103]–[105], in distributed system and parameter
identification for large-scale systems [17], [106], in optimal traffic flow problems [107],
in sensor and actuator selection [108], or in distributed reinforcement learning [109]. In
[110], ADMM is used in a distributed model predictive control scheme based on the
system level synthesis.

4.3 Scope of Part II

In order to overcome some of the outlined limitations and challenges, Part II of this the-
sis focuses on the modeling of large-scale heterogeneous interconnected systems, on the
scalability of the controller synthesis related to such systems, and on increasing the achie-
vable controller performance while minimizing the number of required communication
links.

34



4.3 Scope of Part II

4.3.1 Scalable Controller Synthesis for Heterogeneous Inter-

connected Systems

We make use of a modeling framework for heterogeneous interconnected systems that is
similar to the one in [56], [57]. The N subsystems and the |E| directed interconnections
can all be of different type. We propose a scalable controller design for large-scale
heterogeneous interconnected systems. The proposed controller synthesis allows for the
computation of a controller with a directed interconnection structure, which can differ
from the plant coupling structure.

Through applying the FBSP and allowing for structured full block multipliers we
potentially reduce conservatism compared to imposing a structure as in D or DG scalings
as done in [56]. Based on a congruence transformation and on structural assumptions on
the Lyapunov and multiplier matrices, we can decompose the synthesis equations. The
resulting coupled matrix inequalities are of the order of the individual subsystems.

For general heterogeneous systems, the number of small decomposed synthesis equa-
tions grows linearly with the number of subsystems. To further improve the scalability
of the controller synthesis, we propose a distributed method for solving these coupled
synthesis conditions. The distributed synthesis is based on ADMM [32]. By choosing
the variable splitting in a specific way, the ADMM algorithm can be simplified to two
steps per iteration only involving communication with nearest neighbors.

4.3.2 Special Class of Heterogeneous Interconnected Systems

We introduce a novel classification of systems, referred to as α-β-heterogeneous systems.
They consist of α groups of homogeneous subsystems with β different types of intercon-
nections. Based on this classification, we show how the general heterogeneous system
model of N subsystems and |E| interconnections can be transformed to a more compact
model in the case where 1 < α < N and 1 < β < |E|. As the controller synthesis is
tightly linked to the modeling of the system, this more compact model is beneficial for
the scalability of the controller synthesis.

This novel class of α-β-heterogeneous systems presents a significant extension with
respect to the system class in [61], where different groups of homogeneous subsystems
are required to have identical interconnections. While in [61], the interconnection topo-
logy of the controller needs to mirror the one of the plant, the controller interconnection
topology can be chosen freely in the approach for α-β-heterogeneous systems that we
propose. In particular, sparse interconnection topologies and therefore sparse communi-
cation topologies can be selected.
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4.3.3 Increased Performance for Sparse Communication

Instead of improving the control performance of decentralized control schemes by adding
explicit communication, the decentralized control performance can be improved by an
increase in local model knowledge. This is achieved through overlapping subsystem dyn-
amics in an augmented state space. Based on the idea in [12], where distributed control
based on overlapping state estimation is designed in a centralized manner, we introduce
a design of interconnected dynamic output feedback controllers in an augmented state
space. The augmented system is modeled as an interconnected system. which allows us
to employ the scalable controller synthesis methods based on the FBSP. The communi-
cation topology of the augmented controller is a design choice. In contrast to the existing
similar approaches on overlapping control given in [42], [84], [85], and references therein,
the local controllers that we synthesize in the augmented state space are not transformed
back to the original state space, but they are implemented with the augmented state
instead. Because of the increased overlap in the local models, more information of the
overall system is incorporated in the local controllers. This controller design thus allows
for a trade-off between the required communication, the computational effort, and the
achievable control performance.

4.3.4 Minimum Communication Design

We consider so-called fixed modes (FMs), which prevent the interconnected system from
being stabilizable or which restrict the achievable control performance under a decen-
tralized controller. The input-output structure of the system is assumed to be given.
We propose a method to identify FMs, based on rank tests from [93] and analyze the
existence of a communication topology between the subcontrollers to remove all FMs.
The communication of both measurements and controller states are considered.

The problem of finding the minimum communication topology to remove all FMs
is formulated as a minimum cost coverage problem and the constraints are shown to
be submodular. Therefore, a polynomial-time greedy algorithm is applicable and has a
guaranteed suboptimality bound [111]. We propose an alternative algorithm which finds
the communication set with the minimum amount of links based on a decision tree with
efficient cuts.

4.4 Summary of the Contributions of Part II

The contributions of Part II of this thesis are summarized as follows.

1. A general modeling framework for interconnected systems which allows for hetero-
geneous subsystems and heterogeneous directed interconnections is considered in
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4.5 Outline of Part II of the Thesis

Section 5.1. In Section 5.3, we show how general distributed systems with a cen-
tralized performance channel can be transformed into this interconnected system
model such that the system norm is not changed under the transformation. This
implies that the structure of the interconnected system model can be exploited in
a scalable controller synthesis while guaranteeing the performance specification for
the original system.

2. A controller synthesis for heterogeneous interconnected systems is proposed which
is scalable in two aspects. First, a decomposition of the controller synthesis con-
ditions based on the FBSP is introduced in Proposition 5.2. Second, a distributed
solution method for the decomposed coupled synthesis conditions is proposed in
Algorithm 5.1. It only requires communication between neighboring subsystems
and no central coordination.

3. We introduce so-called α-β-heterogeneous systems which consist of α groups of
homogeneous subsystems and β different interconnection types and can be classified
to lie in between homogeneous and heterogeneous systems. α-β-Heterogeneous
systems can be described by more compact system models than heterogeneous
systems, which allow for a decomposed controller synthesis of reduced complexity,
given in Proposition 6.4. The controller topology is a design choice, which is
enabled by the consideration of different interconnection types.

4. In order to improve the control performance without increasing the explicit com-
munication, we present an interconnected controller synthesis based on a system
decomposition with overlapping augmented subsystems. We prove that the per-
formance guarantees of the controller designed in the augmented space, given in
Proposition 7.2, hold in interconnection with the original system.

5. To eliminate all FMs, we propose to introduce a minimum communication topology.
In Lemma 8.2 we prove which conditions are required in order to guarantee the
existence of a communication topology that eliminates all FMs. We show that the
problem can be formulated as a minimum set coverage problem in (8.17), which is
proved in Lemmas 8.3 and 8.4. Based on this result a suboptimal solution can be
found by a polynomial greedy algorithm, or the optimum can be found by the tree
search algorithm proposed in Algorithm 8.2.

4.5 Outline of Part II of the Thesis

Part II of the thesis is structured as follows. Chapters 5 and 6 present scalable controller
synthesis methods for interconnected systems. While Chapter 5 focuses on heterogeneous
systems, Chapter 6 considers special classes of systems, in particular homogeneous sys-
tems and α-β-heterogeneous systems, for which the controller synthesis can be reduced
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in complexity. Chapters 7 and 8 propose methods for improving the control performance
while decreasing the communication. Chapter 7 presents an augmented controller design
which can improve the achievable control performance for a given sparse communication
topology. Chapter 8 introduces an algorithm to identify FMs and to find the minimum
communication topology required to remove them. Section 14.1 in Part IV provides
conclusions and an outlook related to Part II.
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Heterogeneous Interconnected Systems

This chapter proposes a scalable controller synthesis for heterogeneous interconnected
systems. As the modeling is closely linked to the controller synthesis, we will first present
a framework which introduces the system as an ensemble of decentralized subsystems
with an interconnection channel similarly as in [56], [57]. We apply multiplier-based
methods from robust and gain-scheduled control, in particular the FBSP [25], [68], to
this system model. We decompose the controller synthesis equations for a reduced com-
plexity. In comparison to using DG scalings as in [56], full block multipliers are used,
which potentially reduces conservatism. This chapter focuses on the most general case of
heterogeneous systems where all subsystems and interconnections can be different. Be-
cause of the generality of the system model, the decomposed controller synthesis scales
only linearly with both the number of subsystems and interconnections and polynomi-
ally with the number of neighboring subsystems. For a better scalability, we introduce a
distributed method for solving the decomposed synthesis equations which requires only
local communication. The interconnection topology of the synthesized controller can
be freely chosen, in particular, a sparse communication structure can be selected. The
contributions presented in this chapter have been submitted for publication in [15].

This chapter is organized as follows. Sections 5.1 and 5.2 introduce a framework
for modeling the interconnected plant, controller and closed loop. Section 5.3 shows
how a distributed system with centralized performance channel can be transformed into
the presented model. In Section 5.4, the FBSP is employed. Based on some structural
assumptions on the Lyapunov matrix and the multipliers, we decompose the synthesis
matrix inequalities into small ones of the order of the individual subsystems. To solve
the decomposed equations, we introduce a distributed ADMM algorithm without central
coordination in Section 5.5. Numerical examples illustrate these results in Section 5.6
before Section 5.7 concludes this chapter.
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5.1 Model of Heterogeneous Interconnected Systems

We consider a system of N different LTI subsystems which are coupled by different
types of interconnections over an arbitrary directed graph. This section presents the
interconnected system model.

5.1.1 Graph Structure

We consider a connected graph T G = {N , EG} where its vertices are N possibly different
finite dimensional LTI subsystems, associated with the node set N = {1, . . . , N}, which
is the index set of all subsystems Gi, i ∈ N . We further define the set of directed edges
EG := {(i, k)} for all pairs (i, k) where subsystem i is influenced by subsystem k. The
interconnection topology of the subsystems is captured by the interconnection matrix
P G, which is an N × N matrix, of all zeros except for non-zero entries in the places
corresponding to interconnections between subsystems i and k, i.e., the entry P G

ik is
non-zero if subsystem k influences subsystem i.

While the interconnection graph T G capturing the interconnections between the
subsystems may be directed, we will later on assume that subsystems interconnected
by an edge in EG can communicate in a bidirectional way during controller synthesis,
which will be presented in Section 5.5. To this end, and for the interconnection re-
presentation which will be introduced in Section 5.1.3, we introduce the mirror graph
T GM := {N , EGM} as the graph which completes T G to an undirected one, i.e., for all
directed edges (i, k) ∈ EG for which there does not exist an edge (k, i) ∈ EG, there exists
an edge (k, i) in EGM . The interconnection matrix P GM is defined for T GM analogously
to P G for T G.

5.1.2 Interconnected State Space Representations

The subsystems Gi admit continuous-time state space representations given by

Gi :


















ẋi

yi

zi

qi












=












Ai Bu,i Bw,i Bp,i

Cy,i 0 Dyw,i Dyp,i

Cz,i Dzui
0 Dzp,i

Cq,i Dqu,i Dqw,i 0























xi

ui

wi

pi












, i = 1, ..., N, (5.1)

with the state vector xi ∈ Rnxi , the local control input and measured output, ui ∈ Rnui

and yi ∈ Rnyi , the local exogenous input and performance output, wi ∈ Rnwi and zi ∈
Rnzi , and the interconnection signals pi ∈ Rnpi and qi ∈ Rnqi , respectively.

Remark 5.1. The feedthrough matrices Dyu,i and Dzw,i have been set to zero, because for
physical systems, Dyu,i is usually zero, and Dzw,i is often chosen to be zero by convention.
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Gi Gk

PG
ki

PG
ik

qik pki

pik qki

wi zi wk zk

ui yi uk yk

Figure 5.1: Interconnection with performance inputs and outputs.

The feedthrough matrix Dqp,i is restricted to be zero, in order to avoid algebraic loops.

A transformation of a general distributed LTI system to the representation in (5.1) will
be given in Section 5.3.

Note that the model in (5.1) can consider different process noise and measurement
noise vectors. This is, for example, achieved by defining the stacked vector

w =
[

v̂⊤ ŵ⊤
]⊤

, (5.2)

with v̂ being the process noise and ŵ the measurement noise. The stacked system
matrices are accordingly defined by

Bw =
[

B⊤
v̂ 0⊤

]⊤
,

Dyw =
[

0⊤ D⊤
yŵ

]⊤
.

(5.3)

5.1.3 Interconnection Relations

We define the set of neighboring subsystems of subsystem i, denoted by NG
i , as the set

of subsystems for which there exists an interconnection with subsystem i, i.e., an edge
(i, k) in the union of edge sets EG ∪ EGM ,

NG
i := {k | (i, k) ∈

(

EG ∪ EGM
)

, ∀ k ∈ N , k 6= i}.

The interconnection signals pi and qi of the subsystems are further partitioned into

pi = concatk∈N G
i

(pik) ,

qi = concatk∈N G
i

(qik) ,
(5.4)

where pik ∈ Rnpik , qik ∈ Rnqik are the ingoing and outgoing interconnection signals of
subsystem i from and to subsystem k, respectively. This is illustrated in Figure 5.1. The
interconnection signals p ∈ Rnp and q ∈ Rnq of the system are then defined as

p = concati∈N (pi) ,

q = concati∈N (qi) .
(5.5)
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Furthermore, we define the interconnection operator PG through the relation

p = PGq. (5.6)

The (i, k)-entries in PG are the block elements PG
ik of the individual interconnection

relations pik = PG
ik qki, which are shown in Figure 5.1. In the following, we will consider

ideal interconnections. In this case, the entries PG
ik are constant matrices of appropriate

dimensions.

Both P G as well as PG capture information about the interconnection topology of the
system. While P G directly encodes the interconnections between the subsystems, PG

describes the interconnections on the level of the edges, i.e., on the level of the ingoing
and outgoing interconnection signals, p and q, respectively. The following numerical
example illustrates the definition of the interconnection signals and the interconnection
matrix.

Example 5.1 (Definition of interconnections q, p and interconnection matrix PG). We
consider the following system composed of four subsystems with the interconnection
matrix

P G =






0 P G
12 0 0

P G
21 0 P G

23 P G
24

0 P G
32 0 0

0 P G
42 0 0




 ,

indicating the interconnection topology of the subsystems. The interconnection channel
as defined in (5.5) is









p12

p21

p23

p24

p32

p42









︸ ︷︷ ︸

p

=












0 PG
12 0 0 0 0

PG
21 0 0 0 0 0

0 0 0 0 PG
23 0

0 0 0 0 0 PG
24

0 0 PG
32 0 0 0

0 0 0 PG
42 0 0












︸ ︷︷ ︸

PG









q12

q21

q23

q24

q32

q42









︸ ︷︷ ︸

q

.

For example, subsystem 1 has an interconnection channel of dimensions from np1 = np12

to nq1 = nq12 , and subsystem 2 has an interconnection channel of dimensions from
np2 = np21 + np23 + np24 to nq2 = nq21 + nq23 + nq24 .

In the following, we denote decentralized, i.e., block-diagonal parts by a superscript (·)d,
and interconnection parts, i.e., off-block-diagonal parts by a superscript (·)i. The decen-
tralized part of the plant, i.e., the ensemble of all Gi, ∀i = 1, ..., N , is therefore denoted
as Gd. The overall interconnected system, G, is given by the LFR with decentralized
part Gd and interconnection channel, as introduced in Section 2.4, as follows

G :







Gd = diagi∈N (Gi) ,

p = PGq .
(5.7)
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Note that with the definition of pi and qi in (5.4) over the interconnections (i, k) ∈
EG∪EGM the interconnection matrix PG is defined over the undirected graph T G + T GM ,
where T GM introduces zero signals in the appropriate channels to complete the graph T G

to an undirected one. Therefore, in the following, w. l. o. g., we will consider undirected
interconnection graphs, and PG is thus symmetric.

The system G can also be written in terms of the stacked signal vectors of all subsys-
tems, given as

x = concatN
i=1(xi) , y = concatN

i=1(yi) , u = concatN
i=1(ui) ,

z = concatN
i=1(zi) , w = concatN

i=1(wi) ,

p = concatN
i=1(pi) , q = concatN

i=1(qi) ,

(5.8)

and the block-diagonally stacked system matrices, given as

Ad = diagN
i=1(Ai) , Bu

d = diagN
i=1(Bu,i) , Cy

d = diagN
i=1(Cy,i) ,

Bw
d = diagN

i=1(Bw,i) , Dyw
d = diagN

i=1(Dyw,i) , Dd
zw = diagN

i=1(Dzw,i) ,

Cd
z = diagN

i=1(Cz,i) , Dzu
d = diagN

i=1(Dzu,i) ,

(5.9)

where the matrices on the diagonal are the subsystem matrices from (5.1). They are
the decentralized system parts, e.g., Ai = Aii ∈ Rnxi

×nxi , ∀i ∈ {1, ..., N}. The system
matrices of the decentralized system part Gd that are related to the interconnection
channel are formed accordingly, as

Bd
p = diagN

i=1(Bp,i) , Dd
yp = diagN

i=1(Dyp,i) , Dzp
d = diagN

i=1(Dzp,i) ,

Cq
d = diagN

i=1(Cq,i) , Dqw
d = diagN

i=1(Dqw,i) .
(5.10)

A possible realization of the subsystem matrices is the following

Bp,i = concatk∈N G
i

([

Aik Bu,ik Bw,ik

]⊤)⊤
,

Dzp,i = concatk∈N G
i

([

Cz,ik Dzu,ik Dzw,ik

]⊤)⊤
,

Dyp,i = concatk∈N G
i

([

Cy,ik 0 Dyw,ik

]⊤)⊤
,

Cq,i = concatk∈N G
i

([

Inxk
0 0

]⊤)
,

Dqw,i = concatk∈N G
i

([

0 0 Inwk

]⊤)
,

Dqu,i = concatk∈N G
i

([

0 Inuk
0
]⊤)

.

(5.11)

All the system matrices of Gd are thus block-diagonal.

Remark 5.2. If not all of the signals are interconnected, then the corresponding rows and
columns can be deleted, reducing the dimensions of the interconnection channels.
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Gd

Gd

K

zw

p

GG

u y

q

Kd

PG

PK
qK pK

Figure 5.2: Structure of the open-loop plant G = Fl(G
d,PG), the controller K = Fl(K

d,PK)

and the closed-loop system G = Fl(Gd,P).

5.2 Controller Structure and Closed Loop System

This section provides details about the structure of the interconnected controller to be
synthesized and the resulting closed-loop system.

5.2.1 Interconnected Controller Structure

The objective of the controller synthesis is to find another interconnected system, the
controller K, such that the interconnection of the plant G with the controller K is stable
and minimizes the induced L2-norm of the closed-loop system, which we denote by G.
The controller structure is chosen such that the closed-loop system can also be modeled
as an LFR. This structure will be exploited in the controller synthesis. The structures
of the open-loop plant G = Fl(Gd,PG), the controller K = Fl(Kd,PK) and the closed-
loop system G = Fl(Gd,P) are illustrated in Figure 5.2. The definitions of the individual
parts will be given in the following.

The state-space realization of the subcontrollers Ki are given by

Ki :














ẋK
i

ui

qK
i








=








AK
i BK

i BpK ,i

CK
i DK

i CpK ,i

CqK ,i DqK ,i 0















xK
i

yi

pK
i








, i = 1, ..., N. (5.12)
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A possible realization of the controller matrices is given as follows

BpK ,i = concatk∈N K
i

([

AK
ik BK

ik

]⊤)⊤
,

CpK ,i = concatk∈N K
i

([

CK
ik DK

ik

]⊤)⊤
,

CqK ,i = concatk∈N K
i

([

I 0
]⊤)

,

DqK ,i = concatk∈N K
i

([

0 I
]⊤)

.

(5.13)

In this case, the interconnection channel consists of the controller states and measured
outputs of the neighboring plants. Other formulations are possible, where for example
the controller states and the control inputs are communicated.

We define the neighboring subcontrollers of subcontroller i by

NK
i = {k | (k, i) ∈

(

EK ∪ EKM
)

}.

The interconnection signals of the subcontroller i, pK
i ∈ R

n
pK

i and qK
i ∈ R

n
qK

i , are defined
and partitioned analogously to the interconnection signals, pi and qi, of the subsystem i.
Also the overall interconnection signals of the controller, pK ∈ Rn

pK and qK ∈ Rn
qK , are

defined analogously to the signals p and q of the plant. With the interconnection matrix
PK , the relations of the interconnection signals of the controller are defined by

pK = PKqK .

As before for the plant, we define the interconnection graph T K = {N , EK} for the
interconnected controller. Furthermore, we define the interconnection matrix P K as the
N ×N -matrix capturing the topology of the controller on the level of the subcontrollers.
The mirror graph T KM , as well as the mirror interconnection matrix P KM are defined
analogously to T GM and P GM from before.

As before for the system, we denote the decentralized part of the controller, i.e., the
ensemble of all Ki, ∀i = 1, ..., N , by Kd. The interconnected controller is then given by
the decentralized part Kd and the interconnection channel as follows

K :







Kd = diagi∈N (Ki) ,

pK = PKqK .
(5.14)

Again, as for the plant, the interconnection signals, pK and qK , and the interconnection
matrix PK capture the topology described by the undirected graph T K + T KM .

The overall controller K can also be written in terms of the stacked signal vectors of
all subcontrollers, as

xK = concatN
i=1

(

xK
i

)

, u = concatN
i=1(ui) , pK = concatN

i=1

(

pK
i

)

, (5.15)
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and y and qK , analogously. The controller matrices corresponding to the decentralized
part Kd are given as

AK d
= diagN

i=1

(

AK
i

)

, BKd
= diagN

i=1

(

BK
i

)

,

CK d
= diagN

i=1

(

CK
i

)

, DKd
= diagN

i=1

(

DK
i

)

,
(5.16)

where the subcontroller matrices AK
i, BK

i, CK
i and DK

i from (5.12) are the diagonal
(decentralized) controller matrices, given as

AK d

i = AK
ii ∈ R

n
xK

i

×n
xK

i , BKd

i = BK
ii ∈ R

n
xK

i

×nsi , (5.17)

and CK d
i and DKd

i analogously. The system matrices related to the interconnection
channel are formed accordingly, as

Bd
pK = diagN

i=1

(

BpK ,i

)

, Cd
pK = diagN

i=1

(

CpK ,i

)

, (5.18)

and Cd
qK and Dd

qK analogously.

We also denote the off-block-diagonal parts of the system and controller matrices by
a superscript (·)i. For example, in the case of the controller matrices, they are given as

AK i
= AK −AK d

, BK i
= BK −BK d

,

CKi
= CK − CK d

, DKi
= DK −DKd

.
(5.19)

These matrices contain the blocks, e.g., AK
ik, ∀(i, k) ∈ EK , which constitute the matrices

related to the interconnection channel, e.g., BpK ,i as in (5.13).

5.2.2 Interconnected Closed-Loop System

We define the closed-loop of the system G interconnected with the controller K, as illus-
trated in Figure 5.2, as G = Fu(G, K) = Fu(Fl(Gd,PG),Fu(Kd,PK)) = Fu(Fl(Gd,P)),
with dynamics given by

G :







Gd = diagi∈N (Gi) ,

qc = Ppc,
(5.20)

with

Gi =






ẋc
i

zi

qc
i




=






Ai B1,i B2,i

C1,i D11,i D12,i

C2,i D21,i D22,i











xc
i

wi

pc
i




 , ∀i ∈ N , (5.21)

and where the state and interconnection signal vectors xc
i ∈ Rnxci, qc

i ∈ Rnqci and pc
i ∈

Rnpci of the closed-loop system are defined as the stacked vectors of the system and the
controller, given as

xc
i =

[

xi

xK
i

]

, qc
i =

[

qi

qK
i

]

, pc
i =

[

pi

pK
i

]

, (5.22)
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respectively. With the interconnected system and controller realizations in (5.11) and
(5.13), the closed-loop matrices for subsystem i of a heterogeneous system are the follo-
wing.

Ai =

[

Ai + Bu,iD
K

iCy,i Bu,iC
K

i

BK
iCy,i AK

i

]

,

B1,i =

[

Bw,i + Bu,iD
K

iDyw,i

BK
iDyw,i

]

,

C1,i =
[

Cz,i + Dzu,iD
K

iCy,i Dzu,iC
K

i

]

,

D11,i =
[

Dzw,i + Dzu,iD
K

iDyw,i

]

,

B2,i =

[

Bp,i Bu,iCpK ,i

0 BpK ,i

]

,

C2,i =

[

Cq,i + Dqu,iD
K

iCy,i Dqu,iC
K

i

DqK ,iCy,i CqK ,i

]

,

D21,i =

[

Dqw,i + Dqu,iD
K

iDyw,i

DqK ,iDyw,i

]

,

D12,i =
[

Dzp,i Dzu,iCpK ,i

]

,

D22,i =

[

0 Dqu,iCpK ,i

0 0

]

.

(5.23)

Remark 5.3. From (5.23), we see that the closed-loop system can either have intercon-
nected control inputs, i.e., off-block-diagonal terms Bu,ik 6= 0 which results in non-zero
terms Dqu,i, or interconnected controller terms CK

ik 6= 0 and DK
ik 6= 0 which results in

non-zero terms CpK ,i. They are not allowed to be simultaneously non-zero. Otherwise,
the term D22,i 6= 0 would create an infinite interconnection loop.

With

xc = concatN
i=1(xc

i) , qc = concatN
i=1(qc

i ) , pc = concatN
i=1(p

c
i) , (5.24)

the interconnection matrices P and P are then defined for the graph of the closed-loop
system, T , with T = {N , E}, where the edge set E is given by

E = EG ∪ EGM ∪ EK ∪ EKM .

As before in (5.7), this interconnection structure can always be achieved by introducing
zero signals in the appropriate channels. The set of neighboring subsystems of subsystem
i in the closed-loop is defined analogously to the sets NG

i and NK
i for the closed loop

and is thus the union of both sets, i.e., Ni = NG
i ∪ NK

i .

Note that the controller interconnection structure does not have to be the same as the
plant interconnection structure, i.e., we allow for PG 6= PK . In particular, the controller
interconnection topology can be chosen sparse if the communication is restricted.
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Ḡ
z̄w̄

Ḡ

u y
K

Figure 5.3: Closed-loop of system Ḡ with controller K.

5.3 Transformation to Interconnected State Space

Representations

In general, the performance channel of a given distributed plant may not be localized as it
is assumed in (5.1). For instance, for cooperative control tasks, system-wide performance
goals can be formulated, and exogenous inputs can affect coupled parts of the system.
In this case, the performance channel is not localized and the system cannot readily be
modeled in the form given in (5.7), which, however, is required to achieve the structure
of the closed-loop system in Figure 5.2.

5.3.1 Distributed Systems with Centralized Performance

Let us consider a distributed continuous-time LTI plant with the following dynamics

Ḡ :







ẋ = Ax +
∑N

i=1 Bu,iui + Bw̄w̄ ,

yi = Cy,ix + Dyw̄,iw̄ , i = 1, ..., N ,

z̄ = Cz̄x + Dz̄uu,

(5.25)

with the stacked signal vectors x, u and y as in (5.8). The exogenous input and per-
formance output, which in general are not local, are given by w̄ ∈ Rnw̄ and z̄ ∈ Rnz̄ ,
respectively. We denote the closed-loop of system Ḡ with the controller K as Ḡ, which
is illustrated in Figure 5.3.

In order to decompose the system into local interconnected subsystems Gi, we propose
to augment the global performance input and output, w̄ and z̄, in (5.25), such that a
local performance input and output can be assigned to each individual subsystem. This
augmentation is given by

z = Q̄
1
2 Sz̄ and w = R̄− 1

2 T w̄, (5.26)

with

z = concatN
i=1(zi) , w = concatN

i=1(wi) . (5.27)
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5.3 Transformation to Interconnected State Space Representations

In (5.26), S and T are matrices of full rank, and the matrices Q̄ and R̄ are weightings
which will be defined in Section 5.3.2. The augmentation of the related system matrices
is defined as

Cz = Q̄
1
2 SCz̄ Dzu = Q̄

1
2 SDz̄u,

Bw = Bw̄T †R̄
1
2 Dyw = Dyw̄T †R̄

1
2 ,

(5.28)

where the augmentation is chosen such that the resulting structure of the system matrices
is localized, as

Cz = concatN
i=1(Cz,i) , Dzu = concatN

i=1(Dzu,i) ,

Bw = concatN
i=1

(

B⊤
w,i

)⊤
, Dyw = concatN

i=1

(

D⊤
yw,i

)⊤
.

(5.29)

Note that the performance channel does not need to be decentralized, i.e., the matri-
ces are not required to be block-diagonal, e.g., Cz is not required to be of the form
diagN

i=1(Cz,i), but each subsystem needs to be equipped with a (possibly interconnected)
local performance channel wi to zi for the decomposed controller synthesis. This perfor-
mance input-output-transformation in (5.26) and (5.28) with (5.31) leads to the system

G :







ẋ = Ax +
∑N

i=1 Bu,iui +
∑N

i=1 Bw,iwi,

yi = Cy,ix + Dyw,iw, i = 1, ..., N,

zi = Cz,ix + Dzu,iu, i = 1, ..., N,

(5.30)

which has local control and performance inputs and outputs, ui, yi, wi, and zi, respecti-
vely, and can thus readily be modeled as the interconnected system in (5.7).

5.3.2 System Norm-Invariant Transformation

As control objective, the H∞-norm of the closed-loop transfer function from w̄ to z̄ of
the system Ḡ under the controller K, i.e. ‖Ḡ‖H∞

, is to be minimized. For a scalable
synthesis of K, the goal is to exploit the structure of G and thus to minimize ‖G‖H∞

.
We propose to chose the transformation of the performance channel such that under the
same controller K, this norm is equal to the norm of G, i.e., ‖Ḡ‖H∞

= ‖G‖H∞
. Let us

assume that the full rank matrices Q̄ and R̄ are chosen as

Q̄ = S†⊤
S† + MQ, R̄ = TT ⊤ + MR, (5.31)

with
MQ = M⊤

Q , MR = M⊤
R , S⊤MQS = 0, T †MRT †⊤

= 0.

The choice of the so-called complementary matrices MQ and MR is not unique. They
can for example be chosen such that Cz and Bw are as decentralized as possible, i.e.,
have as few off-diagonal blocks as possible.

With the augmentation of the performance channel in (5.28) and the choice of weigh-
tings in (5.31), the equality of ‖Ḡ‖H∞

and ‖G‖H∞
is stated in the following.
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Chapter 5. Heterogeneous Interconnected Systems

Theorem 5.1. Given Ḡ and G, with the transformation in (5.28) and the weightings in

(5.31), it holds that

‖G‖H∞
= ‖Ḡ‖H∞

.

Proof. Similarly as in Lemma 9 in [59], for a transformation of a system Ḡ to G with
G = Tl Ḡ T †

r , the following performance bounds can be proved

σmin(Tr)
σmax(Tl)

‖G‖H∞
≤ ‖Ḡ‖H∞

≤ σmax(Tr)
σmin(Tl)

‖G‖H∞
. (5.32)

With
Tl :=

(

S†⊤S† + MQ

) 1
2 S, Tr :=

(

TT ⊤ + MR

)− 1
2 T,

we need to show that the transformation matrices Tl and Tr are semi-orthogonal, which
is a generalization of orthogonality for rectangular matrices, i.e.,

T ⊤
r Tr = I, Tl T ⊤

l = I.

Semi-orthogonal m× n or n×m-matrices have m singular values of 1, if m ≤ n. Then,
the bounds in (5.32) are tight since σmax = σmin = 1 and so the H∞-norm is not changed
under the system transformation. To show that Tr is semi-orthogonal, we see that

T ⊤
r Tr =

(

(TT ⊤ + MR)− 1
2 T
)⊤ (

(TT ⊤ + MR)− 1
2 T
)

= T ⊤
(

(TT ⊤ + MR)− 1
2

)⊤
(TT ⊤ + MR)− 1

2 T

= T ⊤(TT ⊤ + MR)−1T = I,

which holds because of MR = M⊤
R .

Showing that T ⊤
l Tl = I follows along the same lines.

The following proposition suggests that the augmentation of the performance channel is
also applicable for an H2-based controller synthesis.

Proposition 5.1. Given Ḡ and G, it holds that

‖Ḡ‖H2 = ‖G‖H2.

Proof. As shown in [59], the H2-norm is also unitary-invariant, and therefore the same
proof as in Theorem 5.1 can be applied to show that ‖Ḡ‖H2 = ‖G‖H2 .

5.4 Decomposed Synthesis

In the following, we will consider methods from robust and gain-scheduled controller
synthesis, where the interconnection plays the role of the uncertainty, as it is introduced
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5.4 Decomposed Synthesis

in Section 2.4. The block-diagonal entries in the system matrices are dealt with in a
decomposed way and the off-block-diagonal entries, modeled through the interconnection
channel, need to be accounted for in multiplier conditions that are coupled over the
subsystems. We present a decomposed synthesis for the interconnected controller K in
(5.14) based on the system representation in (5.20).

We use the FBSP as introduced in Theorem 2.1 in Section 2.4 for the controller
synthesis. This theorem can be directly applied to the system formulation in (5.20).
We show in the following proposition how the conditions in Theorem 2.1 can then be
decomposed into conditions of the dimensions of the subsystems by appropriate struc-
tural (block-diagonal) assumptions on the multipliers Q, R and S and on the Lyapunov
matrix X .

Proposition 5.2 (Decomposed FBSP for Heterogeneous Systems). Consider a hetero-

geneous system G = Fl(Gd,PG) given in (5.7). There exists an interconnected controller

K with PK as in (5.12) such that G = Fu(Gd,P) given in (5.20) is stable and has an

L2-gain less than γ, if there exist matrices Xi = X⊤
i > 0, ∀i ∈ {1, ..., N} and Rik = R⊤

ik,

Qik = Q⊤
ik and Sik, ∀(i, k) ∈ E , such that

[

⋆
]⊤
[

Q̂ik Ŝik

Ŝ⊤
ik R̂ik

] [

P̂ik

I(npc
ik

+npc
ki

)

]

> 0,

∀(i, k) ∈ E .

(5.33)

[

⋆
]⊤














0 Xi 0 0 0 0

Xi 0 0 0 0 0

0 0 −γI 0 0 0

0 0 0 1
γ I 0 0

0 0 0 0 Q̃i S̃i

0 0 0 0 S̃⊤
i R̃i



























I 0 0

Ai B1,i B2,i

0 I 0

C1,i D11,i D12,i

0 0 I

C2,i D21,i D22,i














< 0,

∀i ∈ {1, ..., N}.

(5.34)

with

Q̃i = diagk∈Ni
(Qik) , R̃i = diagk∈Ni

(Rik) , S̃i = diagk∈Ni
(Sik) ,

Q̂ik = diag(Qik, Qki), R̂ik = diag(Rik, Rki), Ŝik = diag(Sik, Ski),

and with

P̂ik =

[

0 Pik

Pki 0

]

.

Proof. When applying Theorem 2.1 to the interconnected system in (5.20) with the
structured Lyapunov matrix X = diagN

i=1(Xi) and the structured multipliers

Q = diagi∈N
(

Q̃i

)

, R = diagi∈N
(

R̃i

)

, S = diagi∈N
(

S̃i

)

,
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Chapter 5. Heterogeneous Interconnected Systems

the matrices in the nominal condition (2.13) are composed of only block-diagonal matri-
ces and therefore completely decompose into one condition per subsystem as in (5.34).

With T being an undirected graph, and with the structured multipliers

Q̃i = diagk∈Ni
(Qik) , R̃i = diagk∈Ni

(Rik) , S̃i = diagk∈Ni
(Sik) ,

the multiplier condition in (2.12) can be transformed into a block-diagonal matrix with
the conditions of (5.33) on its diagonal blocks. To see this, let us consider the intercon-
nection channel pc = Pqc as defined in (5.20). Then, we can always find a permutation
matrix T , that reorders the entries of the signals qc and pc in such a way that those
corresponding to the same edge are consecutive, i.e.,

p̄c = Tpc, q̄c = Tqc,

with

p̄c = [..., pc
ik

⊤, pc
ki

⊤, ...]⊤, q̄c = [..., qc
ik

⊤, qc
ki

⊤, ...]⊤.

The similarity transformation of the multiplier condition with T leads to

[

⋆
]T
[

T 0

0 T

] [

Q S

S⊤ R

] [

T −1 0

0 T −1

]

︸ ︷︷ ︸
[

Q̄ S̄

S̄⊤ R̄

]

[

T 0

0 T

] [

P
Inpc

]

T −1

︸ ︷︷ ︸
[

P̄
Inpc

]

> 0, (5.35)

involving the multiplier transformations

Q̄ = TQT −1, S̄ = TST −1, R̄ = TRT −1.

As the multipliers Q, R and S are block-diagonal, this transformation results again in
block-diagonal multipliers Q̄, R̄ and S̄ with the same reordering of the blocks on the
diagonal as for the interconnection signals. This completes the proof that K stabilizes
G = Fu(G, K) and leads to an H∞-norm less than γ.

The following example illustrates the transformation in the proof of Proposition 5.2.

Example 5.2 (Transformation to block-diagonal P). Let us consider a closed-loop system
with the same interconnection structure as in Example 5.1. It is easy to see that the
transformation

T =









I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 0 I 0

0 0 0 I 0 0

0 0 0 0 0 I









,
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5.5 Distributed Synthesis

applied to the system as in (5.35) gives









pc
12

pc
21

pc
23

pc
32

pc
24

pc
42









︸ ︷︷ ︸

p̄c

=









0 P12 0 0 0 0

P21 0 0 0 0 0

0 0 0 P23 0 0

0 0 P32 0 0 0

0 0 0 0 0 P24

0 0 0 0 P42 0









︸ ︷︷ ︸

P̄









qc
12

qc
21

qc
23

qc
32

qc
24

qc
42









︸ ︷︷ ︸

q̄c

.

Corollary 5.1. The controller K in Proposition 5.2 stabilizes Ḡ and leads to a perfor-

mance bound of less than γ for Ḡ.

Proof. Note that from Ḡ to G, only the performance channel is transformed, and the-
refore stability of G, which is guaranteed by Proposition 5.2, implies stability of Ḡ =
Fu(Ḡ, K). Furthermore, it has been shown in Theorem 5.1 that the H∞-norm is inva-
riant under the transformation of the performance channel, and thus the performance
bound γ for G also holds for Ḡ.

Convexification of the Synthesis Conditions

The synthesis problem for the dynamic output feedback (DOF) controller in (5.34) is not
convex. As proposed in [68], a variable transformation can be applied to transform (5.34)
into bilinear matrix inequalities (BMI). Then, an iterative algorithm can be applied,
iterating between fixing one set of variables and solving for the other one. Further
details can be found in [68]. For convenience, the variable transformation and an outline
of the iterative algorithm are given in (A.3) in Appendix A.1.

For the state feedback case, variable substitutions in the synthesis equations lead
to a convex problem. The synthesis equations can thus be formulated into LMIs. The
variable transformation is given in (A.8) in Appendix A.2. An overview about the
different controller synthesis problems and their convexity will be given in Table 6.1 in
Section 6.2.2.

5.5 Distributed Synthesis

The controller synthesis is based on the nominal conditions in (5.34) and on the multiplier
conditions in (5.33). While the nominal conditions are completely decoupled into small
conditions for each subsystem, the decomposed multiplier conditions in Proposition 5.2
introduce pairwise coupling between neighboring subsystems. Therefore, a decentralized
controller synthesis is not possible, and we propose a distributed design method in the
following. Our approach is based on a variant of the consensus ADMM [32], which
has been introduced in Section 3.5. In the algorithm presented here, only bidirectional
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Chapter 5. Heterogeneous Interconnected Systems

communication to neighboring subsystems is required. This variant has been introduced
in [112] where consensus ADMM for the distributed Lasso problem is considered. In [113]
this consensus ADMM scheme has been further extended towards an inexact method for
efficient computations in case of complex cost functions. In [114], the algorithm was
generalized to deal with conic constraints in the consensus couplings.

5.5.1 Decomposed Control Design Problem

We define the global variable vector l containing the set of global structured controller
gains AK , BK , CK , DK , as implicitly given in (5.19), the global block-diagonal Lyapunov
matrix X , the multipliers Qik, Rik, Sik from Proposition 5.2, and ν = γ− 1

2 , with γ being
the performance bound in Theorem 2.1. The global synthesis problem of the distributed
controller can then be formulated as

min
l

f(l) + g(l), (5.36)

with f(·) and g(·) being defined as

f(l) = −ν,

g(l) = I(2.12)(l) + I(2.13)(l).
(5.37)

Herein, I(a)(b) denotes the indicator function of b satisfying the conditions in (a), i.e.,

I(a)(b) :=







0 if b satisfies (a),

∞ otherwise.
(5.38)

In order to decompose the global synthesis problem, we introduce the set of local
variables si for all subsystems i ∈ N , which contain copies of all variables of the global
variable vector l that are relevant to the respective subsystem i. The local variable vector
si thus contains the local controller gains of Ki in (5.12),

AK
i , BK

i , CK
i , DK

i , AK
ik , BK

ik , CK
ik , DK

ik , ∀k ∈ NK
i , (5.39)

the local Lyapunov matrix Xi, the local copies νi of ν, and the local copies of the
multipliers involved in the local synthesis problem (5.33), (5.34) of subsystem i. In order
to ensure consistency over local copies of variables by different interconnected subsystems
i and k corresponding to the same parts of the global variable l, we further define the
selection matrices Eik and Eki and formulate the following local consensus constraint

Eik si = Eki sk, ∀(i, k) ∈ E .

We further define the dual multipliers of subsystem i, corresponding to the consensus
constraints for si, as λi. The decomposed controller synthesis problem is now expressed
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5.5 Distributed Synthesis

as

min
si

N∑

i=1

(fi(si) + gi(si)) ,

s.t. Eik si = Eki sk, ∀(i, k) ∈ E .

(5.40)

with fi(·) and gi(·) being defined as

fi(si) = − 1
N

νi,

gi(si) = I(5.33)(si) + I(5.34)(si).
(5.41)

5.5.2 Distributed Control Design Without Global Coordina-

tion

We present the distributed consensus ADMM algorithm in Algorithm 5.1 with only
nearest neighbor communication to solve the interconnected controller synthesis problem
of Proposition 5.2. The communication during the synthesis is defined over the graph
T = {N , E}, where the edge set E is given by E = EG ∪EGM ∪EK ∪EKM , as introduced
in Section 5.2.2.

Algorithm 5.1 Consensus ADMM.

1: Input: Parameter ρ > 0, local subsystems Gi, interconnections PG
ik ∀k ∈ NG

i ,
2: PK

ik ∀k ∈ NK
i , initial values s

(0)
i , ∀i ∈ N ,

3: Initialization: Set κ = 0, λ
(0)
i = 0,

4: while not converged do: ∀i ∈ N in parallel
5: Communicate Eik s

(κ)
i to neighboring nodes k in Ni,

6: λ
(κ+1)
i = λ

(κ)
i + ρ

∑

k∈Ni

(

Tik s
(κ)
i − Tki s

(κ)
k

)

,

7: s
(κ+1)
i = argmin

si

{fi(si) + gi(si) + s⊤
i λ

(κ+1)
i ,

8: +ρ
∑

k∈Ni
‖Tik si − Tik s

(κ)
i

+Tki s
(κ)
k

2
‖2

2},
9: κ = κ + 1,

10: end

11: Output: Local controller gains in (5.39), bounds γi = γ.

In step 6 of Algorithm 5.1, the matrices Tik and Tki select the elements over which
a consensus should be reached and place them in the right positions for the consensus
constraint with respect to λi. For convenience, a derivation of the steps of Algorithm 5.1
is given in Appendix A.3. A similar derivation of the steps can be found in [112], [114].
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Primal and Dual Residuals

As convergence criteria, the primal and dual residuals can be considered, which are given
as

r(κ+1) = concatN
i=1

(

concatk∈Ni

(

r
(κ+1)
ik

))

,

d(κ+1) = concatN
i=1

(

concatk∈Ni

(

d
(κ+1)
ik

))

,
(5.42)

respectively, with

r
(κ+1)
ik =

1
2

(

Eiks
(κ+1)
i − Ekis

(κ+1)
k

)

,

d
(κ+1)
ik =

1
2

(

Eik(s(κ+1)
i − s

(κ)
i ) + Eki(s

(κ+1)
k − s

(κ)
k )

)

.
(5.43)

For their derivation, we refer to (A.22) in Appendix A.4.

Note that for determining convergence, the primal and dual residuals, ri and di, can be
computed locally. Some higher-level communication protocol of only low communication
frequency is required to detect when convergence among all subsystems is reached.

As seen in Section 5.4, and as will be summarized in Table 6.1 in Section 6.2.2,
the controller synthesis equations (5.34) are convex in the state feedback case, and the
ADMM convergence results in [32] hold for the distributed synthesis in Algorithm 5.1.
If a dynamic output feedback controller is to be synthesized, the decomposed synthe-
sis equations are non-convex (bilinear) and need to be solved iteratively in step 7 in
Algorithm 5.1, and therefore no convergence guarantee for the ADMM iterations can
be given in this case. In the case of distributed output feedback control design, further
numerical techniques could be investigated in order to reduce the number of iterations to
convergence of the proposed ADMM scheme, such as warm-starting with solutions of the
previous ADMM iteration or early termination, such as proposed in [115] for real-time
ADMM.

Remark 5.4. Note that in addition to imposing the block-diagonal structure on the multi-
pliers, one could consider further restricting them to DG scalings or diagonal multipliers,
which would reduce the dimension of the consensus variables, and therefore both the di-
mension of the communicated signals as well as the computation and convergence time
could possibly be reduced. Since this would introduce more conservatism, we chose to
allow for (block-diagonally structured) full blocks.

5.6 Numerical Example

In the following, we consider randomly generated example systems based on coupled
mass-spring-damper subsystems. Each subsystem has a mass mi ∈ V(5, 10), spring and
damping coefficients, ki ∈ V(0.8, 1.2) and di ∈ V(0.8, 1.2), respectively, where V(a, b)
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EG = EK E = EG ∪ EGM ∪ EK ∪ EKM

Figure 5.4: Interaction graph of the example system of N = 8 subsystems and subcontrollers

EG = EK and the communication graph for distributed control design E = EG∪EGM∪EK∪EKM .

denotes the uniform distribution with support on the interval [a, b]. The interconnections
between the subsystems are described by the spring and damping coupling coefficients,
kik ∈ V(0.2, 0.4) and dik ∈ V(0.2, 0.4). The system matrices are given by

Aii =




0 1

−
∑

k∈Ni
kik

mi
−
∑

k∈Ni
dik

mi



 , Aik =

[

0 0
kik

mk

dik

mk

]

,

Bu,i =

[

0
bu,i

]

, Dzu,i =

[

0nxi
×nui

dzu,i

]

, with bu,i, dzu,i ∈ V(1, 1.3),

Cy,i = I, Czi
=

[

I

0nwi
−nxi

,nxi

]

,

Bw,i =

[

0
bw,i

]

, with bw,i,∈ V(1, 1.2),

(5.44)

and the remaining system matrices are zero.

We present the convergence of the ADMM scheme in Algorithm 5.1 for two example
systems. The first one contains N = 8 interconnected subsystems with matrices rand-
omly chosen, as given in (5.44), and the interconnection topology is chosen to be EG = {
(1, 5), (2, 1), (3, 4), (4, 2), (4, 7), (5, 6), (6, 3), (7, 8), (8, 5) }, as shown in Figure 5.4. The
second example system is composed of N = 3 subsystems, which are interconnected in
a ring, as shown in Figure 5.6. We consider the synthesis of interconnected static state
feedback controllers, which are chosen to have the same interconnection structures as the
systems, i.e., EK = EG. The communication topologies that are used for the distributed
controller synthesis, given by E = EG ∪ EGM ∪ EK ∪ EKM , are also shown in Figures 5.4
and 5.6. Figures 5.5 and 5.7 show the convergence of the bounds γi on the H∞-norm
of the two example systems, and the convergence of the primal and dual residuals, as
given in (5.42). This convergence behavior is representative for the simulated example
systems. The convergence time and the oscillatory behavior, however, depend on the
number of subsystems and on the interconnection topology.
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Figure 5.5: Convergence results for the ADMM scheme in Algorithm 5.1 for an example system

of N = 8 interconnected subsystems.
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Figure 5.6: Interaction graph of the example system of N = 3 subsystems and subcontrollers

EG = EK and the communication graph for distributed control design E = EG∪EGM∪EK∪EKM .
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Figure 5.7: Convergence results for the ADMM scheme in Algorithm 5.1 for an example system

of N = 3 interconnected subsystems.
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5.7 Conclusions

The scalability of this distributed synthesis method will be illustrated in a numerical
example in Section 6.3, where it will be compared to the centralized synthesis and to
a more compact synthesis for special classes of interconnected systems which will be
presented in Chapter 6.

5.7 Conclusions

A modeling framework has been presented for heterogeneous systems interconnected over
arbitrary graphs, to which the FBSP can be applied. Under some structural assump-
tions on the Lyapunov matrix and multipliers, the controller synthesis equations have
been decomposed into small matrix inequalities of the size of the individual subsystems.
These decomposed equations are pairwise coupled according to the edges of the inter-
connection graph. A distributed solution method based on an ADMM scheme without
central coordination has been presented. The computational effort of each individual
subsystem per ADMM iteration scales linearly with the number of neighboring subsys-
tems. The communication topology of the synthesized interconnected controller is a
design choice and may differ from the plant coupling structure. In particular, a sparse
controller interconnection topology can be chosen in order to avoid excessive commu-
nication. Numerical examples have demonstrated the convergence of the distributed
synthesis. The scalability of the decomposed and distributed synthesis algorithm will be
illustrated in Section 6.3 of Chapter 6, where they will be compared to methods tailored
to special classes of systems.
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CHAPTER 6
Special Classes of Interconnected Systems

Depending on the degree of homogeneity of the subsystems, special classes of intercon-
nected systems can be defined. First, we review the case of homogeneous systems where
all subsystems are identical [59] and show how the model of heterogeneous systems and
the model for homogeneous systems are related by a transformation. Then we intro-
duce a new class of systems, referred to as α-β-heterogeneous systems. They consist of
multiple groups of homogeneous subsystems with different interconnections. We show
how the general model for heterogeneous systems from Chapter 5 can be transformed
into a more compact model for this special class of systems. This allows for a more sca-
lable controller synthesis. α-β-Heterogeneous systems are a significant extension with
respect to [61] where multiple groups of homogeneous subsystems are considered, but
all interconnections are required to be identical. In particular, the system model of
α-β-heterogeneous systems allows for a controller synthesis where the interconnection
topology of the controller is a design choice. This chapter is based on work that has
been published in [14].

The chapter is structured as follows. Section 6.1 addresses the special case of ho-
mogeneous systems. In Section 6.2 we introduce the new class of α-β-heterogeneous
systems. In Section 6.3, we present numerical results that demonstrate the scalability of
the decomposed methods from this chapter and we compare them with the methods for
heterogeneous systems presented in Chapter 5.

6.1 Homogeneous Systems

First, we present the most special class of interconnected systems, where all subsystems
and all interconnections are identical. This has been presented in [59] as decomposable
systems. We will show how the compact model of homogeneous systems [59] can be de-
rived by a transformation from the general model of heterogeneous systems presented in
Chapter 5. As the modeling framework and the synthesis methods are closely linked, also
the controller synthesis is simplified with respect to the formulation for heterogeneous
systems.
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zw
Gd

P

Gd

P

pc qc

Z†Z†⊤

Z⊤ Z

II

Figure 6.1: Transformation of the interconnection channel.

6.1.1 Model of Homogeneous Systems

Definition 6.1 (Homogeneous System). Let M represent all system matrices A, Bu, Cy,

Dyw, Cz, Dzu, Dzw, in (5.9). We define a homogeneous system if its system matrices

can be written as

M = IN ⊗Mii
︸ ︷︷ ︸

Md

+ P G ⊗Mik
︸ ︷︷ ︸

M i

, (6.1)

with P G as defined in Section 5.1.1. This means that for a homogeneous system all local

subsystem matrices Mii, ∀i ∈ N (on the diagonal) are identical and all interconnection

subsystem matrices Mik, ∀(i, k) ∈ EG (the off-diagonal block matrices) are identical.

Proposition 6.1. If the controller K is also chosen as a homogeneous controller, i.e.,

such that (6.1) holds with M representing the controller matrices AK, BK , CK and DK,

and if P G = P K, then, the interconnected closed loop system in (5.20) can be transformed

to a representation where the interconnection operator takes the form

P = P ⊗ Inpc , (6.2)

with P = P G = P K, and the system matrices of (5.1) are transformed accordingly, such

that the closed loop system is not changed under the transformation.

Proof. We define the transformations of the interconnection channel, P, and of the
decentralized system part, Gd, as

P = Z⊤PZ,

Gd = diag
(

I, Z†
)

Gd diag
(

I, Z†⊤
)

.
(6.3)
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The transformation matrix Z is defined as the |E|×N matrix of all zeros except for ones
in the entries corresponding to an interconnection of an edge to a subsystem. The inter-
connection topology is captured in P = P⊗Inc

p
and the interconnections are summarized

into one channel per subsystem.

The transformation in (6.3) in the proof of Proposition 6.1 is shown in Figure 6.1.

The following numerical example illustrates the transformation in (6.3).

Example 6.1 (Transformation to more compact representation for homogeneous systems).
Let us consider the system in Example 5.1 in Section 5.1.3 again, which we assume to
be a homogeneous system. In interconnection with a homogeneous controller of the
same interconnection topology, the resulting closed-loop system can be described by the
interconnection matrix

P =






0 P12 0 0

P21 0 P23 P24

0 P32 0 0

0 P42 0 0




 .

The interconnection channel, as defined in (5.5), for the closed-loop system is given as









pc
12

pc
21

pc
23

pc
24

pc
32

p42









︸ ︷︷ ︸

pc

=











0 P12 0 0 0 0

P21 0 0 0 0 0

0 0 0 0 P23 0

0 0 0 0 0 P24

0 0 P32 0 0 0

0 0 0 P42 0 0











︸ ︷︷ ︸

P









qc
12

qc
21

qc
23

qc
24

qc
32

qc
42









︸ ︷︷ ︸

qc

.

As the system is assumed to be a homogeneous system, all the interconnection chan-
nels over the different edges of a subsystem are identical, because all off-block-diagonal
matrices Mik are identical. Therefore, we can apply the transformation

Z =









I 0 0 0

0 I 0 0

0 I 0 0

0 I 0 0

0 0 I 0

0 0 0 I









,

which leads to the interconnection matrix

P = Z⊤PZ =






0 P12 0 0

P21 0 P23 P24

0 P32 0 0

0 P42 0 0






= P ⊗ Inc
p
.

(6.4)

The transformed interconnection matrix P captures the information about the inter-
connection topology on the level of the subsystems and summarizes all interconnection
signals from different subsystems to the same subsystem in one channel. The last equa-
lity in (6.4) assumes that the individual interconnection matrices Pik can be captured
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in the form involving the interconnection matrix Pik ⊗ Inpc . The decentralized part of
the system, Gd is transformed according to (6.3) such that the closed loop system is not
changed.

The system matrices in (5.1) are thus transformed to the system matrices of Gd as follows

Bp,i =
[

Aik Bu,ik Bw,ik

]

,

Dzp,i =
[

Cz,ik Dzu,ik Dzw,ik

]

,

Dyp,i =
[

Cy,ik 0 Dyw,ik

]

,

Cq,i =
[

Inxk
0 0

]⊤
,

Dqw,i =
[

0 0 Inwk

]⊤
,

Dd
qu,i =

[

0 Inuk
0
]⊤

.

(6.5)

The controller matrices corresponding to the interconnection channel of subcontroller
i for a homogeneous controller can be defined as

BpK ,i =
[

AK
ik BK

ik

]

,

CpK ,i =
[

CK
ik DK

ik

]

,

CqK ,i =
[

I 0
]⊤

,

DqK ,i =
[

0 I
]⊤

.

(6.6)

Note that the representations in (6.5) and (6.6) are not unique. A similar model of
interconnected systems has been used in [59]. In this representation, the controller
synthesis equations can be simplified as described in the following.

6.1.2 Decomposed Synthesis for Homogeneous Systems

We state the following result without a proof. In the following, we will extend these
results to a broader class of systems and will give the derivations and proofs.

Proposition 6.2 (Decomposed Full-Block S-Procedure for Homogeneous Systems, [59]).
Let us consider a homogeneous system G = Fl(Gd,PG), which is given in (5.7) with

PG = P G⊗Inp
structured as in (6.2), assumed to be normal, and the system matrices are

structured as in (6.1). Then, there exists a controller K as in (5.12) with P K = P G = P ,

and with controller matrices satisfying (6.1), such that G = Fu(G, K) is stable and has

an L2-gain less than γ, if there exist matrices Xi = X⊤
i > 0, and Q̃i = Q̃⊤

i , R̃i = R̃⊤
i

and S̃i, such that (5.34) and

[

⋆
]T
[

Q̃i S̃i

S̃⊤
i R̃i

] [

λInpc

Inpc

]

> 0, ∀λ ∈ spec (P ) , (6.7)

where spec (·) means the spectrum, i.e., the set of eigenvalues.
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The implementation of the synthesis problem for homogeneous subsystems can be done
in a centralized way, or each subsystem can solve it in a decentralized way, assuming
knowledge of the eigenvalues of the interconnection matrices.

Note that the decomposed synthesis equations of Proposition 5.2 can also be used
in the case of homogeneous systems. Choosing identical multipliers Qik, Rik and Sik,
respectively, for all edges (i, k), allows us to decompose the nominal and multiplier con-
ditions to identical small ones of the size of the individual subsystems. However, as
less structural knowledge about the interconnected system is exploited, in general more
conservatism can be introduced by the controller design in Proposition 5.2 than by the
one in Proposition 6.2. In particular, no information about the interconnection topology
of the subsystems is captured in the system representation. It can be observed that
the bound γ of the resulting closed-loop system under the synthesized controller from
Proposition 5.2 is equal to the one from Proposition 6.2 (and therefore no additional
conservatism is introduced), only if the graph is regular, and if the spectrum of the
interconnection matrix is symmetric, i.e., if the smallest and largest eigenvalues satisfy
λmin(P ) = −λmax(P ). If these conditions are not met, it can be observed that Proposi-
tion 6.2 is less conservative than the synthesis based on Proposition 5.2 with identical
multipliers for all edges.

6.2 α-β-Heterogeneous Systems

In the following, we consider a more general model, where the system consists of diffe-
rent groups of homogeneous subsystems with different interconnections. This modeling
approach extends the special case in [61], which allows for different groups of homo-
geneous subsystems, but where the interconnections are restricted to be all identical.
While the synthesized controller in [61] needs to have the same interconnection topology
as the plant, the interconnection topology of the controller synthesized for the α-β-
heterogeneous systems is a design choice. Furthermore, instead of the singular-value
decomposition of the interconnection operator in [61], we propose a congruence trans-
formation which potentially reduces conservatism.

6.2.1 Model of α-β-Heterogeneous Systems

Definition 6.2 (α-β-Heterogeneous Systems). We define a system of α groups of homo-

geneous subsystems with β different interconnection types, referred to as α-β-heterogeneous

systems, if the system matrices can be written as

M =
∑α

i=1
I(Θi−1+1):Θi

⊗Mii
︸ ︷︷ ︸

Md

+
∑α

i=1

∑βG

j=1

(

I(Θi−1+1):Θi
P G

j ⊗Mij

)

︸ ︷︷ ︸

M i

, (6.8)
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Figure 6.2: Two groups of homogeneous subsystems interconnected by three different inter-

connections (βG = 3) symbolized by the different arrow types.

where P G
j are different interconnection matrices, and I(Θi−1+1):Θi

is an N ×N matrix of

all zeros except that the diagonal entries corresponding to the indices from Θi−1 + 1 to

Θi are ones. The index set variable Θi is defined as Θi =
∑i

l=1 Nl with Θ0 = 0, where

Nl is the number of subsystems in the group l ∈ {1, ..., α}.
This means that within each of the α groups, all subsystems have equal matrices

Mii and can have βG different matrices Mij interconnected through the interconnection

matrices P G
j, respectively.

Figure 6.2 shows an example with two groups of homogeneous subsystems and βG = 3
different interconnections. The matrices Mij correspond to those off-diagonal blocks of
M which represent the influence from all subsystems specified by the structure of P G

j

on the subsystems i.

Proposition 6.3. If the controller K is also chosen to be composed of groups of ho-

mogeneous subcontrollers with different interconnection types, i.e., such that (6.8) holds

with M representing the controller matrices AK, BK , CK and DK, and with P K
j and

βK instead of P G
j and βG, then the interconnected closed loop system in (5.20) can be

transformed to a representation where the interconnection matrix takes the form

P = diagβ
j=1

(

Pj ⊗ Inpc
j

)

, (6.9)

with
⋃

j=1...β
Pj being the union of the different interconnection matrices of the system and

the controller, i.e., β is the number of different interconnection matrices P G
j and P K

j

in the closed-loop system.

Proof. We define the transformations of the interconnection channel and of the decen-
tralized system part similarly as in (6.3) as P = Z⊤PZ and Gd = Z−1GdZ−⊤, respecti-
vely. For the α-β-heterogeneous system, the transformation matrix Z is defined as the
|E| × (β N) concatenated matrix Z = concatβ

j=1(Zj), where Zj are the |E| ×N matrices
of all zeros except for ones in the entries corresponding to an interconnection defined
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6.2 α-β-Heterogeneous Systems

in Pj between an edge and a system. With this transformation, the β interconnection
topologies are captured in P = diagβ

j=1

(

Pj ⊗ Inpc

)

.

The transformation in (6.3) is shown in Figure 6.1. The following numerical example
illustrates this transformation for an α-β-heterogeneous system.

Example 6.2 (Transformation to more compact system representation for α-β-heterogeneous
systems). Let us consider the system from Example 6.1 again. Now, we assume that the
closed-loop subsystems 1 and 2 have equal diagonal matrices, i.e., M11 = M22 =: M1

and therefore form a homogeneous group and subsystems 3 and 4 form another one, i.e.,
M33 = M44 =: M2, and thus α = 2. Furthermore, we assume that M12 and M21 are
equal and form one group of homogeneous interconnections, and M23, M32, M24 and M42

are equal and form another one, and thus β = 2. The different interconnection types are
important for the modeling of the interconnection matrices Pj , which, for this example,
can be represented as

P1 =






0 P12 0 0

P21 0 0 0

0 0 0 0

0 0 0 0




 , P2 =






0 0 0 0

0 0 P23 P24

0 P32 0 0

0 P42 0 0




 .

We can apply the following transformation

Z =









I 0

I 0

0 I

0 I

0 I

0 I









,

which leads to the interconnection matrix

P = Z⊤PZ =













0 P12 0 0 0 0 0 0

P21 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 P23 P24

0 0 0 0 0 P32 0 0

0 0 0 0 0 P42 0 0













= diag(P1 ⊗ Inpc
1
, P2 ⊗ Inpc

2
) = diagβ

j=1

(

Pj ⊗ Inpc
j

)

.

The last equality uses the assumption that the individual interconnection matrices Pik

can be expressed in the form Pik ⊗ Inpc . The decentralized part of the system, Gd is
transformed according to the transformation in (6.3) such that the closed-loop system is
not changed. Note that this modeling is not unique.
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A possible realization of the transformed system matrices of Gd is given as follows.

Bp,i =
∑βG

j=1

(

e⊤
j ⊗

[

Aij Bu,ij Bw,ij

])

,

Dzp,i =
∑βG

j=1

(

e⊤
j ⊗

[

Cz,ij Dzu,ij Dzw,ij

])

,

Dyp,i =
∑βG

j=1

(

e⊤
j ⊗

[

Cy,ij 0 Dyw,ij

])

,

Cq,i =
∑βG

j=1

(

ej ⊗
[

Inxj
0 0

]⊤)
,

Dqw,i =
∑βG

j=1

(

ej ⊗
[

0 0 Inwj

]⊤)
,

Dd
qu,i =

∑βG

j=1

(

ej ⊗
[

0 Inuj
0
]⊤)

.

(6.10)

The controller matrices corresponding to the interconnection channel of subcontroller i

for an α-β-heterogeneous controller can be realized as

BpK ,i =
∑βK

j=1

(

e⊤
j ⊗

[

AK
ij BK

ij

])

,

CpK ,i =
∑βK

j=1

(

e⊤
j ⊗

[

CK
ij DK

ij

])

,

CqK ,i =
∑βK

j=1

(

e⊤
j ⊗

[

I 0
])

,

DqK ,i =
∑βK

j=1

(

e⊤
j ⊗

[

0 I
])

.

(6.11)

As in the homogeneous case, instead of stacking multiple identical interconnection chan-
nels for neighboring subsystems, they are summarized in one interconnection channel per
subsystem. In order to transform the representation to this form, the interconnection
channel of each subsystem is augmented (by zero signals) such that each subsystem has
interconnection signals belonging to all different interconnection matrices Pj. Therefore,
this formulation in general involves a larger dimension of the interconnection channel.
It depends on the degree of homogeneity of the system, i.e., on the values of α and β,
whether this formulation is beneficial for a reduction in complexity compared to Propo-
sition 5.2.

Remark 6.1. In comparison to the model in [61], the subsystems can have different
interconnections. For example, the states can be interconnected through a different
interconnection matrix than the performance inputs or outputs, or the control inputs.
An example will be given in Section 7.3.2 where the interconnected α-β-heterogeneous
system results from an augmented overlapping system representation.

In the following, we will show how the controller synthesis can be decoupled and made
more compact based on the system representation in (6.8).
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6.2 α-β-Heterogeneous Systems

6.2.2 Decomposed Synthesis for α-β-Heterogeneous Systems

Proposition 6.4 (Decomposed Full-Block S-Procedure for α-β-Heterogeneous Systems).
Let us consider the system G = Fl(Gd,PG), as given in (5.7), with system matrices as

defined in (6.8), Then there exists a controller K as in (5.14) with controller matrices

satisfying (6.8), such that the interconnection matrix of the closed-loop system is given

in (6.9), and such that G = Fu(G, K) is stable and has an L2-gain less than γ, if there

exist Xi = X⊤
i > 0, and Q̃ = diagβ

j=1

(

Q̃j

)

, R̃ = diagβ
j=1

(

R̃j

)

and S̃ = diagβ
j=1

(

S̃j

)

, with

Q̃j = Q̃⊤
j , R̃j = R̃⊤

j and S̃j, ∀j = {1, ..., β}, such that

[

⋆
]T
[

IN ⊗ Q̃j IN ⊗ S̃j

IN ⊗ S̃⊤
j IN ⊗ R̃j

] 



Pj ⊗ Inpc
j

INnpc
j



 > 0,

∀j ∈ {1, ..., β}, (6.12)

[

⋆
]⊤














0 Xi 0 0 0 0

Xi 0 0 0 0 0

0 0 −γI 0 0 0

0 0 0 1
γ I 0 0

0 0 0 0 Q̃ S̃

0 0 0 0 S̃⊤R̃



























I 0 0

Ai B1,i B2,i

0 I 0

C1,i D11,i D12,i

0 0 I

C2,i D21,i D22,i














< 0,

∀i ∈ {1, ..., α}. (6.13)

Proof. The proof follows along the same lines as the one of Proposition 5.2 with the
structured Lyapunov matrix X = diagα

i=1(INi
⊗ Xi) and the structured multipliers Q =

diagβ
j=1

(

IN ⊗ Q̃j

)

, R = diagβ
j=1

(

IN ⊗ R̃j

)

and S = diagβ
j=1

(

IN ⊗ S̃j

)

. Herein, Ni is the
number of subsystems within the group i.

Note that if the system G is the transformed system from Ḡ in (5.25), Corollary 5.1
applies such that Proposition 6.4 also holds for Ḡ. Furthermore, Lemma 6.1 from [63]
can be applied in order to decompose the multiplier condition into small conditions.

Lemma 6.1 (adapted from [63]). Given the normal, real-valued interconnection matrices

Pj = Pj ⊗ Inpj
with eigenvalues λ, then the following statements are equivalent

(i)
[

⋆
]⊤
[

Q̃j S̃j

S̃⊤
j R̃j

] 



λInpc
j

Inpc
j



 > 0, ∀λ ∈ spec (Pj) ,

∀j ∈ {1, ..., β},

(ii)
[

⋆
]T
[

IN ⊗ Q̃j IN ⊗ S̃j

IN ⊗ S̃⊤
j IN ⊗ R̃j

] 



Pj ⊗ Inpc
j

INnpc
j



 > 0, ∀j ∈ {1, ..., β}.

Proof. We consider a diagonalizing transformation F ⊤PjF = Λj , which is guaranteed to
exist because Pj is assumed to be normal. Then, the following regular transformation
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with Z = F ⊗ I and Z⊤Z = I can be applied. Using the properties of the Kronecker
product, this transformation yields the following equivalent statements,

Z⊤[⋆]⊤
[

Z 0

0 Z

] [

Z 0

0 Z

]⊤ [
IN ⊗ Q̃j IN ⊗ S̃j

IN ⊗ S̃⊤
j IN ⊗ R̃j

] [

Z 0

0 Z

] [

Z 0

0 Z

]⊤ 


Pj ⊗ I

Inpc
j



Z > 0,

∀j = 1, ..., β,

⇐⇒ [⋆]⊤
[

IN ⊗ Q̃j IN ⊗ S̃j

IN ⊗ S̃⊤
j IN ⊗ R̃j

] 


Λj ⊗ I

Inpc
j



 > 0,

∀j = 1, ..., β,

(6.14)

The last inequality is equivalent to

[⋆]⊤
[

Q̃j S̃j

S̃⊤
j R̃j

] 


λI

Inpc
j



 > 0, ∀λ ∈ spec (Pj) ,

∀j ∈ {1, ..., β},
(6.15)

since Λj = diagλ∈spec(Pj)(λ).

Introducing the additional constraint of Q̃j being negative definite imposes concavity of
the decomposed multiplier conditions in λ, which reduces the set of multiplier conditions
to the following

Corollary 6.1. If the interconnection matrices Pj are normal, they can always be trans-

formed into diagonal matrices with their eigenvalues on the diagonal. Introducing the

additional constraint Q̃j < 0 guarantees concavity of the multiplier condition in λ. This

leads to the multiplier conditions

[

⋆
]T
[

Q̃j S̃j

S̃⊤
j R̃j

] 



λInpc
j

Inpc
j



 > 0, ∀λ ∈ {λmin (Pj) , λmax (Pj)}

∀j ∈ {1, ..., β}.
(6.16)

Remark 6.2. Corollary 6.1 can be applied w. l. o. g. if any Pj is not normal, as any
given interconnection matrix can be transformed and augmented into a normal one. For
simplicity the normal case is considered here. Possible transformations to obtain normal
interconnection matrices are given in [63] .

Thus, in the case of α groups of homogeneous subsystems, there are α small nominal
conditions to be solved. Furthermore, for each of the β interconnection types, two
multiplier conditions (for the smallest and largest eigenvalues of the Pj), need to be
solved.

Remark 6.3. If some Pj are simultaneously diagonalizable, i.e., if they commute in the
multiplication and are diagonalizable [59], [116], then β can be further reduced at the
cost of increased conservatism.
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Synthesis Problems DOF SSF

Centralized (5.36), i.e.,
(2.12)

(2.13)
convex (LMIs)

nonconvex (BMIs)
convex (LMIs)
convex (LMIs)

Decomposed
heterogeneous

(5.33)

(5.34)
convex (LMIs)

nonconvex (BMIs)
convex (LMIs)
convex (LMIs)

Distributed
heterogeneous

(5.40), i.e.,
(5.33)

(5.34)
convex (LMIs)

nonconvex (BMIs)
convex (LMIs)
convex (LMIs)

Decomposed
homogeneous

(6.7)

(5.34)
convex (LMIs)

nonconvex (BMIs)
convex (LMIs)
convex (LMIs)

Decomposed
α-β-heterogeneous

(6.12)

(6.13)
convex (LMIs)

nonconvex (BMIs)
convex (LMIs)
convex (LMIs)

Table 6.1: Overview of the different interconnected controller synthesis problems introduced

in Chapters 5 and 6. The resulting convexity of the optimization problems after the variable

transformations given in Appendices A.1 and A.2, for dynamic output feedback (DOF) and

static state feedback (SSF), respectively, are indicated.

Controller Synthesis

As discussed before, the synthesis conditions in Propositions 6.2 and 6.4 can be trans-
formed into convex ones in the case of state feedback. In the case of dynamic output
feedback, a variable transformation leads to bilinear matrix inequalities which need to
be solved iteratively. The transformations from (A.3) and (A.8) can be applied with the
simplifications due to the special cases of homogeneous or α-β-heterogeneous intercon-
nected systems. An overview of the different synthesis problems presented in Chapters 5
and 6, and their convexity after the variable transformations, is given in Table 6.1.

If the values of α and β are small, the decomposed synthesis equations can be solved
efficiently in a centralized way, i.e., simultaneously in one computer, or they can be solved
in a decentralized way by each individual subsystem, if all the required information is
available. For better scalability, the distributed design method in Algorithm 5.1 can
be used to compute a consensus over the multiplier matrices which introduces coupling
between the synthesis equations.

6.3 Numerical Example

In the following, we compare the computational scalability of the centralized synthesis
with full block multipliers for heterogeneous systems in Theorem 2.1 with the decom-

71



Chapter 6. Special Classes of Interconnected Systems

Nominal condition Multiplier condition

Synthesis
Number Size Number Size

Centralized 1 NX̄n×NX̄n 1 |E|Xm×|E|Xm

Decomposed
homogeneous

1 Xn×Xn 2 Xm×Xm

Decomposed
α-β-heterogeneous

α Xn×Xn 2 β Xm×Xm

Decomposed
heterogeneous

N X̄n×X̄n |E| Xm×Xm

Distributed
heterogeneous∗ 1 X̄n×X̄n |Ni| Xm×Xm

Table 6.2: Numbers and dimensions of synthesis conditions for the centralized (Theorem 2.1)

and decomposed synthesis for homogeneous subsystems (Proposition 6.2), α-β-heterogeneous

systems (Proposition 6.4), and heterogeneous subsystems (Proposition 5.2), with the (mean)

dimensions of the nominal, Xn (X̄n), and the multiplier conditions, Xm (X̄m), for the single

subsystems. ∗ Numbers and sizes of matrix inequalities are given per subsystem i and per

iteration of Algorithm 5.1.

posed synthesis for heterogeneous systems in Proposition 5.2, and for the special cases
of homogeneous systems and α-β-heterogeneous systems in Propositions 6.2 and 6.4,
respectively, for a growing number of subsystems, N , and groups α, respectively. For
comparability, these problems are solved in a centralized way, i.e., in one computer. Their
scalability for a growing number of subsystems, N , or groups of homogeneous subsys-
tems, α, and for a growing number of interconnections |E|, is investigated in terms of
matrix inequality size, optimization variables, and solver times. A direct comparison
of the computational scalability of the centralized decomposed synthesis methods with
the distributed synthesis method in Algorithm 5.1 in terms of solver time is not possi-
ble, because the convergence time of the distributed synthesis heavily depends on the
interconnection topology of the system. Therefore, we compare the scalability of the cen-
tralized decomposed synthesis methods with the computational effort for one subsystem
in one iteration of the distributed synthesis.

The system matrices are chosen as in (5.44). We consider the worst case inter-
connection topology with respect to computational scalability, i.e., the case where all
subsystems are interconnected with all other subsystems. Table 6.2 shows the number
and dimensions of matrix inequalities to be solved for the centralized and the decom-
posed controller syntheses, and for the distributed synthesis per subsystem and ADMM
iteration. For simplicity, we assume that the dimensions of the single subsystems are
equal although they can be heterogeneous. We denote the dimensions of the decomposed
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nominal conditions by Xn, and the dimension of the decomposed multiplier conditions
by Xm. Note that this is a simplification, as in general, the dimensions of the nominal
and the multiplier conditions for the different formulations in Propositions 5.2, 6.2, and
6.4, are not equal, but also depend on the number of neighboring subsystems (in Pro-
positions 5.2 and 6.4). This is indicated by X̄n, which represents the mean value of the
size of the synthesis conditions.

While the centralized synthesis scales polynomially with both the number of subsys-
tems, N , and the number of edges, |E|, the decomposed approach for heterogeneous
systems scales linearly in both the number of subsystems, N , and the number of edges,
|E|, and polynomially in the number of neighboring subsystems, |Ni|. In the case of
α-β-heterogeneous systems this scaling is linear in α and β, respectively. The factor 2 in
Table 6.2 applies to the normal case accounting for the smallest and largest eigenvalues
of P , or each Pj , as in Corollary 6.1. For homogeneous systems, the computational effort
for the synthesis is constant, i.e., it does not depend on N and |E|. For each subsystem in
each iteration of the ADMM scheme in Algorithm 5.1, the number of matrix inequalities
and their size, the number of optimization variables, and the amount of communication,
all scale linearly with the number of neighboring subsystems to which the respective
subsystem is interconnected. All of these variables are independent of the total number
of subsystems N . This result can also be seen in Table 6.2.

The number of optimization variables and the solver times, averaged over 10 computa-
tions, are shown in Figure 6.3 on a logarithmic scale. Note that for the α-β-heterogeneous
system, we assume that β = 1 and the scaling is shown over the number of groups, α.
Therefore, the heterogeneous system involves more optimization variables, since it does
not only scale with the number of subsystems, but also with the number of neighboring
subsystems. However, this is compensated by less coupling because of the more structu-
red multipliers, which is why the solver times for both systems (in terms of one ADMM
iteration per subsystem for the latter) are very similar. Also note that for the centra-
lized synthesis of Theorem 2.1, we chose the multipliers to be block-diagonal for the
subsystems. Even with this simplification, the solver times rapidly become prohibitive.
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Heterogeneous system
(Theorem 2.1 with block-diag.
multipliers per subsystem)
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Heterogeneous system
(1 iteration of ADMM
Algorithm 5.1 for 1 subsystem)

α-β-Heterogeneous
system (Proposition 6.4)

Homogeneous system
(Proposition 6.2)

Figure 6.3: Number of optimization variables and solver times over the number of subsystems

N , the number of neighboring subsystems |Ni|, and the number of groups α.
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6.4 Conclusions

Special classes of systems have been considered in this chapter. In particular, we have
reviewed the properties of homogeneous systems where all subsystems are identical. We
have shown how the general description for heterogeneous systems in Chapter 5 can
be transformed to a more compact model in the case of homogeneous systems. As the
controller synthesis is closely linked to the modeling framework, the control design for
homogeneous systems also simplifies. We have introduced α-β-heterogeneous systems as
a new class of systems in between homogeneous and heterogeneous systems. This ex-
tends the class in [61] and includes not only the case of multiple groups of homogeneous
subsystems, but also allows for different interconnection types. In particular, a choice of
interconnection topology of the controller is enabled. A further advantage is the potenti-
ally improved scalability of the controller design with respect to heterogeneous systems,
because the number of decomposed synthesis conditions scales linearly with the values
of α and β, instead of linearly with N and |E| and polynomially with |Ni|. Numerical
examples have been presented to show and to compare the scalability properties of the
introduced synthesis methods for the different classes of systems from Chapters 5 and 6.
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CHAPTER 7
Augmented Distributed Control

Choosing between a decentralized, centralized or distributed control architecture im-
plies trading off between the required communication and computational effort and the
achievable control performance. While decentralized control schemes do not require any
communication, their control performance can be unsatisfactory, in particular for dy-
namically coupled systems. This chapter aims at introducing methods to improve the
control performance for control schemes that are decentralized or that have a sparse
communication topology. In particular, the synthesis of a controller based on a model
with an augmented overlapping state space is presented. In the augmented representa-
tion the individual subsystems contain copies of states of neighboring subsystems and
thus capture more model information about the overall system dynamics than in the
original state space, where only information about their own local states is captured.
This potentially improves the control performance with respect to a controller with the
same interconnection topology but without model overlap. By designing the overlapping
state space, where the degree of overlap is a design choice, and by designing the structure
of the explicit communication, the trade off between the required computational effort,
the communication and the achievable performance can be made. With the augmented
state space representation, the plant can be modeled and classified according to the fra-
meworks presented in Chapters 5 or 6, depending on its heterogeneity, and the scalable
control design methods can be applied. This chapter is based on the publications [12]
and [14].

The chapter is structured as follows. In Section 7.1, we present the mapping of a
distributed system to an augmented overlapping state space. Section 7.2 introduces a
model transformation that leads to an interconnected representation of the system in
the augmented state space. We prove that the performance guarantees for the controller
synthesis in the augmented state space also hold for the original system. In Section 7.3
we present numerical examples to illustrate the introduced concepts and to demonstrate
how increasing the overlap of the subsystem models causes an improvement in the control
performance for decentralized control, i.e., without communication between the subcon-
trollers.
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Figure 7.1: Augmentation of the original system to the augmented state space.

7.1 Augmented State Space

For distributed systems with strong coupling in the dynamics or in the performance, it
is beneficial for the subsystems to have overlapping information. Therefore, we are inte-
rested in designing a distributed controller based on an augmented system description,
where the control actions of the subsystems depend on overlapping parts of the state
vector. A reasonable choice of this overlap in the states of the subsystems depends on the
coupling to neighboring subsystems. For the controller design, the system is transformed
to an augmented state space, where the structural constraints on the controller become
block-diagonal. The augmented state space is obtained by expanding the original one
through creating copies of the overlapping state variables. This augmentation of the
state space is illustrated in Figure 7.1. More formally, we define the mapping from the
state vector x to the augmented state vector ξi by the matrix Vi ∈ Rnξi×nx . The overall
augmented state vector ξ is the collection of all ξi ∈ Rnξi , i = 1, ..., N , i.e.,

ξ = concatN
i=1(ξi) ∈ Rnξ . (7.1)

The augmented state vector ξ is obtained from x through the mapping V as

ξ = V x, (7.2)

where V is given by the collection of the matrices Vi as

V = concatN
i=1(Vi) ∈ Rnξ×nx . (7.3)

The matrix V is assumed to have full column rank, i.e., the original state space of x is
completely spanned by the augmented state space of ξ.
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7.1.1 Augmented System

In the following, we will use a subscript ξ to denote variables related to the augmented
state space. In order to describe the system in the augmented state space, let U be a
matrix of full row rank that satisfies

UV = I.

Then, the dynamics of the overall system (5.25) in the augmented state space are given
by

Ḡξ :







ξ̇ = Aξξ + Bξw̄w̄ + Bξuu,

y = Cξyξ + Dyw̄w̄,

z̄ = Cξz̄ξ + Dz̄uu,

(7.4)

with the augmented system matrices

Aξ = V AU + MA, Bξu = V Bu, Bξw̄ = V Bw̄,

Cξy = CyU + MCy
, Cξz̄ = Cz̄U + MCz̄

.
(7.5)

The complementary matrices MA, MCy
, MCz̄

, as in [85], are degrees of freedom, which
will be discussed in more detail in the following. In the trivial case of V = I, it is obvious
that the augmented system is equal to the original system.

Inclusion Principle

The following results are based on the so-called Inclusion Principle [117]. As it is formu-
lated for a nominal system, let us consider the modified systems Ḡnom and Ḡnom

ξ , given by
the systems Ḡ in (5.25) and Ḡξ in (7.4), with Bw̄, Dyw̄, Cz̄, Dz̄u, and the corresponding
matrices for Ḡξ, all being equal to zero. Then the following holds.

Definition 7.1 (Inclusion Principle [117]). The system Ḡnom
ξ is said to include the system

Ḡnom, if there exists U and V , with UV = I, such that for any initial state x(0) of Ḡnom

and any fixed input u(t), it holds that

x(t, x(0), u(t)) = Uξ(t, V x(0), u(t)), y(x(t)) = y(ξ(t)), ∀t ≥ 0.

Definition 7.2 (Restriction [117]). We consider the special case of a monic V , i.e., of

full column rank. If it holds that

ξ(t, V x(0), u(t)) = V x(t, x(0), u(t)), y(ξ(t)) = y(x(t)), ∀t ≥ 0, (7.6)

then Ḡnom is called a restriction of Ḡnom
ξ to R(V ), where R(V ) is the range space of

V . This subspace R(V ) is invariant in the sense that the solutions ξ(t) of Ḡnom
ξ starting

from an initial state ξ(t) ∈ R(V ) stay in R(V ) for any input u(t) and such solutions

ξ(t) are represented by the solutions x(t) of Ḡnom. Since V is monic, there exists an epic

U such that UV = I and inclusion of Ḡnom by Ḡnom
ξ is therefore implied.
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Theorem 7.1 (Restriction [117]). Given the nominal systems Ḡnom and Ḡnom
ξ , as defined

before, and with V monic, then Ḡnom is included in Ḡnom
ξ , if and only if the following

holds

MAV = 0, MCy
V = 0. (7.7)

Proof. The proof can be given by rewriting the equality of ξ(t, V x(0), u) = V x(t, x(0), u)
in Definition 7.2 as

V eAtx(0) + V
∫ t

0
eA(t−τ)Bu(τ)dτ (7.8)

= e(V AU+MA)tV x(0) +
∫ t

0
e(V AU+MA)(t−τ)Bu(τ)dτ, ∀x(0), u(t), (7.9)

which can easily be proved to be true if and only if the condition MAV = 0 in (7.7)
holds. Furthermore, the requirement y(ξ(t)) = y(x(t)), i.e., Cyx = (CyU + MCy

)ξ holds
if and only if MCy

ξ = MCy
V ξ = 0, and therefore MCy

V = 0.

As the mappings between Ḡnom and Ḡnom
ξ involves singular transformations, it is clear

that Ḡnom and Ḡnom
ξ are not algebraically equivalent. For example, for a fixed u(t) and a

fixed initial state x(0) of Ḡnom, there always exists an initial state ξ(0) of Ḡnom
ξ such that

y(x(t)) = y(ξ(t)). However, the opposite is not true in general. For compatible initial
states ξ(0) = V x(0) however, the input-output behavior of the systems Ḡnom and Ḡnom

ξ

are equal.

Generalizations to Performance Channel

Considering the systems Ḡ and Ḡξ in (5.25) and (7.4), we assume in the following that
the complementary matrices satisfy the following conditions.

MAV = 0 , MCy
V = 0 , MCz̄

V = 0 . (7.10)

With this choice of augmentation in (7.5) and complementary matrices in (7.10), we
propose the following results, which are a generalization of the restriction in Theorem 7.1.

Proposition 7.1. Given the augmented system Ḡξ in (7.4) with the augmented system

matrices in (7.5) and the complementary matrices satisfying (7.10), and given the ori-

ginal system Ḡ in (5.25), then for the choice ξ(0) = V x(0), the following holds for the

trajectory of the state x(t) and the augmented state ξ(t),

ξ(t, V x(0), u(t), w̄(t)) = V x(t, x(0), u(t), w̄(t)). (7.11)

Furthermore, it holds that

z̄(t, ξ(t, V x(0), u(t), w̄(t))) = z̄(t, x(t, x(0), u(t), w̄(t))),

y(t, ξ(t, V x(0), u(t), w̄(t))) = y(t, x(t, x(0), u(t), w̄(t))).
(7.12)
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Proof. Redefining the input of system Ḡnom in Theorem 7.1 as [u(t)⊤, w̄(t)⊤]⊤ and equi-
valently the system matrix as [Bu Bw̄], the results from Theorem 7.1 can directly be
applied to show that (7.11) holds. Furthermore, it holds that

Cξz̄ ξ(t, V x(0), u(t), w̄(t)) = (Cz̄U + MCz̄
)V

︸ ︷︷ ︸

Cz̄

x(t, x(0), u(t), w̄(t)).

The same can be shown for y(t), and thus the results in (7.12) follow.

Due to Proposition 7.1, also the input-output behavior from w̄ to z̄ of the original system
Ḡ and of the augmented system Ḡξ under the same input u(t) are equivalent.

Modes of the Augmented System

In the case of a restriction of the system Ḡnom
ξ onto Ḡnom, the complementary matrix

MA can be chosen as [117], [118]

MA = Y (I − V U) = Y V̂ Û , (7.13)

where Y is an arbitrary nξ × nξ matrix, V̂ is a basis matrix for the null space of U ,
and Û is the unique left inverse of V̂ , such that the null space of V̂ is equal to the
range space of V . The choice of MA as in (7.13) implies MAV = 0. In the case of a
restriction of the system Ḡξ to Ḡ, the spectrum of the augmented system matrix Aξ

is the union of the spectra of A and of ÛMAV̂ . This means that the complementary
matrix MA introduces nξ − n additional modes into the augmented system dynamics,
which are given by the eigenvalues of ÛMAV̂ . We will later see that these modes are not
controllable. In order to show the introduction of these additional modes, we consider
the closed-loop dynamics of the system and a static state feedback control CK

x i, which
corresponds to CK

ξ V = CK in the original state-space. Then, we define the matrices
W = [V V̂ ] and W −1 = [U⊤ Û⊤]⊤ and perform the following transformation

W −1
(

Aξ + BξuCK
ξ

)

W =

[

A + BuCK UMAV̂

0 ÛMAV̂

]

, (7.14)

which follows from the assumptions of the restriction and with ÛV = 0 and UV̂ = 0
by definition. The additional modes spec(ÛMAV̂ ) can be observable depending on the
complementary matrix MCy

. However, they are not controllable by the original control
inputs u. These modes are therefore so-called fixed modes (FMs), which will be further
analyzed in Chapter 8. As these modes only appear in the augmented dynamics, they
do not influence the original system Ḡ. For the controller synthesis in the following, the
complementary matrices however need to be chosen such that the pairs (Aξ, Bξu) and
(Aξ, Cξy) are stabilizable and reachable, and such that the introduced FMs do not limit
the achievable control performance. The complementary matrices can for example be
designed such that they minimize the condition number of the observability matrix, and
such that the additional modes introduce fast dynamics.
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Figure 7.2: Block-diagram of the original system and the dynamic output feedback controllers

in the augmented state space. The gray parts indicate the interconnections of the subcontrollers

enabled by communication (of measurements y2 to subsystem 1 in this example).

7.1.2 Interconnected Augmented System, Controller and Closed-

Loop

The goal is to design an augmented interconnected dynamic output feedback controller,
Kξ, which has the same structure as K in (5.14), given as

Kξ :







Kd
ξ = diagi∈N (Kξi) ,

pK = PKqK .
(7.15)

with

Kξi :














ξ̇K
i

ui

qK
i








=








AK
ξi BK

ξi BpK ,i

CK
ξi DK

i CpK ,i

CqK ,i DqK ,i 0















ξK
i

yi

pK
i








. (7.16)

The augmented controller states of the subcontrollers have the same dimensions as the
states of the corresponding subsystems, i.e., ξi

K ∈ Rnξi . As before, we denote the block-
diagonal and off-block-diagonal parts of the augmented controller gains with superscripts
(·)d and (·)i, respectively, e.g., AK

ξ = AK d
ξ + AK i

ξ. The structure of this augmented
interconnected controller is illustrated in Figure 7.2.

The objective is to apply the scalable controller synthesis methods from Chapters 5
and 6 to design the augmented interconnected controller Kξ. In order for the methods
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to be applicable, the system Ḡξ in (7.4) is transformed into the following form.

Gξ :







Gd
ξ = diagi∈N (Gξi) ,

p = PGq,
(7.17)

where Gξi has the same structure as Gi in (5.1), but in the augmented state space. A
possible transformation from Ḡξ to Gξ that has desirable properties for the controller
synthesis will be given in Section 7.2.

Then, we can define the closed-loop system of Gξ in (7.17) and Kξ in (7.16) as

Gξ :







Gd
ξ = diagi∈N (Gξi)

qc = Ppc,
(7.18)

with

Gξi :














ξ̇c
i

zi

qc
i








=








Aξ,i Bξ1,i Bξ2,i

Cξ1,i Dξ11,i Dξ12,i

Cξ2,i Dξ21,i Dξ22,i















ξc
i

wi

pc
i








, ∀i ∈ N , (7.19)

and with

ξc
i =

[

ξi
⊤ ξK

i
⊤]⊤ , ξc = concatN

i=1(ξc
i ) , (7.20)

and with the other signal vectors being defined analogously as before. The system
matrices for the closed-loop of the augmented system and the augmented controller,
Aξ,i, Bξ1,i, Cξ1,i, Dξ11,i and Dξ12,i, are formed in the same way as the closed-loop matrices
in (5.23).

7.2 Transformation to an Interconnected Augmen-

ted System

In order to model the augmented system Ḡξ as an interconnection of local subsystems
Gξi, as given in (7.17), we can transform the performance channel of the augmented
system such that each subsystem is equipped with a local performance channel wi to zi.
This is done similarly to the input-output transformation of the non-augmented system
Ḡ to the system G in Chapter 5.

Norm-Invariant Augmentation of the Performance Channel

The objective is to transform the global performance input and output, w̄ and z̄, of
system Ḡξ into a performance channel from w = [w⊤

1 , ..., w⊤
N ]⊤ to z = [z⊤

1 , ..., z⊤
N ]⊤ that
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Figure 7.3: Closed-loops of original system Ḡ and augmented systems Ḡξ and Gξ with the

controller Kξ. The block-diagonal parts of Gξ are in Gd
ξ and the off-block-diagonal parts in the

interconnection PG.

can be decomposed into local ones for the individual subsystems. The augmentation of
the performance channel is defined analogously to the one in (5.26), and is given as

Cξz = Q̄
1
2 SCξz̄ + MCξz̄

, Dzu = Q̄
1
2 SDz̄u,

Bξw = Bξw̄T †R̄
1
2 Dyw = Dyw̄T †R̄

1
2 ,

(7.21)

where the matrices Q̄ and R̄ again are assumed to have full rank and they have to
satisfy (5.31). The additional complementary matrix MCξz

has to satisfy the constraint
MCξz̄

V = 0. Apart from this constraint, MCξz̄
is a degree of freedom, in addition to the

choice of the complementary matrices MQ and MR as in (5.31). They can for example
be chosen to introduce sparsity into the matrices Cξz and Bξw.

Control Design Concept

The goal is to design an augmented controller Kξ, as given in (7.15), such that the H∞-
norm of the closed-loop transfer function from w̄ to z̄ of the closed-loop, i.e., ‖Ḡ‖H∞

,
with Ḡ = Fu(Ḡ, Kξ), is minimized. For a scalable synthesis of Kξ, the methods intro-
duced in Chapters 5 and 6 can be applied. This is possible by exploiting the structure
of the interconnected augmented system model Gξ. In the controller synthesis, we thus
minimize ‖Gξ‖H∞

, with Gξ = Fu(Gξ, Kξ). The controller Kξ will be implemented in the
original system Ḡ resulting in the closed-loop system Ḡ. The system Ḡξ is used as an in-
termediate system for proving stability and performance of the closed-loop Ḡ. Figure 7.3
shows all three closed-loop structures of the original system Ḡ, and the augmented sy-
stems Ḡξ and Gξ, under the controller Kξ, given by Ḡ = Fu(Ḡ, Kξ), Ḡξ = Fu(Ḡξ, Kξ),
and Gξ = Fu(Gξ, Kξ), respectively.

In the following, we show that the stability and performance guarantees from desig-
ning the controller Kξ for the system Gξ are preserved when implementing the controller
Kξ at the physical system Ḡ. First, we state an intermediate result showing that the
choice of weightings Q̄ and R̄ in (5.31) leads to an input-output transformation of the sy-
stem which leaves the system norm invariant. Equality of ‖Ḡξ‖H∞

and ‖Gξ‖H∞
is stated
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7.2 Transformation to an Interconnected Augmented System

in the following result.

Corollary 7.1. The closed-loop transfer functions Gξ = Fu(Gξ, Kξ) and Ḡξ = Fu(Ḡξ, Kξ),
from w to z with Gξ in (7.17), and from w̄ to z̄ with Ḡξ in (7.4), respectively, are

given. With the transformation in (7.21) and the weightings Q̄ = S†⊤
S† + MQ and

R̄ = TT ⊤ + MR, with MQ = M⊤
Q , MR = M⊤

R , S⊤MQS = 0, T †MRT †⊤ = 0, as in (5.31),
and with MCξz̄

V = 0, it holds that

‖Ḡξ‖H∞
= ‖Gξ‖H∞

.

Proof. First, we note that because of the restriction of Gξ ontoR(V ), and with MCξz̄
V =

0, it holds that z(t) =
(

Q̄
1
2 SCξz̄ + MCξz̄

)

V x(t) = Q̄
1
2 SCξz̄V x(t). Then, the proof is

analogous to the one of Theorem 5.1, to prove the performance bounds

σmin(Tr)
σmax(Tl)

‖Gξ‖H∞
≤ ‖Ḡξ‖H∞

≤ σmax(Tr)
σmin(Tl)

‖Gξ‖H∞
. (7.22)

with the transformations Tl :=
(

S†T S† + MQ

) 1
2 S and Tr :=

(

TT T + MR

)− 1
2 T .

This result is used in the following to show that the norms of the original system Ḡ and
the augmented system Gξ, both in interconnection with the controller Kξ are equal.

Proposition 7.2. Given the original system Ḡ in (5.30) and the augmented system Gξ

in (7.17), the following holds for the closed-loops under the augmented controller Kξ:

‖Gξ‖H∞
= ‖Ḡ‖H∞

.

Proof. We show that the following equalities hold:

‖Gξ‖H∞
= ‖Ḡξ‖H∞

= ‖Ḡ‖H∞
,

where the first one has already been proved in Corollary 7.1. For the second equality,
recall that Ḡ and Ḡξ under the same input u have the same input-output behavior from
w̄ to z̄, and the same output y(t), as shown in Proposition 7.1. This means that the
closed-loops of Ḡ and Ḡξ interconnected with the same output feedback controller Kξ,
i.e., Ḡ = Fu(Ḡ, Kξ) and Ḡξ = Fu(Ḡξ, Kξ), have the same input-output behavior from w̄

to z̄ and thus the norms of the transfer functions Ḡ and Ḡξ are equal.

The following corollary suggests that the augmentation of the performance channel is
also applicable for an H2-based controller synthesis.

Corollary 7.2. Given the closed-loop systems Ḡ and Gξ, of the original system Ḡ in

(5.30) and the augmented system Gξ in (7.17), respectively, then it holds that

‖Ḡ‖H2 = ‖Gξ‖H2.

85



Chapter 7. Augmented Distributed Control

Proof. The proof is analogous to the one of Proposition 7.2 making use of the unitary-
invariance property of the H2-norm.

Corollary 7.3. Given a controller Kξ that stabilizes Gξ and leads to a H∞-bound of less

than γ for Gξ, then it also stabilizes Ḡ and leads to the same performance bound for Ḡ.

Proof. The invariance of the performance bound has been shown in Proposition 7.2.
From Ḡξ to Gξ, only the performance channel is transformed, and therefore stability of
Gξ implies stability of Ḡξ. Furthermore, the eigenvalues of Ḡ are a subset of the ones of Ḡξ

(without the additional FMs introduced by the complementary matrix MA). Therefore,
stability of Ḡξ implies stability of Ḡ.

Depending on whether the augmented system is a homogeneous, α-β-heterogeneous, or
heterogeneous system, the decomposed and distributed synthesis methods from Chap-
ters 5 and 6 can be used for the controller design. The sparsity of the augmented system
matrices in (7.17) depends on the mapping V , the original system matrices and the com-
plementary matrices MA, MCy

, MCz
in (7.5) and MCz̄ξ

in (7.21). As a sparser structure of
the augmented system matrices introduces less coupling in the synthesis equations from
Chapters 5 and 6, the complementary matrices can be chosen such that the intercon-
nection topology of the augmented system is as sparse as possible. This augmentation
is illustrated in a numerical example in Section 7.3.

7.3 Numerical Example

In a first example, we illustrate the benefit of the augmented system representation in
terms of increased model information. Then, a numerical example is given, which shows
the modeling of a system as an interconnected system in the augmented state space and
the synthesis of the augmented interconnected controller. It is demonstrated how the
performance of decentralized control improves with an increased overlap in the models
of the subsystems.

7.3.1 Structural Degrees of Freedom

We consider an example system composed of three subsystems, which are dynamically
coupled, as shown on the left hand-side of Figure 7.4 (a). For illustration purposes, the
following distributed static state feedback (SSF) control in the original state space is
considered,






u1

u2

u3




 =








CK
ξ11

CK
ξ12

0

0 CK
ξ22

CK
ξ23

CK
ξ31

0 CK
ξ33













x1

x2

x3




 . (7.23)
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x1x1

x2x2

x3x3

(a) Left: Original state-space with dyna-

mic coupling indicated by ellipses. Right:

Communication structure between subsys-

tems.

x1x1

x2x2

x3x3

ξ11 ξ12

ξ21

ξ22

ξ31

ξ32

V1

V2V3

(b) Overlapping state-space indicated by

ellipses, disjoint partitions in augmented

state-space. Right: Decentralized struc-

ture without communication.

Figure 7.4: Model and communication structure of 3 interconnected subsystems.

We assume local inputs and measurements, such that subsystem 1 has the input u1

and measured output (state) x1, and for the other subsystems accordingly. In order to
implement the distributed control law in (7.23), a communication structure is required,
which is shown in Figure 7.4 (a). In contrast, if the system is mapped to an augmen-
ted state-space, where the dynamic couplings are included in the individual augmented
subsystems, then these subsystems become disjoint, as illustrated on the left hand-side
of Figure 7.4 (b). A block-diagonal SSF controller can be designed in the augmented
state-space, which is given as






u1

u2

u3




 =







CK
ξ11

CK
ξ12

0 0 0 0

0 0 CK
ξ22

CK
ξ23

0 0

0 0 0 0 CK
ξ31

CK
ξ33




















ξ11

ξ12

ξ21

ξ22

ξ31

ξ32














.

If it was contracted back to the original state-space, it would have the same structure, and
thus the same degrees of freedom, as the controller in (7.23). However, no communication
is required for the implementation of this augmented controller.

7.3.2 Robotic Example System

A simplified robotic system is considered, which is composed of N = 3 robotic subsystems
that cooperatively transport an object, to which they are physically coupled. In order to
avoid high interaction forces and possible damage to the object, the robots are controlled
by lower-level decentralized impedance controllers [119], which allow us to model their
closed-loop dynamics as second-order LTI systems [38], [40], given as

miẍi + di(ẋi − ẋid) + ki(xi − xid) = fi − fid , i = 1, ..., 3.
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Robot 1

Robot 2

Robot 3

k1o, d1o

k2o, d2o

d3o

k3o

Object

x1, f1

x2, f2

x3, f3

xo

Figure 7.5: Model of robots coupled through an object.

In a reduced form, they are given as

miẍi + diẋi + kixi = fi + biui,

with xi, ẋi, ẍi, fi being the position, velocity, acceleration, and force of the end-effector
of the i-th robot. The parameters mi, di, ki represent the virtual mass, damping,
and stiffness of the i-th robot. The contact between the i-th robot and the object is also
modeled as second-order dynamics with kio and dio the stiffness and damping parameters,
respectively. The system is depicted in Figure 7.5.

The states of subsystem i, i = 1, ..., 3, are the position and velocity of robot i, denoted
by xi := [xi, ẋi]⊤. The states of the object are xo := [xo, ẋo]⊤. The overall dynamics
are









ẋ1

ẋ2

ẋ3

ẋo









︸ ︷︷ ︸

ẋ

=









a11 0 0 a1o

0 a22 0 a2o

0 0 a33 a3o

ao1 ao2 ao3 aoo









︸ ︷︷ ︸

A









x1

x2

x3

xo









︸ ︷︷ ︸

x

+









Bu,11 0 0

0 Bu,22 0

0 0 Bu,33

0 0 0









︸ ︷︷ ︸

[Bu,1 Bu,2 Bu,3]






u1

u2

u3






︸ ︷︷ ︸

u

+









Bw̄,11 0 0 0

0 Bw̄,22 0 0

0 0 Bw̄,33 0

0 0 0 Bw̄,oo









︸ ︷︷ ︸

Bw̄









w̄1

w̄2

w̄3

w̄o









︸ ︷︷ ︸

w̄

,






y1

y2

y3






︸ ︷︷ ︸

y

=






x1

x2

x3




 =






1 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0






︸ ︷︷ ︸

Cy=[C⊤
y,1, C⊤

y,2, C⊤
y,3]⊤









x1

x2

x3

xo









︸ ︷︷ ︸

x

,

[

z̄x

z̄u

]

︸ ︷︷ ︸

z̄

=

[

Cz̄x

0nu×nx

]

︸ ︷︷ ︸

Cz̄

x, +

[

0nx×nu

Dz̄uu

]

︸ ︷︷ ︸

Dz̄u

u,

(7.24)
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x1
x1

x1 x1

x2
x2 x2 x2

x3
x3

x3 x3

xo
xo xo xo

ξ1

ξ1

ξ1

ξ2

ξ2
ξ2

ξ3

ξ3

ξ3

x

G
(1)
ξ G

(2)
ξ G

(3)
ξG

Figure 7.6: Illustration of the original state space (with state vector x) and of the different

overlaps within the augmented state spaces (with ξ1, ξ2, and ξ3 of the subsystems 1, 2, 3).

with

aii =

[

0 1

− 1
mi

(ki + kio) − 1
mi

(di + dio)

]

, aio = aoi =

[

0 0
kio

mo

dio

mo

]

,

aoo =

[

0 1

− 1
mo

(k1o + k2o + k3o) − 1
mo

(d1o + d2o + d3o)

]

,

Bu,ii =
[

0 10
mi

]⊤
, Bw̄,ii =

[

0 10
mo

]⊤
, Cz̄x = Inx

, Dz̄uu = 100Inu
.

In the following, the parameters are given as ki = 0.4, di = 0.6, mi = 5, kio = 0.3, dio =
0.8, mo = 4, ∀i = 1, ..., 3, and therefore define homogeneous subsystems.

Augmentation to Different Overlapping State Spaces

The model of the augmented system is considered for three different overlaps of the
augmented states of the subsystems, which are illustrated in Figure 7.6. They are chosen
to be symmetric for the subsystems. Therefore, for the homogeneous subsystems in the
original state space, the augmented subsystems also form one group of homogeneous
subsystems, i.e., αG = 1, with different interconnection types for some of the overlaps,
i.e., βG ≥ 1.

Augmented System G
(1)
ξ with Overlap 1

The states of the object overlap for each augmented state vector of the subsystems. The

overall augmented state vector is given by ξ =
[

ξ⊤
1 ξ⊤

2 ξ⊤
3

]⊤
with ξi =

[

x⊤
i x⊤

o

]⊤
. The

disturbance input and performance output are augmented to w =
[

w⊤
1 w⊤

2 w⊤
3

]⊤
, with

wi =
[

w̄i w̄o

]⊤
, and z =

[

z⊤
1 z⊤

2 z⊤
3

]⊤
, with zi =

[

xi xo

]⊤
. The augmented system
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matrices are given as

Aξ = V AU + MA

=


















a11
a1o

3 0 a1o

3 0 a1o

3

a1o
aoo

3 a2o
aξoo

3 a3o
aoo

3

0 a2o

3 a22
a2o

3 0 a2o

3

a1o
aoo

3 a2o
aoo

3 a3o
aoo

3

0 a3o

3 0 a3o

3 a33
a3o

3

a1o
aoo

3 a2o
aoo

3 a3o
aoo

3


















+


















0 2
3a1o 0 −1

3a1o 0 −1
3a1o

0 2
3aoo 0 −1

3aoo 0 −1
3aoo

0 −1
3a2o 0 2

3a2o 0 −1
3a2o

0 −1
3aoo 0 2

3aoo 0 −1
3aoo

0 −1
3a3o 0 −1

3a3o 0 2
3a3o

0 −1
3aoo 0 −1

3aoo 0 2
3aoo


















=



















a11 a1o 0 0 0 0

a1o aoo a2o 0 a3o 0

0 0 a22 a20 0 0

a1o 0 a2o aoo a3o 0

0 0 0 0 a33 a3o

a1o 0 a2o 0 a3o aoo



















=








Aξ11 Aξ2o Aξ3o

Aξ1o Aξ22 Aξ3o

Aξ1o Aξ2o Aξ33








.

For the homogeneous original system, it holds that Aξ11 = Aξ22 = Aξ33 = Aξii =: Aξi

and Aξ1o = Aξ2o = Aξ3o = Aξio =: Aξi,1. The augmentation of the other system matrices
is similar. Thus, the augmented system is rewritten as in (6.1),

Aξ = IN ⊗ Aξi + P G
1 ⊗Aξi,1,

Bξu = IN ⊗ Bξu,i,

Cξy = IN ⊗ Cξy,i,

Bξw = IN ⊗ Bξw,i + P G
1 ⊗Bξw,i,1,

Cξz = IN ⊗ Cξz,i,

with the interconnection matrix

P G
1 =






0 1 1

1 0 1

1 1 0




 .

The augmented measurement output and control input matrices are local, and the aug-
mented performance output, computed as in (5.28), is also local with

Cξz,i =

[

Inxi
0

0
√

3
3 Inxi

]

.

The augmented disturbance input matrix is computed as Bξw = V Bw̄T †R̄− 1
2 , resulting

in

Bξw,i =

[

Bw̄,ii 0

0
√

3
3 Bw̄,oo

]

, Bξw,i,1 =

[

0 0

0
√

3
3 Bw̄,oo

]

.
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Augmented System G
(2)
ξ with Overlap 2

For each robot, the augmented state contains its own state, the state of the object,

and the state of one neighbor, i.e., ξ =
[

ξ⊤
1 ξ⊤

2 ξ⊤
3

]⊤
with ξ1 =

[

x⊤
1 x⊤

2 x⊤
o

]⊤
, ξ2 =

[

x⊤
2 x⊤

3 x⊤
o

]⊤
and ξ3 =

[

x⊤
3 x⊤

1 x⊤
o

]⊤
. The disturbance input and performance output

are augmented to w =
[

w⊤
1 w⊤

2 w⊤
3

]⊤
and z =

[

z⊤
1 z⊤

2 z⊤
3

]⊤
, with w1 =

[

w̄1 w̄2 w̄o

]⊤
,

z1 =
[

x1 x2 xo

]⊤
, and w2, z2, w3, and z3 similar, according to the structure of ξ2 and

ξ3. The augmented system matrices are given as

Aξ = IN ⊗ Aξi + P G
1 ⊗ Aξi,1,

Bξu = IN ⊗ Bξu,i + P G
2 ⊗Bξu,i,2,

Cξy = IN ⊗ Cξy,i,

Bξw = IN ⊗ Bξw,i + P G
1 ⊗ Bξw,i,1 + P G

2 ⊗Bξw,i,2,

Cξz = IN ⊗ Cξz,i,

with βG = 2, and with

P G
1 =






0 0 1

1 0 0

0 1 0




 , P G

2 =






0 1 0

0 0 1

1 0 0




 .

Again, Cξz and Bξw are computed as in (5.28) resulting, e.g., in

Cξz,i = diag

(√
2

2
Inxi

,

√
2

2
Inxi

,

√
3

3
Inxo

)

.

Augmented System G
(3)
ξ with Overlap 3

In [52], the so-called parallel estimation case with a complete overlap of the augmen-
ted state estimates was considered. For this case of complete overlap, we define the

augmented state vectors as ξ =
[

ξ⊤
1 ξ⊤

2 ξ⊤
3

]⊤
with ξ1 =

[

x⊤
1 x⊤

2 x⊤
3 x⊤

o

]⊤
, ξ2 =

[

x⊤
2 x⊤

3 x⊤
1 x⊤

o

]⊤
and ξ3 =

[

x⊤
3 x⊤

1 x⊤
2 x⊤

o

]⊤
. In this case, the augmented system

matrices are given as

Aξ = IN ⊗ Aξi,

Bξu = IN ⊗ Bξu,i + P G
1 ⊗Bξu,i,1 + P G

2 ⊗ Bξu,i,2,

Cξy = IN ⊗ Cξy,i,

Bξw = IN ⊗ Bξw,i + P G
1 ⊗ Bξw,i,1 + P G

2 ⊗Bξw,i,2,

Cξz = IN ⊗ Cξz,i,

with βG = 2, and P G
1 and P G

2 as in G
(2)
ξ . Again, Cξz and Bξw are computed as in (5.28)

resulting, e.g., in Cξz = IN ⊗ 1√
3
I3nxi

.
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Ḡ(1) Ḡ(2) Ḡ(3) Ḡ(c)

γ 80.70 68.65 44.28 41.63
‖ · ‖H∞

49.77 41.62 41.69 41.58

Table 7.1: Dynamic output feedback closed-loop performance for Ḡ(i) = Fu(Ḡ, K
(i)
ξ ), with

controllers K
(i)
ξ of overlaps i = 1, 2, 3, and Ḡ(c) = Fu(Ḡ, K(c)) with central controller K(c) in

original state space.

The choices of different overlaps imply different structures of the augmented state
spaces and system representations. However, the local inputs and outputs are not chan-
ged. In particular, the sensing and actuation of the original system stays unchanged.
Based on these different augmented system representations, augmented controllers are
designed, where the interconnection topology is a design choice. In the following, we
chose to synthesize decentralized augmented DOF controllers.

Decentralized Augmented Dynamic Output Feedback Control

As the three augmented systems all belong to the class of α-β-heterogeneous systems, we
use the decomposed synthesis, as given in Proposition 6.4, to design augmented dynamic
output feedback controllers. In order to compare the performance of the controllers
in the different augmented state spaces, we chose to design completely decentralized
controllers, i.e., no explicit communication between the subcontrollers exists. For the
controller synthesis, the iterative procedure described in Section A.1 is applied. The
synthesized controllers in the different augmented state spaces are denoted by K

(i)
ξ for

the overlaps i = 1, 2, 3. The control performance bounds γ and H∞-norms of the closed-
loop transfer functions Ḡ(i) = Fu(Ḡ, K

(i)
ξ ) are given in Table 7.1. Note that the system

norms of the augmented systems G
(i)
ξ and Ḡ

(i)
ξ , and of the original system Ḡ, under the

controller K
(i)
ξ are equal, i.e., ‖Ḡ(i)‖H∞

= ‖Ḡ(i)
ξ ‖H∞

= ‖G(i)
ξ ‖H∞

with G(i)
ξ = Fu(G(i)

ξ , K
(i)
ξ )

and Ḡ(i)
ξ = Fu(Ḡ(i)

ξ , K
(i)
ξ ). For comparison, the case of a centralized controller in the

original state space is also given, denoted by K(c) with Ḡ(c) = Fu(Ḡ, K(c)). The results
show an obvious trend. The larger the overlap of the augmented controllers, the better
the control performance.

7.4 Conclusions

In order to improve the control performance without increasing the communication, we
propose the design of an overlapping augmented controller. The degree of overlap and the
amount of added communication are design choices, which allow for a trade-off between
the required computational effort, the communication and the achievable performance.
The performance is improved by increasing the amount of model information available
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7.4 Conclusions

to the individual subsystems. The concept can be interpreted as the controller having
more degrees of freedom if it was contracted back from the augmented to the original
state space. The augmented controller can alternatively be interpreted as a higher order
decentralized controller. In the augmented state space, the system can be modeled as an
interconnected system that fits the frameworks introduced in Chapters 5 or 6 and the
scalable control design methods can be applied. A numerical example of decentralized
control was presented to demonstrate that an increase in the overlap of the augmented
subsystems leads to an improvement of the control performance. While the subsystem
models have the same local control inputs and measured outputs, the increase in the
overlap leads to an increased amount of local information.
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CHAPTER 8
Minimum Communication Topology Design

For the methods presented in Chapters 5 and 6, the interconnection topology and thus
the communication within the controller is a design choice. Chapter 7 aims at increa-
sing the control performance for a sparse communication topology or for decentralized
control. Implementing a decentralized control scheme is however not always possible.
This chapter addresses the topic of decentralized fixed modes (DFMs) [48] which are
modes of the closed-loop system that cannot be moved by any decentralized controller.
Fixed modes (FMs) that are not stabilizable or critically limit the performance need to
be removed, which can be achieved by adding sensors, actuators or communication. In
this work, we assume that the input-output structure of the system is given and that
the communication topology is the only remaining design choice. The goal is to find the
sparsest possible communication structure that eliminates all FMs. We formulate the
problem of finding a minimum communication topology in order to eliminate all FMs
as a minimum cost coverage problem with submodular constraints. Two methods are
proposed for the elimination of FMs: The greedy algorithm of polynomial complexity
which has a guaranteed suboptimality bound, and a tree-search algorithm of exponen-
tial complexity which finds the optimal solution. Although this chapter considers the
augmented state space representation introduced in Chapter 7, all results are directly
transferable to the special case of a non-augmented system representation. The work
presented in this chapter has been published in [13].

This chapter is structured as follows. In Section 8.1, a characterization of FMs in
the augmented state space representation is given. Furthermore, a method for identi-
fying FMs is provided. Section 8.2 states structural conditions, under which FMs can be
eliminated by communication. In Section 8.3, we propose methods to eliminate the iden-
tified FMs by introducing a minimum set of communication links. Section 8.4 presents a
numerical example to illustrate the results before we conclude the chapter in Section 8.5.
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8.1 Characterization of Fixed Modes

We will first give a characterization of FMs, and a deterministic method of identifying
them.

System and Controller Dynamics

In this chapter, we consider the centralized representation of the augmented system
dynamics as defined in (7.4). For the purpose of considering FMs of the system, we
neglect the exogenous input and the performance output and focus on the nominal
system, i.e., (7.4) where Bξw̄ = 0, Dyw̄ = 0, Cξz̄ = 0 and Dz̄u = 0. In particular, we
consider the framework of augmented dynamic output feedback control as given by

Kξ :










ξ̇K

u



 =




AK

ξ BK
ξ

CK
ξ DK








ξK

y



 . (8.1)

As before, the block-diagonal and off-block-diagonal parts of the augmented controller
gains are denoted with superscripts (·)d and (·)i, respectively. The controller gains are
thus given by, e.g., AK

ξ = AK d
ξ +AKi

ξ. The closed-loop matrix Aξ of the system Ḡξ with
the controller Kξ will be of importance for the results in this chapter. It is given by

Aξ =

[

Aξ + BξuDKCξy BξuCK
ξ

BK
ξCξy AK

ξ

]

. (8.2)

Although this chapter is based on the augmented system and controller representations,
all the results presented in the following also hold for non-overlapping systems, which
represent the special case of V = I and ξc = xc.

Definition of Fixed Modes

Decentralized fixed modes (DFMs) have been introduced in [93] as modes of the closed-
loop system that cannot be moved by decentralized output feedback. For the system
Ḡξ, as given in (7.4), with the controller Kξ, as given in (8.1), DFMs are eigenvalues of
the closed-loop matrix Aξ in (8.2), which, for a given overlapping structure, cannot be
moved by any decentralized controller. We denote the sets of all decentralized augmented
controller gains by AKd

ξ , BK d

ξ , CK d

ξ , and DK d, with

AKd

ξ = {AKd

ξ ∈ Rnξ×nξ |AKd

ξ = diagN
i=1

(

AKd

ξi

)

, AK d

ξi ∈ Rnξi
×nξi} ,

and BK d

ξ , CK d

ξ and DK d are defined accordingly. For the DFM λ, it thus holds

λ ∈
⋂

AKd
ξ ∈ AK d

ξ , BK d
ξ ∈ BK d

ξ ,

CKd
ξ ∈ CK d

ξ , DK d ∈ DK d

eig(Aξ) . (8.3)
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8.1 Characterization of Fixed Modes

Identification of Fixed Modes

As unstable FMs are not stabilizable under the given structural constraints and stable
FMs can limit the performance, they need to be identified and if possible removed via
communication or additional measurements or control inputs. However, as AKd

ξ , BKd

ξ ,

CK d

ξ and DK d are infinite sets, checking (8.3) is not practical for a deterministic test.
In the following, the characterization of FMs is based on the rank conditions in [93].
Then, the following characterization of FMs holds.

Proposition 8.1. The closed-loop eigenvalue λ ∈ eig(Aξ) is a FM if and only if there

exists a partition of the index set S = {1, . . . , N} of all input and output channels

into two disjoint subsets S1 = {i1, . . . , ik} and S2 = {ik+1, . . . , iN} with S1 ∪ S2 = S and

S1 ∩ S2 = ∅, such that

rank (Mλ,S1,S2) < 2nξ,

where

Mλ,S1,S2 =

[

λI2nξ
− Â B̂S1

ĈS2 0

]

, (8.4)

with

Â =






A M̃A 0

0 M̂A 0

0 0 0




 , B̂S1 =






Bu,S1 Bu,S1 0 0

0 0 0 0

0 0 ÎS1 ÎS1




 , ĈS2 =









Cy,S2 0 0

0 0 ÎS2

Cy,S2 0 0

0 0 ÎS2









. (8.5)

The matrices Bu,S1 and ÎS1 are given as

Bu,S1 = concatk
l=1

(

B⊤
u,il

)⊤
, ÎS1 = concatk

l=1

(

Î⊤
il

)⊤
, (8.6)

with

Îil
=
[

0nξil
×nξi1

· · · 0nξil
×nξil−1

Inξil
0nξil

×nξil+1
· · · 0nξil

×nξiN

]⊤
.

The matrices CyS2
and ÎS2 are defined accordingly. From (7.14), M̂A is given by

M̂A = ÛMAV̂ , and M̃A is defined as M̃A = UMAV̂ , where V̂ , U and Û are as defined

in (7.13).

Proof: We rewrite the matrix Aξ in (8.2) as

Aξ = Ã + B̃dK̃dC̃d =

[

Aξ 0

0 0

]

+

[

Bξu Bξu 0 0

0 0 Inξ
Inξ

]










DKd
0 0 0

0 CKd
ξ 0 0

0 0 BKd
ξ 0

0 0 0 AKd
ξ


















Cξy 0

0 Inξ

Cξy 0

0 Inξ









.
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Then, we perform the following transformation of Aξ to

Â = W̃ −1ÃW̃ , B̂d = W̃ −1B̃d, Ĉd = C̃dW̃ ,

with

W̃ =

[

V V̂ 0

0 0 I

]

, W̃ −1 =






U 0

Û 0

0 I




 .

The matrices V̂ , U and Û are as defined in (7.13). This transformation leads to

Â = Â + B̂dK̃dĈd =






A M̃A 0

0 M̂A 0

0 0 0




+






Bu Bu 0 0

0 0 0 0

0 0 Inξ
Inξ















DKd
0 0 0

0 CKd
ξ 0 0

0 0 BKd
ξ 0

0 0 0 AK d
ξ


















Cy 0 0

0 0 Inξ

Cy 0 0

0 0 Inξ









,

(8.7)

for which the characterization of FMs in [93] is applicable, as the controller gain K̃d =
diag(DKd

, CKd
ξ , BKd

ξ , AKd
ξ , ) is block-diagonal.

Note that in Proposition 8.1, all disjoint partitions of S need to be checked, including
S1 = ∅, S2 = S and vice versa. Proposition 8.1 will be used in Section 8.2 when we add
communication links to the system. For the detection of FMs of system (7.18) without
communication, we state the following result that simplifies the necessary rank checks.

Lemma 8.1. The rank deficiency dr := 2nξ − rank (Mλ,S1,S2), with Mλ,S1,S2 in (8.4),
is equal to the rank deficiency d̃r := nx − rank

(

M̃λ,S1,S2

)

︸ ︷︷ ︸

λ∈spec(A)

+
(

nξ − nx − rank(λI − M̂A)
)

︸ ︷︷ ︸

λ∈spec(M̂A)

,

with

M̃λ,S1,S2 =

[

λInx −A Bu,S1

Cy,S2 0

]

. (8.8)

Proof: To show this, we transform the matrix Mλ,S1,S2 into

Mλ,S1,S2 = diag

















λInx −A Bu,S1 Bu,S1 −M̃A

Cy,S2 0 0 0

Cy,S2 0 0 0

0 0 0 λInξ−nx − M̂A









,






λInξ
ÎS1 ÎS1

ÎS2 0 0

ÎS2 0 0














. (8.9)

The rank of the second block is nξ, as S1 and S2 are disjoint. The first block is rank

deficient if λ ∈ spec(M̂A) and if

[

λInx −A Bu,S1

Cy,S2 0

]

is rank deficient. Therefore, the rank

deficiency dr is caused by FMs λ ∈ spec(M̂A) or by the rank deficiency of M̃λ,S1,S2 .
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Indeed, the possible FM candidates are the eigenvalues of A and of M̂A, i.e., λ ∈
spec(A) ∪ spec(M̂A). The modes λ ∈ spec(M̂A) are FMs of (8.2), as they cause a
rank deficiency of Mλ,S1,S2. This is also obvious from (8.7), interpreting the structure
as a Kalman decomposition and noting that the entries in B̂d and Ĉd that correspond
to the modes of M̂A are all zero. However, these FMs result from augmenting the sy-
stem and do not affect stability nor performance of the original system. The choice of
MA which determines these FMs is therefore important only for the controller synthesis,
i.e., MA needs to be chosen such that the pairs (Aξ, Bξu) and (Aξ, Cξy) are stabilizable
and reachable and such that λ ∈ M̂A do not limit the achievable control performance.
Therefore, only eigenvalues of A will be considered as potential FMs for the original sy-
stem. Furthermore, as only unobservable and uncontrollable channels can cause a rank
deficiency of Mλ,S1,S2 , only the partitions of these channels need to be considered.

FMs of Aξ in (8.2), the closed-loop of (7.4) under controller (8.1), are thus the
eigenvalues of M̂A, and the FMs of system (5.25) in the original state space which would
occur under static output feedback DKd.

In [48], the result was stated that FMs under decentralized static feedback are equi-
valent to FMs under decentralized dynamic feedback of the same structure. Lemma 8.1
shows that this set of FMs is also a subset of FMs under the augmented dynamic con-
troller (in addition to the FMs introduced by MA).

8.2 Elimination of Fixed Modes by Communication

We assume that the input-output structure of the system is fixed. FMs will therefore be
eliminated by changing the controller structure through communication.

8.2.1 Communication of Measurements and Controller States

In the following, it is shown how to remove the FMs by introducing communication
between the subcontrollers. In particular, we consider the cases of communicating only
controller states, or only measurements. Depending on the application, it can of course
be reasonable to minimize the number of communication links, and to communicate
both, controller states and measurements per link.

We define the sets Ey and E ξK

, which comprise all existing measurement and con-
troller state communication links, respectively. This means that if the measurement
communication topology contains the link (i, j), i.e., if (i, j) ∈ Ey, then the measure-
ments of j are communicated to i. In this case, the controller gains BK i

ξij and DKi
ij

will be used. The set E ξK

is defined accordingly and enables the use of the gains AKi
ξik

and CK i
ξik for a link (i, k) ∈ E ξK

. The sets Ey and E ξK

are subsets of the link set
Efull = {(1, 2), ..., (N, N − 1)} of all N (N − 1) possible directed links.
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Remark 8.1. Note that in Chapters 5 and 6, we defined the set of controller intercon-
nection links EK as the set of all links to communicate both controller states ξK

i and
measurements yi, i.e., EK = E ξK

= Ey.

In order to characterize the FMs of the system with communication, as in Proposition
8.1, we formulate the controller gains of Kξ in (8.1) as

AK
ξ = AK d

ξ + BA AK i

E CA,

BK
ξ = BK d

ξ + BB BKi

E CB,

CK
ξ = CKd

ξ + BC CKi

E CC ,

DK = DKd
+ BD DKi

E CD,

(8.10)

with

AK i

E = diag
(i,k)∈EξK

(

AKi

ξik

)

,

BK i

E = diag(i,j)∈Ey

(

BK i

ξij

)

,

CK i

E = diag
(i,k)∈EξK

(

CKi

ξik

)

,

DKi

E = diag(i,j)∈Ey

(

DKi

ij

)

.

(8.11)

The structure of the communication is captured in B{A,B,C,D} and C{A,B,C,D}, which are

defined as for example BA = concat
(i,j)∈EξK

(

B⊤
A,ij

)⊤
, where BA,ij accounts for the link

(i, j) ∈ E ξK

and is given by

BA,ij =
[

0nξi×nξ1
. . . 0nξi×nξi−1

Inξi
0nξi×nξi+1

. . . 0nξi×nξN

]⊤
,

and B{B,C,D} and C{A,B,C,D} are defined analogously. With these definitions, the closed-
loop system in (8.7) , extended by communication as in (8.10), has the closed-loop matrix
Âclp = Â + B̂ K̃ Ĉ with block-diagonal controller gain

K̃ = diag(DKd
, CKd

ξ, BKd

ξ , AKd

ξ , DKi
E , CKi

E , BKi

E , AKi

E),

and corresponding B̂ and Ĉ given as

B̂ =






Bu Bu 0 0 Bu BD Bu BC 0 0

0 0 0 0 0 0 0 0

0 0 Inξ
Inξ

0 0 BB BA




 , Ĉ =



















Cy 0 0

0 0 Inξ

Cy 0 0

0 0 Inξ

CDCy 0 0

0 0 CC

CBCy 0 0

0 0 CA



















. (8.12)
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Full Communication of Measurements or Controller States

In the case of all-to-all communication of measurements or controller states, i.e., Ey = Efull

or E ξK

= Efull, the expression in (8.12) can be simplified. The closed-loop can be written
as in (8.7), but with the respective controller gains

Ky = diag(DK , CKd

ξ , BK
ξ, AK d

ξ) , or KξK

= diag(DKd
, CK

ξ, BKd

ξ , AK
ξ), (8.13)

where AK
ξ, BK

ξ, CK
ξ and DK are full gains as defined before. Using the definition in

(8.10), they are recovered as

AK
ξ := AKd

ξ + BA AK i

Efull
CA,

BK
ξ := BKd

ξ + BB BKi

Efull
CB,

CK
ξ := CKd

ξ + BC CKi

Efull
CC ,

DK := DKd

ξ + BD DKi

Efull
CD,

(8.14)

with the all-to-all communication in Efull. In the following, either the case of communi-
cating only controller states or only measurements is considered.

8.2.2 Existence of Communication Topologies to Eliminate FMs

In the following, it is shown that there always exists a communication topology of only
measurements or controller states, such that all FMs are eliminated.

Lemma 8.2. The augmented closed-loop system (8.7) with all-to-all communication:

a) of only measurements, i.e., Ey = Efull, E ξK

= ∅, and Ky as in (8.13) , has no FMs.

b) of only controller states, i.e., E ξK

= Efull, Ey = ∅ and KξK

as in (8.13) has no

FMs, if and only if the following condition on the overlapping structure is satisfied:

nx − rank

([

λInx −A Bu,S1

Cy,S2 0

])

≤ ∑

i∈S1
nξi, ∀ S1, S2 being disjoint partitions of S

as defined before, and for all FM canditates λ.

Proof: a) As BK
ξ and DK are full blocks, B̂S1 in Proposition 8.1 becomes

B̂S1 =







Bu,SD1
Bu,S1 0 0

0 0 0 0

0 0 ÎSB1
ÎS1







,

with SB1 = S or SB1 = ∅ and SD1 = S or SD1 = ∅. Accordingly, ĈS2 is given by

ĈS2 =









Cy,SD2
0 0

0 0 ÎS2

Cy,SB2
0 0

0 0 ÎS2









, (8.15)
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with SB2 and SD2 being equal to S or ∅, such that they form disjoint partitions
of S with SB1 and SD1 , respectively. The necessary rank checks thus reduce to the
four possible combinations of SB1 = S and SB2 = ∅ and vice versa, combined with
the analogous two possible choices for SD1 and SD2. In all cases, for the remaining
entries in B̂S1 and ĈS2 , all possible disjoint partitions of S into S1 and S2 need to
be considered. In all cases, it is easy to check that rank(Mλ,S1,S2) ≥ 2nξ. It suffices
to note that the first block has always rank greater or equal to nx, as in all possible
cases, either Bu,SD1

or Cy,SB2
are full blocks, and the pairs (A, Bu) and (A, Cy) are

assumed to be controllable and observable.

b) Since the blocks AK
ξ and CK

ξ are full, B̂S1 in Proposition 8.1 becomes

B̂S1 =







Bu,S1 Bu,SC1
0 0

0 0 0 0

0 0 ÎS1 ÎSA1







,

and the corresponding entries ÎS2 in ĈS2 become ÎSA2
and ÎSC2

, i.e.,

ĈS2 =









Cy,S2 0 0

0 0 ÎSC2

Cy,S2 0 0

0 0 ÎSA2









. (8.16)

Similarly to a), the four possible combinations of these blocks being full or empty
and the corresponding blocks forming disjoint partitions over S need to be checked.
In the two cases, where Bu,SC1

is a full block, the first block in (8.9) has rank nx,

because of the controllability of (A, Bu). In the case where ÎSA1
and ÎSC2

are full
blocks, the third block in (8.9) is of rank 2nξ. In the remaining case, it holds that

rank(Mλ,S1,S2) = rank

([

λInx −A Bu,S1

Cy,S2 0

])

+ 2nξ − nx +
∑

i∈S1
nξi

, which has to be

≥ 2nξ for the system to have no FMs, and the given condition follows.

Instead of an augmented DOF controller, the controller in (8.1) can be interpreted
as a decentralized augmented SSF controller that is based on an overlapping estimator.
In that case, DK = 0, and interconnected terms are considered only in AKi

ξ and BK i
ξ,

and thus CK i
ξ = 0. The following result gives some mild conditions, under which there

always exists a communication topology of measurements, Ey, or controller states, E ξK

,
that removes all FMs.

Corollary 8.1. The augmented closed-loop system (8.7) with DK = 0 and with all-to-all

communication, which is introduced through AKi
ξ and BK i

ξ:
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a) of only measurements, i.e., Ey = Efull, E ξK

= ∅, and Ky = diag(0, CKd
ξ , BK

ξ, AKd
ξ),

has no FMs, if and only if the following condition on the overlapping structure is

satisfied: nx − rank(λInx
− A, Bu,S1) ≤

∑

i∈S2
nξi, ∀ S1, S2 as defined before, and

for all FM canditates λ.

b) of only controller states, i.e., E ξK

= Efull, Ey = ∅ and KξK

= diag(0, CKd
ξ , BK d

ξ , AK
ξ),

has no FMs, if and only if the following condition on the overlapping structure is

satisfied: nx − rank

([

λInx −A Bu,S1

Cy,S2 0

])

≤ min (
∑

i∈S2
nξi,

∑

i∈S1
nξi) , ∀ S1, S2 as

defined before, and for all FM canditates λ.

Proof: a) As BK
ξ is a full block, B̂S1 in Proposition 8.1 becomes

B̂S1 =







Bu,S1 0 0

0 0 0

0 ÎSB1
ÎS1







,

with SB1 = S or SB1 = ∅. Accordingly, the entry Cy,S2 in ĈS2 becomes Cy,SB2

since SB2 and SB1 form disjoint partitions of S. The necessary rank checks thus
reduce to the two cases SB1 = ∅ and SB2 = S and vice versa. In both cases,
for the remaining entries in B̂S1 and ĈS2 , all possible disjoint partitions of S into
S1 and S2 need to be considered. In the first case with Cy,SB2

= Cy, it always
holds that rank(Mλ,S1,S2) ≥ 2nξ, as (A, Cy) is observable. In the second case, from
(8.9) with Cy,SB2

= ∅ and ÎSB1
= Inξ

, for all possible S1 and S2, it holds that
rank (Mλ,S1,S2) = rank([λInx

− A, Bu,S1]) + 2nξ − nx +
∑

i∈S2
nξi

, which has to be
≥ 2nξ for no FMs, and the given conditions follow.

b) Because the block AK
ξ is full, ÎS1 and ÎS2 of the third block columns and rows in

B̂S1 and ĈS2 become ÎSA1
and ÎSA2

. The two cases to be checked are SA1 = S and
SA2 = ∅ and vice versa. The result follows with similar reasoning as in a).

8.3 Minimum Set of Communication Links to Re-

move FMs

We consider the problem of determining a minimal communication link set to remove all
FMs. The communication of either measurements or controller states is considered. In
the following, for the ease of presentation, we will denote the communication topology
that is to be minimized by T , which can stand for both E ξK

or Ey. First, all FMs are
identified, which by Lemma 8.1, is done by the rank checks of M̃λ,S1,S2. All rank-deficient
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cases are denoted by r = 1, ..., R of rank-deficiency dr = d̃r = nx − rank(M̃λr ,S1,r,S2,r
),

with the fixed modes λr, and with the partitions S1,r and S2,r.

We propose to formulate the problem of finding a minimal set of communication links
to eliminate all FMs as the following minimum cost coverage problem with submodular
constraints [26],

T ∗ = argmin
T

|T |

s.t. fr(T ) ≥ dr, ∀r ∈ {1, ..., R} ,
(8.17)

with

fr(T ) = min
Ŝ1,Ŝ2

(

rank(Mλr ,S1,r ,S2,r,B
T,Ŝ1

,C
T,Ŝ2

)
)

− rank(Mλr ,S1,r ,S2,r
), (8.18)

where Mλr ,S1,r,S2,r
is defined as in (8.4) with the partitions S1,r and S2,r. The set function

fr(T ) indicates the rank increase of Mλr ,S1,r,S2,r
for implementing the link set T . All

possible disjoint partitions Ŝ1 and Ŝ2 of T need to be checked. They are concatenated
through the corresponding BT and CT , comprising the B{A,B,C,D} and C{A,B,C,D}, to B̂

and Ĉ, as in (8.12). The matrix Mλr ,S1,r ,S2,r
with these concatenated partitions of T is

denoted by Mλr ,S1,r,S2,r ,B
T,Ŝ1

,C
T,Ŝ2

.

Minimum cost coverage problems are known to be NP-hard [120]. But the submo-
dularity of the constraints is exploited to give a guaranteed suboptimality bound for
the greedy algorithm and for efficient cuts in a decision tree based algorithm. To show
submodularity of the constraints in (8.17), we reformulate them as

g(T ) ≥
R∑

r=1

dr, (8.19)

with

g(T ) =
R∑

r=1

min(fr(T ), dr). (8.20)

The submodularity of the constraints of (8.17) in (8.18) intuitively means that the in-
crease in information between the subsystems is larger for adding a communication link
to a sparser communication topology than adding the same communication link to a
denser communication topology. Now, we state the following preliminary result, in order
to then prove submodularity of g(T ) in (8.20).

Lemma 8.3. The set function fr(T ) in (8.17) is submodular and monotone.

Proof: First, we show monotonicity of fr(T ). A direct application of Definition 3.4 in
Section 3.1 leads to

∀T1 ⊆ T2 ⊆ Efull, fr(T1) ≤ fr(T2).
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Inserting the definition of fr(T ) from (8.18) results in

min
Ŝ1,Ŝ2

(

rank(Mλr ,S1,r,S2,r ,B
T1,Ŝ1

,C
T1,Ŝ2

)
)

≤ min
Ŝ1,Ŝ2

(

rank(Mλr ,S1,r,S2,r ,B
T2,Ŝ1

,C
T2,Ŝ2

)
)

, (8.21)

which is clear from the property of the rank and the fact that the minimum on the right-
hand side (RHS) is searched over the partitions Ŝ1, Ŝ2 of T2, which are strict supersets
of the partitions of T1 of the left-hand side (LHS). Therefore, the RHS cannot have a
lower rank.

To show submodularity of the function fr(T ), the following definition, which is equi-
valent to Definition 3.5 from Section 3.1, with T = T1 ∩ T2, T ∪ {e1, e2} = T1 ∪ T2,
T ∪ {e1} = T1, T ∪ {e2} = T2, is verified. Applying the definition to the function fr(T )
leads to the following result. ∀T ⊆ Efull, e1, e2 ∈ Efull \ T,

fr(T ∪ {e1}) + fr(T ∪ {e2}) ≥ fr(T ∪ {e1, e2}) + fr(T )

⇐⇒ min
Ŝ1,Ŝ2

(

rank(Mr,T ∪{e1},Ŝ1,Ŝ2
)
)

+ min
Ŝ1,Ŝ2

(

rank(Mr,T ∪{e2},Ŝ1,Ŝ2
)
)

≥

min
Ŝ1,Ŝ2

(

rank(Mr,T ∪{e1,e2},Ŝ1,Ŝ2
)
)

+ min
Ŝ1,Ŝ2

(

rank(Mr,T,Ŝ1,Ŝ2
)
)

, (8.22)

where we used Mr,T,Ŝ1,Ŝ2
:= Mλr ,S1,r,S2,r ,B

T,Ŝ1
,C

T,Ŝ2
for the ease of presentation. This means

that the sum of rank increases of Mr := Mλr ,S1,r,S2,r
for concatenating the corresponding

rows and columns of BT and CT separately is larger than for adding them simultaneously.
For simplicity of the argument, we first consider the case, where T = ∅. The inequality
has to hold for the minimum over the partitions Ŝ1, Ŝ2 in each term. Let us denote the
rank increases for the two possible partitions Ŝ1, Ŝ2 for adding {e1} by

b1 := rank(Mr,{e1},Ŝ1={e1},Ŝ2=∅),

c1 := rank(Mr,{e1},Ŝ1=∅,Ŝ2={e1}),

and b2, c2 accordingly for adding {e2}. Similarly, for the rank increase of adding {e1, e2},
let us denote

b12 := Mr,{e1,e2},Ŝ1={e1,e2},Ŝ2=∅,

c12 := Mr,{e1,e2},Ŝ1=∅,Ŝ2={e1,e2}.

Then, (8.22) becomes

min(b1, c1) + min(b2, c2) = min(b1 + b2, b1 + c2, b2 + c1, c1 + c2)

≥ min(b12, c12, b1 + c2, b2 + c1) + 0 , (8.23)

where the equality holds since b1, b2, c1, c2 ≥ 0. The inequality in (8.23) holds as b1 +b2 ≥
b12, which holds with equality in the case where the matrices BT,Ŝ1={e1} and BT,Ŝ1={e2}
only contain linearly independent vectors and strict inequality can hold if they contain
linearly dependent ones. The same holds for c12, which completes the proof for T = ∅.
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If T 6= ∅, it is easy to show that the same argument holds. In this case, again, the
LHS of (8.22) can be written as one minimum function, and for each of its arguments,
the minimum function on the RHS contains an argument of equal or smaller value, with
the same reasoning as before.

With this, we can now state the following result.

Lemma 8.4. The function g(T ) =
∑R

r=1 min(fr(T ), dr) is submodular and monotone.

Proof: By construction, the function g(T ) is monotone, as by Lemma 8.3 , fr(T ) is
monotone, and thus enlarging the argument set cannot decrease the function value.
The function g(T ) is submodular as fr is submodular and monotone, and thus their
truncation min(fr(T ), dr) is submodular. Finally, the sum of submodular functions is
also submodular [26].

8.3.1 Greedy Algorithm

Depending on the application, it may not be critical to find the minimal communication,
but a suboptimal solution might be acceptable. Then, a greedy algorithm can be used
[111]. It starts from the empty link set T 1 = ∅ and the search set S1 = Efull of all
possible communication links. In each iteration n, a link (i, j)∗ from the search set that
causes the largest increase of g(T n ∪ (i, j)) with respect to g(T n) in (8.20) is added to
the link set until the rank deficiency is removed. These steps are given in Algorithm 8.1.
The submodularity of g(T ) implies a suboptimality bound of a factor H by which the

Algorithm 8.1 Greedy algorithm to determine suboptimal solution of (8.17):
minimal sets of communication links to eliminate all FMs.

1: Input: A, Bu, Cy, Kξ, V , FMs and rank deficient cases r = 1, ..., R identified as in
Lemma 8.1 for g(T ),

2: Initialization: n = 1, T 1 = ∅, Search set S1 = Efull,
3: while g(T n) ≤ ∑r dr do

4: Compute rank increase ∆g(i,j) = g(T n ∪ (i, j))− g(T n), ∀ (i, j) ∈ Sn,
5: Update T n+1 = T n ∪ (i, j)∗, with (i, j)∗ = arg max

(i,j)∈Sn

∆g(i,j),

6: Update Sn+1 = Sn \ (i, j)∗,
7: n = n + 1,

8: end

9: T ∗ = T n,
10: Output: Suboptimal solution of sets of communication links T ∗.

optimal value is not exceeded. This factor is given by

H(max
j

g({j})),
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where H(d) =
∑d

i=1
1
i

[111], and thus H(max
j

g({j})) =
∑

max
j

g({j})

i=1
1
i

= 1+ 1
2
+...+ 1

max
j

g({j})
,

with j being the element from the universe set with the maximum value of g(·). As the
greedy algorithm has a polynomial complexity and no other polynomial algorithm can
have better suboptimality guarantees [121], the greedy algorithm is the best choice if the
amount of communication is not critical.

8.3.2 Tree Search Algorithm

If it is critical to find the minimum set of communication links, i.e., the optimal solution,
then we propose Algorithm 8.2 , a branch and bound algorithm with efficient cuts and
reductions of the search sets. A search tree is built such that each node contains a set
of communication links. From one level to the next one, the link set, T n, of the node, n,
grows by one link. The root contains no links, i.e., T n=1 = ∅. In addition to the link set,
each node also contains a search set of potential links En. These links are possibly added
to the link set to create the children of the node, n+, for the next level of the tree. For
the root, the search set En=1 = Efull contains all N (N − 1) possible links. To branch a
node, all links of its search set are separately added to its link set. If a link (i, j) increases
the rank of g(T ), i.e., g(T n+) > g(T n), then a child with link set T n+ = T n ∪ (i, j) is
created, if the same link set does not already exist in a different node. The search set of
the child is En+ = En \ (i, j). All the links, (k, l) which have not been added for creating
a child, i.e., with g(T n ∪ (k, l)) ≯ g(T n), are then cut from all search sets of the created
children n+. The tree is finished at the level where at least one node has a set T with
g(T ) ≥ ∑

r dr. This level is at most
∑

r dr. All link sets T n of this last level of the tree
with g(T n) ≥ ∑

r dr are minimal sets of communication links, which eliminate all FMs.
Instead of the number of links, also the number of signals to be communicated can be
minimized. In this case, the corresponding single columns and rows of BT and CT are
added to branch the nodes.

Theorem 8.1. Algorithm 8.2 finds all optimal solutions T ∗ of Problem (8.17) .

Proof: In each iteration, only the links e are cut, which do not increase the function
g(T ) in this level of the tree. Because of the submodularity of g(T ), they cannot increase
the value of g(T ) when added later on, i.e., if g(T ∪ {e}) − g(T ) = 0, then also g(T̂ ∪
{e})− g(T̂ ) = 0 at a node with link set T̂ with T̂ ⊇ T . Therefore, the links that are cut
do not belong to potential optimal link sets and all optimal link sets, i.e., with minimal
cardinality, are found by Algorithm 8.2 .

Compared to testing all combinations of links, the computational effort of Algorithm 8.2
is reduced by exploiting the submodularity of g(T ). The efficiency is determined by how
many nodes are cut and how much the search sets are shrunk. Let pi

j be the ratio of the
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Algorithm 8.2 Search tree algorithm to determine the minimal sets of communi-
cation links to eliminate all FMs.

1: Data: A, Bu, Cy, Kξ, V , FMs and rank deficient cases r = 1, ..., R identified as in
Lemma 8.1 for g(T ),

2: Result: Minimal set of communication links T ∗,
3: Initialization: Tree root: T n=1 = ∅, En=1 = Efull, n = 1,
4: while ∄ T n, with g(T n) ≥ ∑r dr do

5: 1) Branch nodes by creating children with
6: T n+ = T n ∪ (i, j) and En+ = En \ (i, j)
7: if g(T n+) > g(T n) and ∄ m 6= n+ | T m = T n ∪ (i, j),
8: 2) Cut links (k, l) from search sets of created nodes
9: if g(T n ∪ (k, l)) ≯ g(T n),

10: T n+1 = T n+, n = n + 1,

11: end

12: T ∗ = T n,

number of children created by node j in level i with respect to m := |T |, and let R̄ be
the number of links required to remove all FMs. In the worst-case, R̄ =

∑R
r=1 dr, but it

can be lower in practical examples. The number of nodes to be checked in Algorithm 8.2
is then

m + (p0
1m)2 +

p0
1m
∑

i=1



(p1
i m)2 +

p1
i m
∑

j=1

(

(p2
jm)2 + . . . +

pR̄−3
t m
∑

k=1

(pR̄−2
k m)2

)

.

Thus, its complexity is O(mR̄), but reduced by a linear factor of up to
∏R̄−1

i=0 (p̄i)p̄R̄−1, with
p̄i = maxj pi

j, compared to the exhaustive approach of checking all combinations. With
exponential complexity Algorithm 8.2 is clearly less efficient than the polynomial-time
greedy algorithm. However, Algorithm 8.2 finds the optimum, which unless P = NP

cannot be guaranteed for any polynomial algorithm [121] .

8.4 Numerical Example

The results are illustrated by a numerical example of a system with N = 3 subsystems
and nx = 4 states, with

A =









0.25 0 0 0

2 1.5 0 0

1 0 1.5 0

1 0 0 4









, B = [B1, B2, B3], C = [C⊤
1 , C⊤

2 , C⊤
3 ]⊤,
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with

B1 =
[

1 0 0 0
]⊤

, B2 =

[

0 1 2 0

0 3 1 0

]⊤
, B3 =

[

0 0 0 1
]⊤

,

C1 =

[

1 1 0 0

1 0 1 0

]

, C2 =
[

1 0 0 0
]

, C3 =
[

0 0 0 1
]

.

The augmented states of the subsystems are

ξ1 = x1, ξ2 =
[

x1 x2 x3

]⊤
, ξ3 =

[

x1 x4

]⊤
,

and the mapping V is given by

V =
[

V ⊤
1 V ⊤

2 V ⊤
3

]⊤
,

with

V1 =
[

1 0 0 0
]

, V2 =
[

I3 03×1

]

, V3 =

[

1 0 0 0

0 0 0 1

]

.

The augmented controller gains have the structure CKd
ξ = diag3

i=1

(

CKd
ξi

)

with CKd
ξi ∈

Rnui×nξi and DK is chosen to be zero, i.e., DK = 0. The objective is to find a minimal
communication topology of measurements, which means that an interconnected structure
in BK

ξ is introduced.

To find all FMs, the ranks of matrices M̃λ,S1,S2, given in Lemma 8.1, are checked for
all partitions S1 of uncontrollable and S2 of unobservable channels for λ ∈ {0.25, 1.5, 4}.
For λ = 1.5, two rank-deficient cases of rank-deficiencies d1 = d2 = 1 are found. The cor-
responding partitions are S1,1 = {1, 3}, S2,1 = {2} and S1,2 = {1}, S2,2 = {2, 3}. Thus,
λ = 1.5 is an unstable FM and R = 2. To remove the FM λ = 1.5, Algorithm 8.2 is used
to find a minimal communication link set of measurements, which is guaranteed to exist
as the condition in Corollary 8.1 a) holds. Figure 8.1 illustrates the search tree. Starting
from the root with T n=1 = ∅ and En=1 = Efull = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)},
each link (i, j) ∈ En=1 is tested separately for whether g(T n+) > g(T n) holds. If so, a
child is created, as in Figure 8.1 for (2, 1), (2, 3) and (3, 1). Otherwise, the link is remo-
ved from the search set of the children. As (2, 1) removes both rank-deficiencies, it is the
optimal solution of (8.17). In this simple example, as d1 = d2 = 1, the same number of
nodes is checked for both the search tree algorithm and the greedy algorithm, and the
greedy algorithm also finds the optimum. However, the procedure of cutting links by
exploiting submodularity is illustrated.

8.5 Conclusions

We have shown how FMs within the overlapping framework introduced in Chapter 7
can be identified. The communication of both measurements and controller states is
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T n=1 = ∅

En=1 = Efull

(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)

[0/0] [0/0] [2/2] [1/0] [0/1] [0/0]

0 0 2 1 1 0 g(T n+)

T n=2 =

{(2, 1)}
T n=3 =

{(2, 3)}
T n=4 =

{(3, 1)}

En=2 = En=1 \ (2, 1) \ C En=3 = En=1 \ (2, 3) \ C En=4 = En=1 \ (3, 1) \ C

level 0

(i, j) ∈ En=1

rank increases:

[fr=1(T n+)/fr=2(T n+)]

cuts: C =

{(1, 2), (1, 3), (3, 2)}

level 1

rank increase
⇒ children

no rank increase
⇒ no children

node with T n node with T ∗

Figure 8.1: Search tree to remove dr=1 =1 and dr=2 =1.

considered, and the existence of a communication topology to remove all FMs has been
proved. The objective of finding the minimal communication topology to remove all FMs
is formulated as a minimum cost coverage problem with constraints that were shown to
be submodular. Therefore, a polynomial-time greedy algorithm that has a guaranteed
suboptimality bound is applicable. An alternative algorithm, based on a tree search with
efficient cuts, which finds the minimal communication link sets, can be used. Although
we used overlapping state space representations, the results can be transferred to systems
with non-overlapping structures.
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Part III

Control of an Architectural Cable

Net Geometry
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CHAPTER 9
Introduction to Cable Net Formwork

This part of the thesis presents methods for controlling the form of a tensioned cable net
structure. These cable net structures can be used as components in a flexible formwork
for the construction of lightweight building elements, such as thin concrete shells, and
enable efficient construction. Controlling the form of the cable net is required in order to
precisely achieve the desired design which guarantees to satisfy the mechanical stability
and other important mechanical properties of the shell structures. Thus, the control
enables the use of the cable net based formwork in construction.

9.1 Flexible Formwork in Construction

Doubly-curved thin concrete shells can be designed with a high stiffness and structural
stability due to their curvatures [122]. Therefore, shell elements can span large areas
using comparatively little material [123]. Through requiring less concrete, a significant
amount of energy can be saved compared to conventional building structures. In addition
to their structural advantages, shells are also interesting from an architectural point of
view as their doubly-curved form enables new design concepts and aesthetic expression
in buildings [124].

9.1.1 Cable Net Based Formwork

In the construction process of thin concrete shells a formwork is needed as a supporting
structure on which to pour or spray the concrete. Conventional formwork is very labor-,
material- and time-intensive, as it consists of a large number of non-reusable customized
timber elements. Examples of traditional shell construction processes are illustrated in
Figure 9.1.

To overcome these drawbacks of traditional construction, a flexible formwork, which
consists of a net of cables or rods and a fabric layer on top, can be used [123], [125] . The
tension forces and the weight of both the net and the concrete are supported by a rigid
frame at the boundaries of the net. This new kind of formwork is beneficial in many
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(a) Chapel Lomas de Cuernavaca, Mexico, Felix Candela, 1959

(b) Rolex Learning Center, EPFL, Switzerland, SANAA, 2010

Figure 9.1: Traditional formwork for concrete shell construction.

aspects. Through the standardization and recycling of elements, the amount of material
required and the waste are reduced. Furthermore, the construction of the formwork is
faster and less expensive than traditional formwork, which may enable the construction
of more lightweight structures in the future. An example of the cable net based formwork
is shown in Figure 9.2.

Figure 9.2: Prototype HiLo-Roof, Block Research Group, ETH, 2017.
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Figure 9.3: HiLo roof on top of the NEST building [126] .

9.1.2 HiLo Research and Innovation Unit for NEST

A motivating application for the research presented in this part of the thesis is given by
the shell roof which is planned for the so-called HiLo (High performance, low energy)
Research and Innovation Unit. It is an ultra-lightweight thin concrete shell which will be
built on a demonstrator building called NEST (Next Evolution in Sustainable Building
Technologies), on the EMPA campus in Dübendorf, Switzerland [126], [127]. For its
construction, a flexible formwork will be used. Figure 9.3 depicts the planned HiLo roof
on the NEST building.

9.1.3 Shell Design and Construction

The design process of the shell comprises several steps. A detailed description can be
found in [125], [128], [129] . First, the form of the shell is designed, taking into account
multiple criteria such as boundary conditions, head clearance, aesthetic and design as-
pects, buckling stability and other mechanical properties. Then the cable net topology
is chosen and mapped onto the designed surface of the shell. Via an optimization, the
desired force distribution of the cable net loaded by the concrete is obtained [128]. This
is called the form finding problem and will be explained in more detail in Section 9.2.2.
From this final desired state of the tensioned and loaded cable net, the initial state of
the unloaded pre-stressed cable net, i.e., without the concrete, can be calculated. This
initial state is referred to as the target form in the cable net construction.

The building process starts with the assembly of the cable net on-site. The net is then
tightened to a pre-stressed state. If traditional methods were to be used, the cable net
construction would be finished after this pre-stressing step. Then, the fabric membrane
is laid on top of the pre-stressed form of the cable net, and the concrete is sprayed on top.
However, because of uncertainties in the material behavior and fabrication tolerances of
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the cable net and frame, model mismatch occurs and the desired pre-stressed form of the
cable net is in general not precisely achieved using typical construction methods. This
has been demonstrated in [129] in an experiment for a small-scale simple shell prototype.
Therefore, control of the cable net form is required.

In this work, a feedback loop to minimize the deviations from the desired form of the
cable net is proposed. It is based on measurements of the nodal position coordinates of
the cable net representing its form, and adjustments of the cable lengths of the boundary
edges.

9.1.4 Challenges and Open Problems

The structural properties of the concrete shell depend critically on its form. Deviations
from the optimized form can lead to instabilities, buckling behavior, or reduced stability
under loads. Furthermore, in some construction applications, it may be desired to have
high accuracy in specific areas of the structure that connect to other building elements,
for example a glass window underneath a shell roof. To satisfy the accuracy requirements
of the shell, the tolerances in the cable net form are very tight.

Due to the flexibility of the cable net and the possibly large fabrication and con-
struction errors, the built form of the cable net is likely to deviate from the nominal
design. Therefore, it must be adjusted to get closer to the designed form. Because of
model mismatch, an approach purely based on a nominal model is not satisfactory. Time-
invariant dynamic or static control of the cable net form could potentially be applied.
However, this would in general involve a large number of measurement iterations and
cable lengths adjustments, which are time-consuming to implement on the construction
site.

In the form finding problem, the lengths and forces of all cables are free variables. A
linearizing variable substitution can be applied to follow the linear force density method
that results in a linear optimization problem [130]. In contrast, for the control pro-
blem, only the lengths of the boundary edges are free variables, the system is highly
underactuated, and the linear force density method is not applicable.

9.2 Related Work

This section provides an overview of the state-of-the-art methods related to the topics of
Part III. A literature review on modeling and control of cable net structures as a special
class of tensegrity structures is provided. This overview is not exhaustive but sets the
contributions of this part of the thesis into context with related literature.
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9.2.1 Tensegrity Structures

The cable net formwork belongs to the class of so-called tensegrity structures, which is
an active field of research [131]–[135]. Prominent early examples of tensegrity structures
are the pre-stressed cable net structure for the roof of the Olympic Games facilities in
Munich in 1972 [136] and the cable dome constructions for the Korean Olympic Games
in 1986 [137].

Tensegrity structures are pin-jointed networks of cables, bars or struts, which can
support tension forces, compression forces, or both, respectively. Tensegrity structures
can be modeled by an underlying graph which encodes the connectivity of the network.
Relevant questions that have been explored in [138]–[141], are related to equilibrium
configurations, structural stability, rigidity and deployability of tensegrity structures.
Static equilibrium configurations result from force balances. This has been presented in
the seminal work of [130] and has extensively been applied in later works [142], [143].
In the early work of [144] a so-called spider web is analyzed. It is a cable net, and thus
belongs to a special class of tensegrity structures. Energy arguments are used to make
conclusions about its rigidity. In more recent work, energy minimization approaches
have been proposed to find equilibrium configurations [145], [146].

9.2.2 Form Finding Problem

The so-called form finding problem is the problem of designing the cable net parameters
in terms of unstressed edge lengths given the topology and the desired form of the net
structure, possibly considering self-stress and loads. An overview of form finding methods
is provided in [147], [148]. In the work of [130], the linear force density method, based on
force equilibrium equations, is introduced. A linearizing variable substitution renders the
problem linear in the force densities. Other form finding methods are based on solving
the nonlinear equations. An example is the so-called dynamic relaxation which is an
iterative algorithm based on virtual movements in the structure [149].

9.2.3 Control of Tensegrity Structures

Different applications of the lightweight, and possibly deployable, tensegrity structures
have been investigated in the fields of aerospace, biology, architecture or robotics. In
[150], [151], the topic of shape change, such as deployment, of tensegrity structures is
addressed. Feedforward reference trajectories as sequences of quasi-static equilibrium
configurations are designed. As no model uncertainties are considered, the designed re-
ference states along the trajectory are feasible, and feedback is not needed for the control
of the static state configuration. In [150] feedback is only used to attenuate vibrations
of the structure during the deployment process. In [152], [153], open-loop quasi-static
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trajectories of admissible static equilibrium configurations are designed for the reconfigu-
ration of tensegrity structures. Again, no model uncertainties are accounted for. Using
a dynamical model, the authors in [154] design a passivity-based closed-loop control law
that depends on the coordinate position error. The initial and desired configurations
are assumed to be feasible equilibrium configurations. In [155], uncertainties in actuated
model parameters are considered.

Because of their low mass and high flexibility, tensegrity elements have also been used
in robotics, see e.g., [156]–[158], and references therein. In [157], the linear force density
method [130] can be used to compute an open-loop trajectory of quasi-static equilibria
configurations for locomotion because all cables are actuated. Full actuatability of all
cables, allowing for a transformation of the model to affine control inputs, is also assumed
in [141]. In [159], knowledge about the rigidity of tensegrity structures is exploited for
the application of multi-agent formation control. By assigning a virtual rigid tensegrity
network to the formation, distributed controllers can be derived from the forces of the
virtual stress matrix and stabilize the formation.

9.3 Scope of Part III

This part of the thesis presents a feedback-based construction method which iteratively
brings the form of the cable net to within a prescribed tolerance of the target confi-
guration. The focus lies on sparse inputs and an efficient method that requires few
measurement and control iterations.

9.3.1 Precision Form Control

The form of the cable net is characterized by its nodal position coordinates. The terms
of form, shape or configuration will be used synonymously in the following. Precision in
the form of the cable net is crucial for the mechanical properties of the shell. Therefore,
the goal of the proposed control algorithm is to minimize the error of the static cable
net configuration with respect to the desired form in the presence of mismatch in the
model and uncertainty in the boundary conditions. The free variables available as control
inputs are the unstressed lengths or tensions of the cables at the boundary of the net.

As only the boundary edge lengths are free variables, the linear force density method
is not applicable. Therefore, nonlinear optimization techniques are invoked. We derive
a control problem formulation that allows for penalization of deviations in the x, y and
z-coordinates of each node of the cable net. This is useful in construction applications,
for example, in order to fit other building elements in specific places in proximity of the
structure.
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9.3.2 Minimum Number of Control Iterations

The control iterations on the construction site involve manual processes of measuring a
potentially large number of nodal positions and adjusting a large number of cable edge
lengths at the boundary of the net. The measurements and actuation are therefore time-
consuming and expensive, and the required number of iterations is to be minimized.
We therefore propose a two-step model-based control method, where 1) the model is
re-identified in each iteration, and 2) a new control input is computed and applied. We
propose an algorithm to identify important uncertain parameters of the cable net based
on the updated set of measurements. The remeasuring also takes care of unmodeled
changes in the boundary conditions. The measured data and the model knowledge are
thus combined for efficient identification and control of the cable net. The iterations are
stopped when the cable net reaches the desired tolerance or no further improvement is
possible. A diagram of this control structure is given in Figure 9.4.

9.3.3 Efficient Control Input Computations with Guaranteed

Feasibility

For a fixed identified model from step 1) in Figure 9.4, an efficient algorithm for the
control input calculation in step 2) is presented. In particular, a sequential quadratic
programming (SQP) variant is proposed to solve a reformulation of the form optimization
problem, which is a non-convex constrained optimization problem. In each SQP iteration,
a descent direction for the reformulated problem is efficiently computed by solving a
quadratic program (QP). A line search over feasible points along this descent direction
is performed. The feasible points are computed by solving second-order cone programs
(SOCP). The resulting feasible SQP iterates prevent the algorithm from converging to a
stationary point of local infeasibility, which is a common issue for other nonlinear solvers.
We prove that the SQP algorithm on the reformulated optimization problem generates
iterates that are equal to the ones of a Gauss-Newton iteration on the original problem,
for which convergence is proved.

9.3.4 Sparse Actuation and Experimental Validation

To compute sparse actuation, we introduce an extension to the control input calculation,
which is based on an iterative reweighting scheme of the l1-norm of the input vector.
This is practically relevant in applications where the actuation is not automated and
therefore time-consuming. Our experimental prototype provides such an example where
manual adjustments of a potentially large number of cable lengths are required.
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Figure 9.4: Illustration of the closed loop control structure for the cable net reconfigu-
ration.

9.4 Summary of the Contributions of Part III

The contributions of Part III are summarized as follows.

1. We present two approaches to characterize the static equilibrium of the cable net
structure. One is based on force balances and characterizes the equilibrium point
through nonlinear implicit equations. The other one is an energy minimization
approach which can be formulated as a second-order cone program for a fixed
input vector. The advantages of both models are combined in an efficient control
algorithm.

2. We propose a control loop that consists of iterations of 1) re-identifying the parame-
ters of the cable net based on the updated set of measurements, and 2) computing
and applying new control inputs to the plant.

3. For step 1) of the control loop, methods based on the force balance model and
at least two form measurements are proposed for the identification of important
uncertain parameters of the cable net. A parameter identification method based on
distributed optimization achieves good results for large-scale structures and when
measurement noise is present.

4. For step 2) of the control loop, we present an efficient control input calculation
for minimizing the form error of the cable net. As the original form optimization
problem is intractable, we present a tractable reformulation, which is a constrained
non-convex optimization problem. To solve the reformulated problem, we propose
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an SQP variant with feasible iterates, which is equivalent to a Gauss-Newton ite-
ration on the original problem. The feasible iterates are efficiently computed by
convex programming based on the energy minimization model. We prove that the
iterates of the proposed algorithm converge to a stationary point of the original
optimization problem.

5. An extension for sparse input computation based on an l1−norm regularization
term in the cost is proposed for efficient actuation in practice.

6. The proposed methods are validated in experiments on a quarter-scale cable net
system prototype of a doubly-curved roof shell.

9.5 Outline of Part III of the Thesis

This part of the thesis is structured as follows. Chapter 10 is dedicated to the modeling
of the cable net structure. A force based and an energy based modeling approach are
presented. Chapter 11 presents methods for the identification of important model pa-
rameters of the cable net. In Chapter 12, the control input calculation based on an
SQP variant is introduced and an extension for sparse input calculation is proposed. An
experimental validation of the presented methods on a cable net system prototype are
presented in Chapter 13. Section 14.2 in Part IV provides conclusions and an outlook
related to Part III.
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CHAPTER 10
Model of the Cable Net System

This chapter presents the mathematical description of the cable net. We will use tools
from graph theory to describe the topology of the net. In order to express the form of the
cable net in terms of the states, parameters and inputs, two modeling approaches of the
static equilibria of the cable net are presented: One is based on force balance equations
and the other one is based on an energy minimization. Both of these approaches will be
combined in Chapter 12 to derive an efficient algorithm to compute control inputs.

This chapter is structured as follows. Sections 10.1 and 10.2 introduce a graph-
theoretical description of the cable net and define the states, parameters and inputs.
Section 10.3 presents some assumptions on the cable net system. The models of the
static equilibrium configurations, based on force balances and on energy minimization,
are presented in Sections 10.4 and 10.5, respectively, before Section 10.6 concludes the
chapter.

10.1 Graph-Theoretical Description

The cable net is associated with an underlying graph G = (N , E). Its n nodes in the
node set N represent the connection points of the cable net, and its m edges in the edge
set E ⊆ N ×N correspond to the cable segments of the net. The node set is divided into
the two disjoint subsets, NI of nI nodes that lie in the interior of the cable net, and NB

of nB boundary nodes that are attached to the rigid frame. The edge set is composed
of the two disjoint sets EI of mI interior edges between interior nodes, and EB of mB

boundary edges which connect the boundary nodes on the rigid frame to interior nodes
in the interior of the net. It holds that N = NI ∪NB, NI ∩NB = ∅ and E = EI ∪ EB,
EI ∩EB = ∅. By a slight abuse of notation, we use both the edge set and an index set for
the edges, i.e., the index e ∈ {1, ..., m} or equivalently the index (s, t) ∈ E denotes the
edge e connecting nodes s and t. A top view of the cable net is depicted in Figure 10.1
with the interior nodes sa and ta connected by the interior edge (sa, ta) and with the
interior node sb connected by the boundary edge (sb, tb) to the boundary node tb.
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Rigid frame Cable net

Turnbuckle

interior
node sb

l(sb,tb)

boundary
node tb

interior
node sa

l(sa,ta)

interior
node ta

a)

a)

b)

b)

rI

rB

Figure 10.1: Top view of the cable net system. a) Interior edge (sa, ta) ∈ EI connecting
nodes sa ∈ NI and ta ∈ NI with edge length l(sa,ta). b) Boundary edge (sb, tb) ∈ EB with
edge length l(sb,tb) connecting the interior node sb ∈ NI and the boundary node tb ∈ NB.
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In order to describe the topology of the net, we will use the incidence matrix M ∈
Rm×n, which is defined as

[M ](s,t), s :=







1 , if edge (s, t) is starting at node s ,

−1 , if edge (s, t) is ending at node s ,

0 , if edge (s, t) is not connected to node s .

(10.1)

For later use, we arrange the columns of M to

M := [MI , MB] , (10.2)

such that the first part, MI ∈ Rm×nI , describes the topology of the interior edges and
the second part, MB ∈ Rm×nB , the one of the boundary edges.

10.2 States, Parameters and Inputs

The geometric form of the net is described by the states, which are the position coordi-
nates of the cable net nodes, defined as

x = [x⊤
I , x⊤

B]⊤ , y = [y⊤
I , y⊤

B ]⊤ , z = [z⊤
I , z⊤

B ]⊤ ∈ Rn , (10.3)

where the subscripts distinguish between the interior and boundary nodes. For individual
nodes, s ∈ {1, ..., n}, we define the vector of their coordinates as

rs = [xs , ys , zs]⊤ ∈ R3.

We also define the stacked vectors of the coordinates of all interior, all boundary and
the collection of all the nodes as

rI = [r⊤
1 , ... , r⊤

nI
]⊤, rB = [r⊤

nI+1 , ... , r⊤
n ]⊤ and r = [r⊤

I , r⊤
B ]⊤.

The term configuration is used as a synonym for the form or shape of the cable net
defined through the nodal position coordinates. The actual length of an edge (s, t) is
denoted by l(s,t) and is given by the Euclidean distance between the two nodes, given as

l(s,t) := ‖rs − rt‖2. (10.4)

The materials and dimensions of the edges in the cable net are described by the following
fixed parameters. The Young’s modulus E indicates the relation between stress and
strain in the material. The constant EA(s,t) is used to denote the product of the Young’s
modulus E and the cross section area A of the edge (s, t) and defines its elastic properties.
Other important parameters of the system influencing the forces within the net are the
unstressed lengths of the edges, which are denoted by

l0 =
[

l0,1, ..., l0,(s,t), ..., l0,m

]⊤ ∈ Rm, (10.5)
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with l0,(s,t) the parameter of the edge (s, t). In the interior of the net, these parameters
are fixed and cannot be changed once the cable net has been constructed. The boun-
dary edges connect the cable net to the rigid frame via turnbuckles, as can be seen in
Figure 10.1. These turnbuckles can introduce a defined change in the unstressed length
of the boundary edges, which are used as inputs to the system in order to control the
form. The possible input vector is thus defined as the vector collecting all the changes
in unstressed lengths for all boundary edges

u := [u1 , ... , u(s,t) , ... , umB
]⊤ ∈ RmB , ∀(s, t) ∈ EB, (10.6)

with u(s,t) being the change in unstressed length l0,(s,t) for the boundary edge (s, t). Here,
the assumption is made that the turnbuckles are not elastic. The unstressed length of
edge (s, t) after applying the input u(s,t) is defined as

l0,(s,t) = l0,(s,t) − u(s,t) , ∀(s, t) ∈ EB. (10.7)

We also use the notation

l0,(s,t) = l0,(s,t) , ∀(s, t) ∈ EI , (10.8)

if (s, t) is a non-adjustable interior edge. In Figure 10.1, the interior edge (sa, ta) is
of constant unstressed length l0,(sa,ta) = l0,(sa,ta), and the boundary edge (sb, tb) is of
adjustable unstressed length l0,(sb,tb) = l0,(sb,tb) − u(sb,tb), with possible u(sb,tb) 6= 0. With
(10.4) and (10.7), (10.8), the actual elongation of the edge (s, t) is given by

∆l(s,t) = l(s,t) − l0,(s,t) . (10.9)

Configurations that have no slack cables avoid sagging of the concrete and are pre-
ferred. This means that the edges of the cable net are desired to be in zero or positive
tension. Therefore, the following constraints can be introduced

g(s,t)(rI , rB, u) := −∆l(s,t) ≤ 0 , ∀(s, t) ∈ E . (10.10)

We summarize these constraints for all edges in the vector

g(rI , rB, u) := [g1, ..., gm]⊤ . (10.11)

However, there may be slack cables in the net because of construction imprecision. These
slack edges may or may not be removable by the control, depending on the parameters
of the edges. In other words, there may or may not exist a configuration with no slack
edges for the given parameters. Depending on the construction, there might be physical
limitations on the possible change in the unstressed lengths of the boundary edges. Then,
input constraints in the form of

u ≤ uub,

−u ≤ −ulb,
(10.12)

need to be introduced, with uub ∈ RmB and ulb ∈ RmB being upper and lower bounds on
the possible inputs, respectively.
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10.3 Assumptions on the Cable Net System

The cable net is a pre-stressed, pin-jointed structure consisting of only cables and no
rigid elements. The boundary edges of the net are attached to a rigid frame. This kind of
tensegrity structure [141], [142], was introduced as a spider-web in [138]. In the model-
based control of the cable-net form, static equilibrium configurations are considered. In
order to model these equilibrium configurations, we define the reduced graph Ḡ generated
by removing all slack edges. Thus, the graph Ḡ is defined as Ḡ = {N , Ē} with Ē being
the set of all tensioned edges of the cable net. Here, it is assumed that nodes that have
only slack adjacent edges have already been removed from the node set N . A further
assumption is that the cable net is designed in such a way that Ḡ does not contain 2-
cycles or self-loops. Moreover, no interior node is connected to more than three boundary
nodes, and if there is more than one boundary edge connected to the same interior node,
then the directions of this set of boundary edges are linearly independent.

We assume that Ḡ is known and that it stays constant for the series of equilibrium
configurations considered during the control, i.e., cables do not change from being slack
to being tensioned or vice versa. In the design phase, the desired force distribution in the
cable net is designed in such a way that all cables are in positive tension. In practice,
checking these conditions in the real system can be done by force measurements, by
manual examination, or by measuring whether the actual edge lengths, l, are longer in
the pre-stressed state than the initial edge lengths, l0.

Furthermore, we assume that the material parameters, EA, and the self-weight of the
net are known and are constant. The unstressed lengths of the edges, l0, are identified
and thus updated within each iteration of the control algorithm as in Figure 9.4. The
coordinates of the boundary nodes at the rigid frame are measured and updated in each
iteration of the control algorithm. This feedback is important since the frame is not
perfectly rigid and thus introduces uncertainties on the boundary conditions.

10.4 Force Balance Equations

A static equilibrium of the cable net can be characterized by a state where all net forces
are zero. This concept is introduced in the following.

10.4.1 Nonlinear Elastic Force Balance Equations

The net force at each interior node s is the sum over the tension forces of all its adjacent
edges (s, t) ∈ Ēs, where we denote by Ēs the set of all adjacent edges of node s which are
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in tension, i.e., ∀(s, t), such that ∆l(s,t) ≥ 0. Thus, the net force at node s is given by

hs =
∑

(s,t)∈Ēs

EA(s,t)

(

l(s,t) − l0,(s,t)

l0,(s,t)

)

d(s,t) − ps

=
∑

(s,t)∈Ēs

EA(s,t)l(s,t)

(

1
l0,(s,t)

− 1
l(s,t)

)

d(s,t) − ps

=
∑

(s,t)∈Ēs

EA(s,t) (rs − rt)

(

1
l0,(s,t)

− 1
l(s,t)

)

− ps,

(10.13)

where d(s,t) = (rs − rt)/l(s,t) is the direction vector of the edge (s, t) along which the

corresponding force is acting, and ps =
[

ps,x ps,y ps,z

]⊤
accounts for external point

loads in x-, y- and z-directions at the interior node s ∈ NI .

For a fixed input vector u, the static equilibrium of the cable net can be characterized
by the configuration rI for which all the net forces at all interior nodes are zero, i.e.,
which is the solution of the equations

hs =
∑

(s,t)∈Ēs

EA(s,t)













xs

ys

zs






−







xt

yt

zt













(

1
l0,(s,t)

− 1
l(s,t)

)

−







ps,x

ps,y

ps,z







= 0, ∀s ∈ NI . (10.14)

If no external forces are acting on the net, then ps =
[

ps,x ps,y ps,z

]⊤
= 0. Note

that summing the forces of only the tensioned adjacent edges in (10.14) prevents the
accounting of the contribution of slack edges as compression forces.

The function h : R3n × RmB 7→ R3nI is the vector of all force equilibrium equations
for all interior nodes, i.e.,

h(r, u) =
[

h⊤
1 . . . h⊤

nI

]⊤
. (10.15)

For fixed boundary values, rB = r̄B, the notation is simplified to h : R3nI ×RmB 7→ R3nI

with

h(rI , u) =
[

h⊤
1 . . . h⊤

nI

]⊤
. (10.16)

10.4.2 Matrix Form of the Force Balance Equations

We will now formulate the set of force balance equations in (10.14) in a matrix form.
This will be beneficial in the parameter identification in Section 11.2, because it allows
for a linearizing variable substitution.

We define the vectors wx, wy and wz ∈ Rm which contain the pairwise differences
in position coordinates of all adjacent nodes, projected onto the x- , y- and z-directions,
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respectively, i. e. , wx = Mx , wy = My , wz = Mz ∈ Rm. For later use, we define the
diagonal matrices Wx , Wy and Wz, which contain the elements of these vectors, i. e. ,

Wx = diag(wx) , Wy = diag(wy) , Wz = diag(wz) . (10.17)

After reordering and stacking the components of (10.14) into

h := [h1,x, ...hnI ,x, h1,y, ...hnI ,y, h1,z, ...hnI ,z]⊤ ∈ R3nI ,

and with the incidence matrix M in (10.1) in Section 10.1, we can formulate the force
balance equations of (10.14) in the following matrix form

h =






M⊤
I 0 0

0 M⊤
I 0

0 0 M⊤
I











Wx

Wy

Wz




EA

(

l0,inv − linv

)

− p = 0 , (10.18)

where the diagonal matrix EA ∈ Rm×m contains the stiffness constants EAe ∈ R for all
edges, e ∈ E , the vector l0,inv contains the inverses of the unstressed edge lengths after
applying inputs, as in (10.7), i.e.,

l0,inv :=
[

1
l0,1−u1

. . . 1
l0,m−um

]T ∈ Rm (10.19)

and linv contains the inverses of the actual edge lengths, le, as in (10.4), i.e.,

linv :=
[

1
l1

. . . 1
lm

]T ∈ Rm. (10.20)

The vector p contains all external forces ps on all interior nodes s. The diagonal matrix
EA ∈ Rm×m contains the material constants EAe ∈ R for all edges, e.

We illustrate these definitions in the following example.

Example 10.1. Let us consider the following topology of nI = 1 interior node, 1, and
nB = 3 boundary nodes, 2, 3 and 4, connected by the boundary edges (1, 2), (1, 3) and
(1, 4). The topology is depicted in Figure 10.2. In this example, we have rI = r1 =
[x1, y1, z1]⊤, rB = [r⊤

2 , r⊤
3 , r⊤

4 ]⊤ = [x2, ..., z4]⊤. The collected interior and boundary x-
coordinates are given by xI = x1 and xB = [x2, x3, x4]⊤, and equivalently for yI , yB, zI

and zB. The incidence matrix, M , and the vector of distances in x-direction between
the connected nodes, wx, e.g., are given by

wx =






1 −1 0 0

1 0 −1 0

1 0 0 −1






︸ ︷︷ ︸

M









x1

x2

x3

x4









︸ ︷︷ ︸

x

=






x1 − x2

x1 − x3

x1 − x4




 .

For this simple example topology, only one force balance (with x-, y- and z-components)
can be formulated, as nI = 1, i.e., h = [h1,x, h1,y, h1,z]⊤. The set of neighboring nodes
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12
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4

(1, 2)

(1, 3)
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Figure 10.2: Example topology in 3D of one interior node 1 and three boundary nodes
2, 3 and 4, connected by three edges (1, 2), (1, 3) and (1, 4).

for node 1 is Ns = {2, 3, 4}. Assuming that no external forces are acting on the interior
node, i.e., p1 = 0, the resulting force h1,x at node 1 is the sum of the three neighboring
edge forces in x-direction and is given by

h1,x =






1

1

1






⊤

︸ ︷︷ ︸

M⊤
I






x1 − x2 0 0

0 x1 − x3 0

0 0 x1 − x4






︸ ︷︷ ︸

Wx







EA(1,2)(
1

l0,(1,2)−u(1,2)
− 1

l(1,2)
)

EA(1,3)(
1

l0,(1,3)−u(1,3)
− 1

l(1,3)
)

EA(1,4)(
1

l0,(1,4)−u(1,4)
− 1

l(1,4)
)







︸ ︷︷ ︸

EA(l0,inv−linv)

= 0.

Note that the topology is in 3D and that the linear independence assumption of the
three boundary edges as stated in Section 10.3 must be satisfied.

10.4.3 Comparison to Linear Force Density Method

Given the desired shape of the shell in terms of x, y, and z coordinates, the design of the
nominal cable net parameters l0 is called the form-finding problem [130]. In this design
problem, all the lengths l0 and forces, h(s,t), of the edges of the net are free variables.
This allows for the variable substitution ρ(s,t) := h(s,t)

l(s,t)
, where ρ(s,t) is the force density of

the edge (s, t), [130]. With the elastic force in edge (s, t) being equal to

h(s,t) = EA(s,t)

∆l0,(s,t)

l0,(s,t)

= EA(s,t)

l(s,t) − l0,(s,t)

l0,(s,t)

,

the force density of edge (s, t) is given as

ρ(s,t) =
EA(s,t)

l(s,t)

l(s,t) − l0,(s,t)

l0,(s,t)

.

The matrix equation in 10.18 can be reformulated as





M⊤
I 0 0

0 M⊤
I 0

0 0 M⊤
I











Wx

Wy

Wz




 ρ =






px

py

pz




 , (10.21)

where the vector of force densities ρ ∈ Rm is given as

ρ = EA
(

l0,inv − linv

)

,
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with the entries ρ(s,t) of all edges (s, t), i.e., ρ = concat
(s,t)∈Ē

(

ρ(s,t)

)

. The equation in
(10.21) is linear in the force densities ρ. For known (desired) coordinates x, y, z, (10.21)
can be solved for the force densities ρ, and the parameters l0 can be obtained from the
definition of ρ with known lengths l.

Because in our cable-net application, the unstressed edge lengths in the interior of
the net (l0,e, ∀ e ∈ EI) are fixed, the corresponding force densities are not free variables,
and therefore the linear force density approach is not applicable. We will, however, make
use of the formulation in (10.18) in the identification problem in Section 11.2.

10.5 Energy Minimization

In order to find the static equilibrium of the system, an approach of minimizing its total
energy can be taken. In the following, we assume that the elastic tension forces versus
elongation functions of the edges are linear and increasing. Note that this can easily be
generalized to piecewise linear and increasing functions. Under this assumption, for a
given fixed vector of inputs u in (10.6) , this energy minimization problem is equivalent
to a convex second-order cone program (SOCP), [16], [28].

The total energy of the cable net is expressed as

V (r, u) = −pzzI +
∑

(s,t)∈E

EA(s,t)

2l0,(s,t)

(l(s,t) − l0,(s,t))2, (10.22)

which is the sum of the potential energies of all nodes (first term) and the sum of the
elastic energies of all tensioned edges (second term). The vector pz in (10.22) accounts
for point loads due to self-weight and any other loads in z-direction such as the weight of
the fabric and, if applicable, the concrete on all interior nodes. The problem of finding
the equilibrium of the cable net can be solved by minimizing the total energy (10.22),

R(u) = argmin
r

V (r, u)

s.t. rB = rB , (10.23)

where rB are the fixed positions at the rigid frame where the boundary edges are con-
nected. The function R(u) denotes the mapping of the inputs u to the coordinates r.
We will show in Section 12.2 that this function is well-defined and that it is equivalently
defined by the implicit force balance equations h(·, u) = 0 in (10.14). The function R(u)
is however not explicitly defined.

For a fixed input vector u, i.e. constant l0, it is possible to rewrite the problem given
in (10.23) as a convex optimization problem. We introduce a variable v and vector q.
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Chapter 10. Model of the Cable Net System

The entry q(s,t) of q for the edge (s, t) is defined as

q(s,t) =





√

EA(s,t)
√

l0,(s,t)

(l(s,t) − l0,(s,t))





+

, (10.24)

with the notation (·)+ = max(0, ·). The upper bound v on the term ‖q‖2
2 satisfies the

following hyperbolic constraint

‖q‖2
2 ≤ v ⇐⇒

∥
∥
∥
∥
∥

(

2q

1− v

)∥
∥
∥
∥
∥

2

≤ 1 + v.

Rewriting the problem in terms of the variables q and v, we find that the coordinates
rI of the interior nodes in a static equilibrium configuration can be obtained as the
minimizers to the following SOCP.

Problem PminE :

min
rI ,v,q

− pzzI +
1
2

v

s.t.

√

EA(s,t)
√

l0,(s,t)

(

‖rs − rt‖2 − l0,(s,t)

)

≤ q(s,t),

0 ≤ q(s,t), ∀ (s, t) ∈ E , (10.25)

rB = rB,
∥
∥
∥
∥
∥

(

2q

1− v

)∥
∥
∥
∥
∥

2

≤ 1 + v ,

for a fixed input vector u, i.e. constant lengths l0,(s,t).

Note that the definition of q(s,t) in (10.24) allows for only positive tension forces to
contribute to the energy V of the system. This is consistent with the model assumption
that in the case where l(s,t) < l0,(s,t), the cable is not in compression, but it is a slack
cable under zero force. However, the solution of Problem PminE does not guarantee that
there are no slack cables in the equilibrium state of the cable net.

10.6 Conclusions

We presented a mathematical description of the cable net system in terms of its inputs,
parameters, states and the topology. Based on these definitions, two approaches can be
used in order to formulate equilibrium points of the cable net. While the force balance
approach results in implicit equations that are nonlinear in the states and inputs, the
minimum energy approach is formulated as a second-order cone program for fixed inputs,
which can be efficiently solved with convex programming. Both these properties will be
exploited in Chapter 12 to formulate an efficient control algorithm. The force balance
approach is furthermore used for parameter identification in Chapter 11.
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CHAPTER 11
Parameter Identification

The stiffnesses, the forces and the form of the cable net are sensitive to the unstressed
edge lengths. However, the unstressed lengths are likely to deviate from the nominal
values of the design model, because they are subject to fabrication tolerances and un-
certainties. In general, the cable net is constructed in its stressed state. Therefore, only
the stressed lengths of the edges can be measured. Thus, the unstressed edge lengths
represent the model parameters with the largest amount of uncertainty.

This chapter presents the first step in the iterations of the complete control algorithm,
illustrated in Figure 9.4. This first step consists of the identification of the unstressed
lengths of the cable net. In each iteration of the overall control algorithm, a new mea-
surement is taken. Based on the updated measurement data, the model parameters are
re-identified and the cable net model is updated. The updated model is then used in
the second step of the iterations of the complete control algorithm, where a new control
input is computed and applied to the system. We present two identification methods
based on measurements of at least two different cable net configurations. The results
presented in this chapter have been published in [17].

The chapter is structured as follows. Sections 11.2 and 11.3 present two parameter
identification methods that are based on linear regression and distributed optimization,
respectively. Section 11.4 provides simulation results for both methods and Section 11.5
concludes the chapter.

11.1 Problem Setting

For the identification of the parameters l0, we assume that the material parameters, i.e.,
Young’s modulus and the cross section, EA, of the edges, are known. In the experiment,
the coordinates of the nodes will be measured by tacheometry and are assumed to be
corrupted by normal distributed additive measurement noise, δI . We denote the noisy
coordinate measurements by

r̂I := rI + δI . (11.1)
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Chapter 11. Parameter Identification

The coordinates, rI , belonging to one equilibrium configuration do not provide
enough information to uniquely identify the parameters l0,(s,t) . Therefore, we need to
base the identification on the measurement of p ≥ 2 different configurations. Different
configurations of the cable net are obtained by changing the boundary edges by applying
inputs u , as defined in (10.6). We use a superscript (·)(i) to denote the variables related
to the i-th configuration of the cable net. We define p inputs for p different configurations
with 0 6= u(i) 6= u(j) 6= 0, i, j ∈ {2, ..., p} and w. l. o. g. we choose u(1) = 0. For later use,
we define the index set U (i), which collects all indices of u(i) being different from u(1),
i.e., different from zero, as

U (i) =
⋃

indices k, with u
(i)
k 6= u

(1)
k , i.e., u

(i)
k 6= 0. (11.2)

We denote the resulting configurations by r(i), and it is assumed that r(i) 6= r(j), i 6= j,
i, j ∈ {1, ..., p}.

11.2 Linear Regression

In this section, we formulate a set of equations, which are linear in the inverses of the
unstressed lengths of the edges. This allows for linear least squares regression, which
performs well for precise measurements. However, it is not straightforward to exactly
account for measurement noise on the nodal coordinates.

Problem Formulation

For the i-th configuration of the cable net, we define the matrices W (i)
x , W (i)

y and W (i)
z

as in (10.17), and the vectors l
(i)

0,inv and linv
(i) are as defined in (10.19) and (10.20),

respectively. We rewrite the force balance equations (10.18) for configuration i as

h(i) =
(

I3 ⊗
(

M⊤
I S

(i)
I

))







W (i)
x

W (i)
y

W (i)
z







EA C
(i)
I

︸ ︷︷ ︸

=: T
(i)
I

∈R3nI ×m

(

l
(i)

0,inv − l
(i)
inv

)

= 0.

(11.3)

In (11.3), S
(i)
I and C

(i)
I are identities of appropriate sizes. In the following, we define

S
(i)
U , C

(i)
U and S

(i)
0 , C

(i)
0 as selection matrices to obtain the matrices T

(i)
U and T

(i)
0 , equi-

valently to T
(i)
I in (11.3).

There are m unknown unstressed lengths l0,1 , ... , l0,m to be identified, and there
are 3nI equations for each configuration of the cable net with 3nI > m . However,
the resulting system of equations (11.3) for one single configuration has infinitely many
solutions, as the incidence matrix M , and therefore T

(i)
I , is rank-deficient. Even in

the noise-free case, one configuration does not give enough information to determine
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11.2 Linear Regression

the parameters l0,e . In the following, we will use bold symbols to denote vectors and
matrices containing information about the different configurations, 1 , ... , p . In order to
formulate the right-hand side of the force balance equations, we define

linv :=
[

l
(1)⊤
inv , ... , l

(p)⊤
inv

]⊤ ∈ Rpm, (11.4)

TI :=






T
(1)
I

0
. . .

0 T
(p)
I




 . (11.5)

In the following, we bring the force balance equations into a linear regression form,
where the parameter vector contains the inverses of the unstressed edge lengths. We
define

l0,inv :=
[

l⊤
0,inv , (l

(2)

0,inv C
(2)
U )⊤ , ... , (l

(p)

0,inv C
(p)
U )⊤

]⊤
, (11.6)

with
l0,inv :=

[
1

l0,1
, ... , 1

l0,m

]⊤
,

and where the selection matrix C
(i)
U consists of the unit vectors ek for all k ∈ U (i) , with

U (i) as defined in (11.2) , i. e. ,

C
(i)
U := [ek1 , ek2 , ... ] , with k1 < k2 < ... ∈ U (i) . (11.7)

The vector l
(i)

0,inv C
(i)
U thus collects all unstressed edge lengths of configuration i , with

i ∈ {2 , ... , p}, which are different from those in configuration 1 because of the applied
inputs u(i) 6= 0 . The linear regression problem for the identification of l0,inv is then given
by

Y l0,inv = b. (11.8)

In (11.8), Y and b are referred to as the observation matrix and the measurement vector,
and are given by

Y :=











T
(1)
I 0 · · · 0

T
(2)
0 T

(2)
U

. . .
...

... 0
. . . 0

T
(p)
0 0 0 T

(p)
U











,

b := TI linv,

(11.9)

where T
(1)
I is as given in (11.3) with S

(1)
I = C

(1)
I = I . To obtain the matrices T

(i)
0 and

T
(i)
U , equivalently as T

(i)
I in (11.3) , we define

[

S
(i)
0

]

k, l
:=







1 , k /∈ U (i), k = l ,

0 , otherwise ,

[

S
(i)
U

]

k, l
:=







1 , k ∈ U (i), k = l ,

0 , otherwise ,
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C
(i)
0 = I , and C

(i)
U as defined in (11.7) . As the system of equations (11.8) is linear in

l0,inv , we solve it in the least squares sense and obtain l0 as l0 =
[

1
l0,inv,1

, ... , 1
l0,inv,m

]⊤
.

In the noise-free case, p = 2 is sufficient to give the exact parameters l0 . If the
measurement noise is significant, the method does not give an unbiased estimate as the
expected measurement noise is additive Gaussian on the coordinates, but not on the
measurement vector b , and the noise also enters the observation matrix Y .

Note that the configurations can in theory be chosen arbitrarily, under the mild
condition that Y has full rank. However, simulations show that the choice is rather
important as the precision of the solution can differ. Good choices of different configu-
rations are those which make the observation matrix well-conditioned. To this end, the
inputs should be sparse and produce large differences in the coordinates.

11.3 Distributed Parameter Identification Based on

ADMM

In this section, we formulate the parameter identification as an optimization problem,
where we take into account the Gaussian additive measurement noise on the x- , y-
and z-coordinates of the interior nodes, as introduced in (11.1). We first formulate the
optimization problem for the parameter identification of the overall system. As solving
the resulting nonlinear optimization problem is computationally expensive, especially if
large scale systems are considered, we split it into local subproblems and solve it by a
distributed consensus ADMM algorithm [32], as introduced in Section 3.5.

11.3.1 Parameter Identification Problem

The measurements of p ≥ 2 different configurations are again required for the identifi-
cation. We define a vector of optimization variables for the measurement noise δ

(i)
I of

configuration i. The stacked vector for the different configurations is denoted by

δI :=
[

δ
(1)⊤
I , ..., δ

(p)⊤
I

]⊤
. (11.10)

The objective of the optimization is to minimize ||δI ||22 and the constraints are the force
balances on the interior nodes of all configurations of the net. The coordinates rI are
expressed as

rI = r̂I − δI , (11.11)
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11.3 Distributed Parameter Identification Based on ADMM

using (11.1) and bold symbols for stacked vectors as introduced before. The identification
problem for the overall system is given as

min
l0,δI

||δI ||22
s. t. h(r̂I , δI , u, l0) = 0,

g(r̂I , δI , u, l0) ≤ 0.

(11.12)

The equality constraints, h(r̂I , δI , u, l0) = 0, are the force balance equations as before,
and the m inequality constraints, g(r̂I , δI , u, l0) ≤ 0, impose non-negative tension in all
edges, and are given by

g(r̂I , δI , u, l0) := l0 − l ≤ 0. (11.13)

Both equality and inequality constraints are again formulated in terms of the noisy
measurements, r̂I , and the uncertain measurement noise, δI , i.e., the coordinates rI

are expressed by rI = r̂I − δI . In order to solve this nonlinear optimization problem
efficiently, we separate it into local subproblems, which are easier to solve in a distributed
manner.

11.3.2 Decomposed Identification Problem

We separate the overall optimization problem (11.12) into one local optimization problem
per interior node, which involves optimization variables corresponding only to the node
itself, its neighboring nodes and the connected edges.

This is possible as the cost function of (11.12) is separable and the constraints of
the local subproblems can be formulated in terms of local variables, which are copies of
the global ones. Neighboring nodes thus have local optimization variables representing
the same physical parameters, which are constrained to be equal at the solution. We
call the interior nodes s, with s ∈ {1, ..., nI}. Each interior node has v neighboring
nodes, denoted by tq ∈ Ns, with q = 1, ..., v. They can be divided into vI interior and
vB boundary neighboring nodes of node s, i.e., v = vI + vB. In order to formulate the
local subproblem of node s, we introduce the vector of local optimization variables for
the parameters to be identified, i.e., for the unstressed lengths l0,(s,tq) connecting node
s with its neighboring nodes tq ∈ Ns as l0,s ∈ Rv. Additional optimization variables for
each local problem are the measurement uncertainties of the coordinates of node s and
its neighbors tq in all configurations, which are contained in the vector δs ∈ R3p(1+vI ).

The problem is then given as

min
l0,s,δs

∑

s∈NI

(

fs(δs) + ks(r̂s, r̂tq
, δs, us, l0,s)

)

,
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with

fs(δs) = ||δs||22 ,

ks(r̂s, r̂tq
, δs, us, l0,s) = Ihs

(r̂s, r̂tq
, δs, us, l0,s)

+
∑

tq∈Ns

Ig(s,tq)
(r̂s, r̂tq

, δs, us, l0,s),

∀s ∈ NI ,

(11.14)

where Ia(b) is the indicator function of b satisfying (a), defined as

I(a)(b) :=







0 if b satisfies (a),

∞ otherwise.
(11.15)

Local Identification Problems

The vectors l0,s and δs of local optimization variables contain copies of parts of the glo-
bal optimization variables. In order to have the local problems converge to the global
solution, the neighboring nodes need to agree on these variables, i.e., come to a consen-
sus. We introduce the global consensus variables µl0 ∈ R3m and µδ ∈ R3p nI , with µl0

containing the consensus variables of the unstressed lengths of all edges and µδ contai-
ning the consensus variables for the uncertainties on the interior nodal coordinates in
the different configurations. We denote the vectors µl0,s

∈ Rv and µδs
∈ R3p (1+vI ) as the

parts of µl0 and µδ containing the global variables corresponding to the local copies l0,s

and δs, respectively. Therefore, the consensus constraints can be formulated as
[

l⊤
0,s, δ⊤

s

]⊤ −
[

µ⊤
l0,s

, µ⊤
δs

]⊤
= 0, ∀s ∈ NI . (11.16)

The local optimization problem of node s, including the consensus constraints, is given
as

min
l0,s,δs

fs(δs) + ks(r̂s, r̂tq
, δs, us, l0,s)

s.t.
[

l⊤
0,s, δ⊤

s

]⊤ −
[

µ⊤
l0,s

, µ⊤
δs

]⊤
= 0,

∀s ∈ NI .

(11.17)

In the following, we form the augmented Lagrangians for the local problems by inte-
grating the consensus constraints into the cost function. We define the penalty parameter
ρ and the dual multipliers λs := [λ⊤

l0,s
, λ⊤

δs
]⊤, where λl0,s

∈ Rv and λδs
∈ R3p(1+vI ). The

augmented Lagrangian of each local optimization problem is

Lρ,s(l0,s, δs, λl0,s
, λδs

, µl0,s
, µδs

) = fs(δs) + ks(r̂s, r̂tq
, δs, us, l0,s)

+

[

λl0,s

λδs

]⊤ ([
l0,s

δs

]

−
[

µl0,s

µδs

])

+
ρ

2

([

l0,s

δs

]

−
[

µl0,s

µδs

])2

,

∀s ∈ NI .

(11.18)
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11.3.3 Distributed ADMM Algorithm

In order to solve optimization problem (11.17) for all interior nodes, we use a distribu-
ted consensus ADMM algorithm [32], as introduced in Section 3.5. This method iterates
between minimizing the augmented Lagrangians (11.18) with respect to the local optimi-
zation variables, minimizing them with respect to the consensus variables, and updating
the dual multipliers for the consensus constraints. Convergence criteria to a fixed point
can be defined in terms of the primal and dual residuals [32], as introduced in Section 3.5.
For the parameter identification problem, the steps of the resulting ADMM algorithm are
given in Algorithm 11.1. The first and third steps in lines 6 and 10 of Algorithm 11.1,

Algorithm 11.1 Distributed Consensus ADMM for the Identification of l0.
1: Input: Penalty parameter ρ, measurements r̂I , inputs u,
2: Initialization: l0

0,s, δ0
s , λ0

l0,s
, λ0

δs
, µ0

l0,s
, µ0

δs
, set iteration κ = 1,

3: while Primal, dual residuals not converged do

4: for s = 1 to nI do

5:
[

l⊤
0,s δ⊤

s

]κ+1⊤
= argmin

l0,s,δs

Lρ,s(l0,s, δs, λκ
l0,s

, λκ
δs

, µκ
l0,s

, µκ
δs

),

6: end

7:
[

µ⊤
l0 µ⊤

δ

]κ+1⊤
= argmin

µl0,s
, µδs

∑nI
s=1 Lρ,s(lκ+1

0,s , δκ+1
s , λκ

l0,s
, λκ

δs
, µl0,s

, µδs
),

8: for s = 1 to nI do

9:

[

λl0,s

λδs

]κ+1

=

[

λl0,s

λδs

]κ

+ ρ





[

l0,s

δs

]κ+1

−
[

µl0,s

µδs

]κ+1


,

10: end

11: κ← κ + 1,

12: end

13: Output: Parameter estimate l0.

respectively, can be completely distributed. The second step requires communication
between adjacent nodes.

In the presence of measurement noise, the optimization variables µδ are required for
a feasible solution of (11.12) . The formulation involves m+3p nI unknown variables and
3p nI equality constraints and therefore does not define a unique solution. Increasing the
number of configurations, p, does not give a unique parameter vector l0, as each different
configuration introduces additional measurement noise variables. In general, there can
be multiple fixed points of the above optimization problem, which have an error with
respect to the real parameters. The converged solution depends on the starting point
and on the experimental configurations. We observe in simulations that the maximum
estimation error of l0 is in the range of the measurement noise, which is sufficiently
accurate for this application.
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11.4 Simulation Results

We present simulation results for a 1 : 4 model of the HiLo roof, described in Chapter 9
and visualized in Figure 11.1. This system has nI = 295 interior and nB = 75 boundary
nodes. The number of edges, and therefore parameters to be identified, is m = 606 .
The material parameters correspond to polyamid P A6 with E = 3000 Nmm2 and A =
π · (3.8 mm)2 . Under the applied tension, the edges stretch in the range of 1× 10−3 m
to 1× 10−1 m .

Remark 11.1. For the parameter identification, the material property is not relevant in
absolute terms, as it is a constant factor in the force equilibrium equations. Only the
ratios between the different edge stiffnesses are important, which we choose to be one
in this example for all edges. However, the material stiffness, together with the range of
forces which can be applied, determine how easily the configuration can be reconfigured
into a measurably different form.

In the following simulations, we compare the performance of the linear regression as well
as the distributed ADMM algorithm for the parameter identification. We consider the
noise-free case and a case with additive white Gaussian noise with a standard deviation
of 0.1 mm on the node coordinates, which corresponds to the expected measurement
noise by tacheometry. We simulate the identification process of the parameters, l0, using
different configurations, which are obtained as the solution to PminE in (10.25). Gaussian
noise is added to give the simulated measurement. The noise-free reference parameters
are denoted by lSOCP

0 .

11.4.1 Simulation Results for Least Squares Identification

We solve the linear regression problem in (11.8) and compare three cases, where we solve
(11.8) based on p = 1 , p = 2 and p = 3 configurations. The three different configurations
are obtained by applying the inputs u(1) = 0 , u(2) with u

(2)
k = 0.1 l0,k , ∀ k ∈ ĒB , and

u(3) with u
(3)
k = 0.05 m for six different boundary edges, k . The different input locations

and the resulting configurations can be seen in Figure 11.1 . The identified parameters
are denoted by lLS

0 . Table 11.1 shows the results, where cond(·) denotes the condition
number, ‖ ·‖∞ is the maximum absolute value and RMS(·) is the root-mean-square-error
√

‖ · ‖2
2 /m . The results confirm that one configuration alone does not define a unique

solution. For the noise-free case, p ≥ 2 gives the (numerically) exact solution. In the
presence of noise, the solution is no longer exact. Increasing p provides some averaging
of the noise, but the exact solution is not found.

140



11.4 Simulation Results

x-p
os

iti
on

[m
]

y-position [m]

z-
po

si
ti

on
[m

]

−1

0

1

−2
−1

0
1

−0.8

0

0.8

Figure 11.1: Simulation model (1 : 4) of the cable net geometry for the HiLo roof. —

r(1), — r(2) (for LS) , — r(3) (for LS) , — r(4) (for ADMM) , * Input locations of u(3).

Table 11.1: Results of the LS-approach.

p noise (std σ) cond(Y ) ‖lLS
0 − lSOCP

0 ‖∞ RMS (lLS
0 − lSOCP

0 )

1 0 3.3× 105 1.9× 10−1 m 6.9× 10−2 m

2 0 1.3× 103 2.2× 10−5 m 1.0× 10−5 m

3 0 3.3× 102 2.8× 10−5 m 4.4× 10−6 m

1 0.1 mm 1.5× 103 1.9× 10−1 m 6.9× 10−2 m

2 0.1 mm 1.0× 103 1.1× 10−1 m 4.2× 10−2 m

3 0.1 mm 3.3× 102 8.8× 10−3 m 3.1× 10−3 m
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11.4.2 Simulation Results for ADMM Algorithm

We now use the distributed ADMM algorithm for the identification. Again, one con-
figuration does not define a unique solution for the parameters l0. We choose p = 2,
which defines a unique solution in the noise-free case. For the simulation, we choose
the first configuration as before, with inputs u(1) = 0 and the second one is obtained by
applying the input u(4) with u

(4)
k = 0.4 l0,k , ∀ k ∈ ĒB . This configuration is shown as r(4)

in Figure 11.1 .

We initialize Algorithm 11.1 with l
(0)
0 , where each parameter has an error with respect

to the reference lSOCP
0 of 0.001 m in the noise-free case and of 0.005 m in the case with

added measurement noise. This represents realistic values for the fabrication tolerances.
The ADMM penalty parameter is set to ρ = 1 .

Figure 11.2 shows the convergence plots for both the noise-free and the noisy case.
Figures 11.2 (a) and 11.2 (b) show the RMS-error from the identified parameters lADMM

0

to the reference lSOCP
0 and the maximum absolute value of the error, ‖lLS

0 − lSOCP
0 ‖∞ ,

respectively. Figures 11.2 (c) and 11.2 (d) show the convergence of the consensus variables
and the convergence of the consensus multipliers of the ADMM algorithm, respectively.
One can see that the algorithm converges to a fixed point, which has a small error in
the noisy case, as described before. In our example, the maximum absolute value of
the error, ‖lADMM

0 − lSOCP
0 ‖∞ , is 1× 10−4 m in the noise-free case and 2× 10−4 m in the

noisy case and the RMS-error is 2× 10−5 m in the noise-free case and 6× 10−5 m in the
noisy case. This represents an accurate solution for our application and is in the range
of the added measurement noise. Other simulation examples show qualitatively similar
results. In examples of anticlastic shells with fewer nodes and a bigger ratio of boundary
nodes to interior nodes, the algorithm converges faster and more monotonically.

11.5 Conclusions

Two methods have been presented for the identification of the important unknown para-
meters, l0, of the cable net. While the first method is a linear regression, which is easy to
implement and fast to solve, it can become imprecise if the measurement noise is signifi-
cant. The second method is a distributed ADMM approach, which ensures feasibility of
the solution. Simulations show that the algorithm converges to a precise solution, even
in the presence of measurement noise.
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Figure 11.2: Convergence plots of the distributed ADMM algorithm. noise-free
measurements noisy measurements.
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CHAPTER 12
Control Input Computations and Complete

Cable Net Reconfiguration Procedure

This chapter presents the second part of the complete control algorithm, illustrated in
Figure 9.4, which is the computation of control inputs for a fixed model of the cable
net. The last section of the chapter then summarizes the complete control algorithm
of both the identification and the control computation steps. For the control input
computation, an SQP variant is presented, where in each iteration an approximation of
the optimal control problem as a QP is solved. A line search is performed along the
part of the minimizer corresponding to the control input. Along this direction, feasible
points are generated by convex programming. The convergence of this control input
calculation to a stationary point of the optimal control problem is proved by showing
equivalence of the iterations of the algorithm to a Gauss-Newton iteration performed
on the original optimal control problem. For practical applicability to systems where
actuation is time-consuming, we present a variant of the algorithm which is based on an
l1-norm regularization and which results in sparse control inputs. The work presented
in this chapter has been published in [16] and [19].

This chapter is structured as follows. Section 12.1 presents the optimal control algo-
rithm which is an SQP variant with feasible iterates. Section 12.2 gives the convergence
proof of the algorithm. We propose a variant of the algorithm for sparse input calculation
in Section 12.3. Section 12.4 presents the complete control algorithm consisting of the
parameter identification from Chapter 11 and the control input calculations from Secti-
ons 12.1 or 12.3. Sections 12.5 and 12.6 present numerical experiments and a conclusion
to this chapter, respectively.

12.1 Control Input Computation

In this section, we first state the form optimization problem. Then, we present a Sequen-
tial Quadratic Programming (SQP) variant to compute a Gauss-Newton (GN) descent
direction, followed by a line search to find an appropriate step size. Finally, we present
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the algorithm, and compare it to general purpose nonlinear solvers.

12.1.1 Optimal Control Problem for a Fixed Model

Given a set of model parameters of the cable net l
(k)
0 , and fixed boundary nodes r̄B =

r̄
meas,(k)
B for the fixed measured configuration (k), an optimal control problem (OCP)

minimizes the weighted l2-norm of the distance between the desired coordinates r(des)

and the model coordinates as a function of the input u and is thus given as

Problem Pocp,u :

min
u

focp,u(u) =
1
2

∥
∥
∥R(u)− r

(des)
I

∥
∥
∥

2

Qr

,
(12.1)

with Qr being a positive semi-definite weighting matrix. The function R(u) was intro-
duced in Section 10.5 as the mapping of the inputs u to the coordinates r, which is not
explicitly known and is only implicitly defined through the energy minimization in (10.23)
or through the force balance equations h(·, u) = 0 in (10.14). However, the problem can
be reformulated by introducing additional optimization variables rI for the interior node
coordinates together with constraints to guarantee that the minimizer p = [r⊤

I , u⊤]⊤ of
the problem represents a static equilibrium of the cable net. The reformulated problem
is the following

Problem Pocp :

min
rI ,u

focp(rI) =
1
2

∥
∥
∥rI − r

(des)
I

∥
∥
∥

2

Qr

s.t. h([r⊤
I , r̄⊤

B ]⊤, u) = 0.
(12.2)

The 3nI equality constraints in (10.14), h([r⊤
I , r̄⊤

B ]⊤, u) = 0, represent the force balan-
ces at the interior nodes and implicitly express the function R(u). We will show in
Section 12.2, that the function R(u) is well defined and that problem Pocp is an exact
reformulation of Pocp,u.

In contrast to using the force-density method in Section 10.4.3, the cost functions
focp,u(u) or focp(rI), in (12.1) or (12.2), respectively, penalize the individual nodal coor-
dinates x, y, and z. In construction applications this is beneficial as specific regions of
the geometry can be penalized with larger weight if more precision is needed to fit other
elements to these areas of the structure.

Remark 12.1. The m inequality constraints in (10.10), g(rI , r̄B, u) ≤ 0, which represent
non-negative elongations of the edges, can be added. If the problem is feasible, they
guarantee the absence of slack cables. If there are physical limitations on the inputs,
then the constraints in (10.12) need to be added. In the following, we do not consider
any constraints on the inputs. The underlying assumption is that the design provides
all the actuation that is needed for the control task.
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12.1.2 Control Calculation: GN Iteration Based on an SQP

Variant

We propose solving Problem Pocp,u in (12.1) efficiently by a Gauss Newton (GN) iteration,
as introduced in Section 3.7. The GN descent directions for Pocp,u are computed in SQP
iterations [34], [160], as introduced in Section 3.8, on Pocp in (12.2). Then, a line search
along the GN direction on focp,u is implemented, where PminE is solved to evaluate R(u).

Problem Pocp is iteratively approximated as a Quadratic Program (QP) around a
sequence of points pκ = [rκ⊤

I , uκ⊤]⊤ of nodal position coordinates and inputs at iterations
κ. In standard SQP methods, the cost function of the QP is obtained by a quadratic
approximation of the Lagrangian, which involves the Hessian of the Lagrangian. Instead,
we take the constrained GN approach [34], [161], where we exploit the least-squares
structure of the cost function focp(rI) in Pocp. The GN iteration uses only the first-order
term for the approximate Hessian H , as described in (3.18) in Section 3.7, i.e.,

H = ∇(rI ,u)((rκ
I − r

(des)
I )Q

1
2
r )⊤∇(rI ,u)((rκ

I − r
(des)
I )Q

1
2
r )

= diag(Qr, 0).
(12.3)

This approximation has significant computational advantages if the system is large, be-
cause no second order information needs to be computed. It is a good approximation if
the residuals rκ

I − r
(des)
I are small or nearly affine. With ∆pκ = [∆rκ⊤

I , ∆uκ⊤]⊤, the QP
in iteration κ is given by

Problem Pκ
SQP :

min
∆pκ

fGN
ocp (∆rκ

I ) =
1
2

∆pκ⊤H∆pκ +∇(rI ,u)f
⊤
ocp∆pκ

s.t. h([rκ⊤
I , r̄⊤

B ]⊤, uκ) +∇(rI ,u)h([rκ⊤
I , r̄⊤

B]⊤, uκ)∆pκ = 0.

(12.4)

The equality constraints of Pκ
SQP in (12.4) are the linearized constraints of Pocp. With

H in (12.3) and focp in (12.2), fGN
ocp in (12.4) can be simplified to

fGN
ocp (∆rκ

I ) =
1
2
‖rκ

I − r
(des)
I +∇(rI ,u)(rκ

I − r
(des)
I )∆pκ‖2

Qr

=
1
2
‖rκ

I − r
(des)
I + ∆rκ

I ‖2
Qr

.
(12.5)

Given ∆pκ = [∆rκ⊤
I , ∆uκ⊤]⊤, which is the minimizer of Pκ

SQP, then ∆uκ is the GN
descent direction of Pocp,u. This is proved in Section 12.2.

12.1.3 Line Search

An inexact backtracking line search, as described in Section 3.7, along the direction
∆uκ, is performed for the cost function focp,u to find a step length ακ satisfying the
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Wolfe conditions

focp,u(uκ + ακ∆uκ) ≤ focp,u(uκ) + c1α
κ∇ufocp,u(uκ)⊤∆uκ,

∇ufocp,u(uκ + ακ∆uκ)⊤∆uκ ≥ c2∇ufocp,u(uκ)⊤∆uκ,
(12.6)

where c1 ∈ R and c2 ∈ R are constants satisfying 0 < c1 < c2 < 1. For the evaluation of
the cost function focp,u(u), we compute R(u) as the part rI of the minimizer of PminE in
(10.25), and the computation of the gradient in (12.6) is performed by

∇ufocp,u(u) = Qr(R(u)− r
(des)
I )⊤(−∇rI

h(R(u), u)−1∇uh(R(u), u). (12.7)

The related proofs are given in Section 12.2.

To find ακ, the backtracking line search takes trial steps along the direction ∆uκ. It
is initialized with ακ = 1. If the Wolfe conditions are satisfied, the unit step length is
accepted. Otherwise, the next step length ακ ← ρ ακ is tested, where 0 < ρ < 1, until a
suitable step length is found. The Wolfe conditions guarantee that the step lengths are
not too small and that sufficient decrease of the cost function focp,u is achieved at the
next iterate, which is given by

p(κ+1) = [R(uκ + ακ∆uκ)⊤, uκ⊤+ ακ∆uκ⊤]⊤, (12.8)

where R(u) is the component rI of the minimizer of PminE in (10.25).

The variant of SQP applied to Pocp in (12.2), which solves the GN iteration of Pocp,u

in (12.1) to compute the control input u(k+1) for the current measured configuration
rmeas,(k), results in Algorithm 12.1. Global convergence to a KKT point of Pocp, which
is equal to a stationary point of Pocp,u is shown in Section 12.2.

Note that the standard SQP methods generate iterates pκ+1 = pκ + ακ∆pκ, with
∆pκ = [∆rκ⊤

I , ∆uκ⊤]⊤ being the minimizer of Pκ
SQP. Before convergence, all of these

iterates may be infeasible. Therefore, a line search for guaranteeing global convergence
would need to be performed on a merit function that accounts for both the decrease
in the cost as well as the constraint violations [34] . This requires design parameters
that can be difficult to tune. In the SQP variant proposed here, we use the GN direction
∆uκ, which is a component of the minimizer of Pκ

SQP, to perform GN iterations on Pocp,u.
Since Pocp,u is unconstrained and thus all iterates are feasible, the cost function focp,u

can be chosen as the merit function in the line search. Note that this is enabled by the
efficient computation of R(u) as the part rI of the minimizer of PminE.

12.1.4 Comparison to Other Solvers

There are many “general-purpose” solvers available that are applicable to general non-
convex optimization problems. However, the more general these solvers are, the less they
are able to exploit specific problem structure. An example of an efficient open-source
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Algorithm 12.1 Algorithm to compute u(k+1) for current measured configuration
rmeas,(k) solving GN iterations on Pocp,u via SQP variant on Pocp.

1: Input: Measured configuration r
meas,(k)
I , r

meas,(k)
B , u(k),

2: Target coordinates r
(des)
I , convergence bound cc,

3: Model parameters EA, l
(k)
0 (in PminE, Pκ

SQP),
4: Line search parameters c1, c2, ρ,
5: Initialization: Set p0 =∞, p1 = [rmeas,(k)⊤

I , u(k)⊤]⊤, κ = 1,
6: Set r̄B = r

meas,(k)
B in PminE and Pκ

SQP,
7: while ‖pκ − pκ−1‖ ≥ cc do

8: Solve Pκ
SQP to obtain ∆uκ,

9: Perform backtracking line search with (12.6) to find ακ,
10: Set next feasible iterate pκ+1 as per (12.8),

11: end

12: Set p = pκ,
13: Set u(k+1) = uκ,
14: Output: Control input u(k+1) belonging to KKT point p = [R(u(k+1))⊤, u(k+1)⊤]⊤ of
Pocp.

solver, which is suitable for large-scale nonlinear problems is IPOPT [162]. This solver
is applicable to the optimal control problem Pocp in (12.2). However, for this problem,
a feasible solution is not guaranteed to be found. Simulations confirm that the iterates
of IPOPT often converge to a point of local infeasibility.

Algorithm 12.1 and IPOPT are local methods, i.e., they find a local stationary point
given an initial point. In contrast, global methods aim at finding the global minimum by
considering multiple local minima and choosing the best one. An example of such global
methods are evolutionary (genetic) algorithms. They can also be used to solve problem
Pocp. However, they are generally very inefficient and scale badly with the problem
dimension, which results in very slow convergence. For the cable net application, the
measurement of the initial pre-stressed form provides a good starting point for the solver.
Therefore, global methods such as genetic algorithms are considered to be unnecessary
and do not provide any advantage over the algorithm proposed in this work.

In summary, compared to other more general nonlinear solvers, Algorithm 12.1 ex-
ploits the knowledge of the given problem structure. In particular, this is achieved
through the GN approximation in Pκ

SQP as well as through the computation of feasible
iterates by convex programming in PminE. This renders Algorithm 12.1 very efficient and
guarantees convergence to a stationary feasible point.
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12.2 Convergence Proof of Algorithm 12.1

This section proves the following result.

Theorem 12.1. For fixed model parameters and under the cable net assumptions in

Section 10.3, Algorithm 12.1 converges to a stationary point of Pocp,u in (12.1).

First, we present results, which are used in the proof of Theorem 12.1.

12.2.1 Well-posedness of Pocp, Pocp,u and PminE

Proposition 12.1. Under the cable net assumptions in Section 10.3, the mapping R(u) :
u 7→ rI defined through the equations h(rI , u) = 0 in (10.14) is injective, i.e., for a given

u (and a fixed rB), there exists a unique rI that solves h(rI , u) = 0.

Proof of Proposition 12.1: Under the cable net assumptions in Section 10.3, and for a
fixed input vector u, the cable net is a so-called spider web, for which the following holds:
Any configuration rI of a spider web such that all edges in Ē are in positive tension, and
such that every interior node in NI is connected to a boundary node in NB by edges in
Ē , is unique and rI is the minimum point for the associated quadratic energy function
V (rI). For the proof of this result, we refer to Proposition 5.5.2 in [163]. Similar results
can be found in [138] and [144].

Proposition 12.2. Under the cable net assumptions in Section 10.3, and for a con-

stant input u, the partial Jacobian ∇rI
h(rI , u) at an equilibrium configuration rI is non-

singular.

Proof of Proposition 12.2: Using the statement of Proposition 12.1 that the equilibrium
configuration rI corresponding to a proper self-stress of a spider web is the unique mi-
nimum of the associated energy function V (rI), implies that the Hessian of V (rI) with
respect to rI is positive definite at that point. Furthermore, it is easy to show that
the partial Jacobian of the force balance equations, ∇rI

h(rI , u), at an equilibrium is
equal to the Hessian of the energy function with respect to rI [138], which completes the
proof.

In the following, we make use of the Implicit Function Theorem and therefore briefly
restate it here.

Theorem 12.2 (Implicit Function Theorem [34]). Let h : R3nI × RmB 7→ R3nI be a

function such that
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(i) h(r̂I , û) = 0 for some r̂I ∈ R3nI ,

(ii) the function h(·, ·) is continuously differentiable in some neighborhood of (r̂I , û),

(iii) ▽rI
h(rI , u) is nonsingular at the point (rI , u) = (r̂I , û).

Then there exist open sets NrI
⊂ R3nI and Nu ⊂ RmB containing r̂I and û, respectively,

and a unique continuous function R(u) : Nu 7→ NrI
such that r̂I = R(û) and h(rI , u) = 0

for all u ∈ Nu. If h(rI , u) is p-times continuously differentiable with respect to both rI

and u for some p > 0, then R(u) is also p-times continuously differentiable with respect

to u, and we have

∇uR(u) = −[∇rI
h(rI , u)]−1∇uh(rI , u),

for all u ∈ Nu.

With this result, we can now state the following.

Proposition 12.3. Under the cable net assumptions in Section 10.3, the function R(u) :
u 7→ rI in Pocp,u is well-defined, i.e., at any equilibrium point, locally it exists uniquely

and is continuously differentiable.

Proof of Proposition 12.3: We apply the Implicit Function Theorem in Theorem 12.2 to
h(rI , u) in (10.14). This is valid as h(rI , u) satisfies (i) because we assume that for the
given parameters and a given û and under the cable net assumptions in Section 10.3,
there exists an equilibrium configuration r̂I . Condition (ii) holds due to the function
definition of h(·, ·) in (10.14). Condition (iii) is satisfied because of Proposition 12.2.
Therefore, the Implicit Function Theorem can be applied and R(u) exists and is unique
and continuously differentiable with ∇uR(u) = −[∇rI

h(rI , u)]−1∇uh(rI , u) (locally at
any equilibrium point).

Corollary 12.1. Problems Pocp and Pocp,u in (12.2) and (12.1), respectively, are equi-

valent reformulations in the sense that (r∗
I , u∗) = arg min Pocp if and only if u∗ =

arg minPocp,u.

Proof of Corollary 12.1: With Propositions 12.1 and 12.3, h(·, u) = 0 and R(u) describe
the mapping from a given u to the same rI . The minimizer of Pocp, (r∗

I , u∗), needs to
be feasible, i.e., it needs to satisfy h(r∗

I , u∗) = 0, and therefore R(u∗) = r∗
I , and Pocp and

Pocp,u are exact reformulations.

Furthermore, the following result shows that the iteration in (12.8) is well-defined,
where R(u) corresponds to r∗

I in the minimizer of PminE for fixed u.
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Proposition 12.4. The part r∗
I of the minimizer of PminE in (10.25) for a fixed input u

is equal to the value of r∗
I defined through h(r∗

I , u) = 0 in (10.14).

Proof of Proposition 12.4: We note that the minimizer r∗
I of Problem PminE for a fixed

u is unique. This is stated and proved in Lemma 5.3 in [146]. The uniqueness of the
minimizer r∗

I of PminE together with the unique value of r∗
I solving h(·, u) = 0 from

Proposition 12.1 implies the equality.

The following property of the Jacobian ∇uh(rI , u) will be of further use in the follo-
wing.

Proposition 12.5. At each equilibrium point (rI , u), the Jacobian ∇uh(rI , u) has full

column rank.

Proof of Proposition 12.5. With the definition of h(rI , u) in (10.14), the partial Jacobian
▽uh(rI , u) is given by

▽uh(rI , u) =








∂h1

∂u1
· · · ∂h1

∂umB...
...

∂h3nI

∂u1
· · · ∂h3nI

∂umB








, (12.9)

with

∂hi

∂u(s,t)

=







EA(s,t)








xs − xt

ys − yt

zs − zt








1

(l0,(s,t)−u(s,t))
2 , if i = s or i = t, and (s, t) ∈ EB,

0 if i 6= s and i 6= t, or (s, t) ∈ EI .

(12.10)

Only the force change in the boundary edges, i.e., for (s, t) ∈ EB, in the sum of (10.14)
are non-zero. The entries of ▽uh(rI , u) in (12.10) are always non-zero (first case), except
if xs = xt, ys = yt or zs = zt (second case), where the latter means alignment of the
edge (s, t) with a coordinate axis, which can happen at most for two of the coordinates.
Therefore, in each column of ▽uh(rI , u), we have at least one nonzero entry. Every
row has as many non-zero entries as the number of connected boundary edges to the
corresponding node. Under the cable net assumptions in Section 10.3 at most three
boundary nodes are connected to the same node and the corresponding boundary edges
have linearly independent directions, and thus the corresponding columns and rows of
▽uh(rI , u) are linearly independent. Therefore, there is always a submatrix of ▽uh(rI , u)
of size mB ×mB of full rank.

The following example illustrates the idea used for the proof of Proposition 12.5.
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12

3

4

e1e2

e3

e4
e5

e6

Figure 12.1: Example topology in 3D with interior nodes 1, 2, 3, 4, and boundary edges
e1, e2, e3, e4, e5 and e6.

Example 12.1. Let us consider the 3D net topology that is illustrated in Figure 12.1. The
interior nodes 1, 2 and 3 are connected by the boundary edges e1, e2, and e3, respectively.
Interior node 4 is connected by the boundary edges e4, e5 and e6, which have linearly
independent direction vectors, which satisfies the cable net assumptions in Section 10.3.

We use the definition of the edge-node incidence matrix M of the net topology, as
defined in (10.2) in Section 10.1. We further partition the matrix MI according to
MI = [M⊤

II M⊤
IB]⊤, where the part MIB ∈ RmB×nI describes the topology of boundary

edges which are connected to interior nodes. The sparsity structure of the partial Jaco-
bian ▽uh(rI , u) is then given by [0⊤ M̂⊤

IB]⊤ ⊗ [1 1 1]⊤, where M̂IB denotes the sparsity
structure of MIB, i.e., it has ones in the places of non-zero entries.

Let us consider a cable net topology as illustrated in Figure 12.1. The sparsity
structure of the partial Jacobian ▽uh(rI , u) for this topology corresponds to

[

0

M̂IB

]

⊗






1

1

1




 =

















0 0 0 0 0 0
...

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 1

















⊗






1

1

1




 .

The zero rows describe the interior nodes that do not have a direct connection to any
boundary edge. Because of the linear independence of the edges e4, e5 and e6, the block
in ▽uh(rI , u), corresponding to the block of [1 1 1] ⊗ [1 1 1]⊤ in this example, has no
linearly independent directions, and thus ▽uh(rF , u) has full column rank.
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12.2.2 Existence of a Unique Search Direction ∆uκ

With Propositions 12.2 and 12.5, we can choose the weighting matrix Qr, such that

rank
(

Q
1
2
r (∇rI

h)−1∇uh
)

= mB. (12.11)

Note that any positive definite weighting matrix Qr trivially satisfies (12.11).

We can now state the following.

Lemma 12.1. If Qr is chosen such that (12.11) is satisfied, then Pκ
SQP in (12.4) has a

unique solution, ∆pκ = [∆rκ⊤
I , ∆uκ⊤]⊤, in each iteration of Algorithm 12.1. Further-

more, LICQ of Pocp is fulfilled in each iteration of Algorithm 12.1.

Proof of Lemma 12.1: To see that Lemma 12.1 holds, we show that:

a) In each iteration, the Jacobian of the equality constraints h(rκ
I , uκ) = 0, i.e.,

∇(rI ,u)h(rκ
I , uκ) ∈ R3nI×3nI +mB has full row rank.

b) The matrix H is positive definite on the tangent space of the constraints, i.e.,
∆pκ⊤H∆pκ > 0, ∀∆pκ 6= 0, s.t. ∇(rI ,u)h(rI , u)∆pκ = 0.

The partial Jacobian ∇rI
h(rI) ∈ R3nI×3nI has full rank at any equilibrium configuration

rI , and thus at any feasible iterate, see Proposition 12.2, and therefore a) holds. It implies
the linear independence constraint qualification (LICQ) [164], as defined in Section 3.6.
To see that b) holds, we note that ∆pκ⊤H ∆pκ = [∆rκ⊤

I ∆uκ⊤]diag(Qr, 0)[∆rκ⊤
I ∆uκ⊤]⊤ =

∆rκ
I Qr∆rκ⊤

I . For all ∆pκ, s.t. ∇(rI ,u)h(rI , u)∆pκ = 0, this is equal to ∆uκ⊤Hu∆uκ, with

Hu = ∇uh⊤(∇rI
h)−⊤Qr(∇rI

h)−1∇uh.

As Qr is chosen such that it satisfies (12.11), and with Propositions 12.2 and 12.5, it
holds that Hu > 0 and thus b) holds. It implies that Pκ

SQP is strictly convex and has a
unique solution.

12.2.3 GN Descent Direction

We show the relationship between the GN directions of Pocp and Pocp,u. Let us denote
the GN direction of Pocp,u by ∆uκ

Pocp,u
and the GN direction of Pocp by [∆rκ⊤

I , ∆uκ⊤]⊤.
With the GN approximation of the Hessian, as introduced in Section 3.7.2,

∇2
ufocp,u(uκ) ≈ (Q

1
2
r∇uR(uκ))⊤(Q

1
2
r∇uR(uκ)), (12.12)

the GN search direction ∆uκ
Pocp,u

is obtained by solving

∇uR(uκ)⊤Qr∇uR(uκ)∆uκ
Pocp,u

= −∇ufocp,u(uκ)

= −∇uR(uκ)⊤Qr(R(uκ)− r
(des)
I ),

(12.13)
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which is well-defined because of Theorem 12.2.

We can now state the following.

Lemma 12.2. In each iteration κ of Algorithm 12.1, the GN search direction ∆uκ
Pocp,u

for Pocp,u in (12.1) is equal to the ∆uκ component of the GN search direction for Pocp

in (12.2), which is computed by solving Pκ
SQP in (12.4) in Algorithm 12.1.

Proof of Lemma 12.2: First, we have to show that [∆r∗⊤
I , ∆u∗⊤]⊤ = arg min(Pκ

SQP) ⇐⇒
∆u∗ = ∆uPocp,u = arg min(fGN

ocp,u), where fGN
ocp,u is the optimization problem of obtaining

the GN direction of focp,u, which is given as

fGN
ocp,u(∆uκ

Pocp,u
) =

1
2

∥
∥
∥R(uκ)− r

(des)
I +∇uR(uκ)∆uκ

Pocp,u

∥
∥
∥

2

Qr

. (12.14)

With the constraints of Pκ
SQP, i.e., ∇uh(rκ

I , uκ) ∆uκ +∇rI
h(rκ

I , uκ) ∆rκ
I = 0, we have

∆rκ
I = − (∇rI

h(rκ
I , uκ))−1 ∇uh(rκ

I , uκ) ∆uκ.

Together with the Implicit Function Theorem, it holds that ∆rκ
I = ∇uR(uκ) ∆uκ, and

together with R(uκ) = rκ
I , the cost functions fGN

ocp,u(∆uκ
Pocp,u

) in (12.14) and fGN
ocp (∆rκ

I ) in
(12.5) are exact reformulations. Therefore, the component ∆uκ of the GN direction for
Pocp is equal to the GN direction ∆uκ

Pocp,u
for Pocp,u.

Furthermore, because of Lemma 12.1 a), as the constraints of Pκ
SQP satisfy the LICQ,

the tangent cone of the nonlinear constraints h(rI , u) = 0 and the set of feasible linearized
directions of Pκ

SQP are equal at the current point, and thus the minimizer of Pκ
SQP is the

same as the GN direction of Pocp.

12.2.4 Main Proof

We have proved that the ∆uκ component of the minimizer of Pκ
SQP is equal to the GN

direction of Pocp,u. With this result, the remainder of the proof reduces to showing
convergence of the GN-iteration on the unconstrained problem Pocp,u.

Proof of Theorem 12.1: Lemma 12.2 states that ∆uκ, obtained from the solution of Pκ
SQP

in (12.4), is a GN descent direction for the unconstrained Pocp,u optimization in (12.1).
The line search in Algorithm 12.1 guarantees feasibility of R(uκ+ακ∆uκ) and satisfaction
of the Wolfe conditions in (12.6). The convergence to a critical point of Pocp,u follows
from Theorem 10.1 in [34].

Corollary 12.2. For fixed model parameters and under the cable net assumptions in

Section 10.3, Algorithm 12.1 converges to a KKT point of Pocp in (12.2).
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Proof of Corollary 12.2: At the point of convergence, p = [r⊤
I , u⊤]⊤, the constraints of

Pocp are satisfied, because rI = R(u) in (12.8), and therefore h(rI , u) = 0. Under con-
straint satisfaction, Pocp(rI , u) and Pocp,u(u) are equivalent reformulations. Therefore,
at the point of convergence, stationarity conditions and constraint satisfaction for Pocp

hold, and as stated in Lemma 12.1, LICQ for Pocp holds, which means that the point of
convergence is a KKT-point of Pocp.

12.3 Sparse Control Input Computation

Depending on the construction application and the site conditions, the actuation may
not be fully automated, or may even be completely manual. For large-scale structures
with a large number of boundary edges the process of manually applying inputs can be
very time- and labor-intensive. Depending on the deviations in the form that need to
be corrected, it can be efficient to apply inputs to only a (possibly small) subset of the
boundary edges rather than to adjust all of them. Simulation results suggest that this
might not significantly compromise the performance.

Motivated by the goal of making the actuation practically feasible, a sparse input
vector is computed. To do so, an additional term is introduced in the cost function
to account for the cardinality of the input vector. As proposed in [165] and used in
[166], we use the weighted l1-norm as a convex regularizer for the cardinality. The
resulting sparse input vector is denoted by ul1 in the following, and the corresponding
cable net configuration R(ul1) is denoted by rI,l1. The weighted l1-norm is given by
‖W ul1‖l1 =

∑

i wi|ui,l1|, with W being a diagonal matrix of the weights wi. The cost
function is convex and given by

fl1 = focp(rI,l1, ul1) + γ ‖W ul1‖l1 , (12.15)

with γ a weighting factor. If γ = 0, the fully actuated solution is achieved, and as γ is
increased, the solution becomes more and more sparse. If the weights wi are chosen to be
the inverses of the entries of ui,l1, then this weighted l1-norm is equal to the cardinality
of ul1 . As the entries ui,l1 are not known a priori, these particular weights cannot be
chosen a priori. Therefore, an iterative reweighting scheme is implemented [165], [167].
In the first iteration the initial problem with γ = 0 is solved. Then, the weights wi are
updated to penalize smaller entries more and more, approximating the cardinality of ul1 .

The sparse OCP, denoted by Pocp,l1 , consists of minimizing fl1 subject to the con-
straints of Pocp and is given as follows

Problem Pocp,l1 :

min
rI,l1

,ul1

fl1 = focp(rI,l1, ul1) + γ ‖Wul1‖l1

s.t. h(rI,l1, ul1) = 0 .

(12.16)
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In order to solve Problem Pocp,l1 by the SQP variant in Section 12.1, we transform it
into the following QP.

Problem Pκ
SQP,l1 :

min
∆rκ

I,l1
,∆uκ

l1
,β

fGN
l1 =

1
2

∥
∥
∥rκ

I,l1 + ∆rκ
I,l1 − r

(des)
I

∥
∥
∥

2

Qr

+ γ (w⊤β)

s.t. (uκ
l1

+ ∆uκ
l1

) ≤ β,

− (uκ
l1

+ ∆uκ
l1

) ≤ β,

∇(rI ,u)h(rκ
I,l1, uκ

l1)∆pκ + h(rκ
I,l1 , uκ

l1) = 0,

(12.17)

with w being the vector of the weights wi. Algorithm 12.2 summarizes the steps for
solving Pocp,l1 using Algorithm 12.1 together with an iterative reweighting scheme of the
l1-norm in the cost function. The result is a sparse input vector ul1.

Algorithm 12.2 Computation of sparse input vector u(k+1) = ul1 for current measured
configuration rmeas,(k) corresponding to feasible point p = [r⊤

I,l1
, u⊤

l1
]⊤, which solves the

iteratively reweighted problem Pocp,l1.
1: Input: Parameters τ > 0, ǫ > 0, convergence bound cw,
2: Data as in Algorithm 12.1 with initial point rmeas,(k), u(k),
3: Initialize: Set ν = 0, γ > 0, w0 = 0,
4: Perform Algorithm 12.1 for SQP variant on Pocp,l1 for rmeas,(k), u(k) to obtain initial

fully actuated solution u0,
5: while ν < 1 or ‖wν − wν−1‖ ≥ cw do

6: Set ν = ν + 1,

7: Update weights: wν
i = τ

|uν−1
i,l1

|+ǫ
,

8: Algorithm 12.1 for SQP variant on Pocp,l1 for rmeas,(k), u(k) with wν

9: to obtain pν = [rν⊤
I,l1, uν⊤

l1 ]⊤,

10: end

11: Set p = pν ,
12: Set u(k+1) = uν,
13: Output: Sparse input u(k+1) = ul1.

Remark 12.2. This sparsity-promoting algorithm is possible because the inputs u are
optimization variables. This is not the case for a force-density formulation.

12.4 Complete Cable Net Reconfiguration Procedure

The complete control algorithm combines the parameter identification from Chapter 11
and the control input calculation from this chapter. It was introduced in Chapter 9 and
illustrated in Figure 9.4. The steps are summarized in Algorithm 12.3.
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Remark 12.3. It would be possible to carry out the line search along ∆uκ directly on
the cable net by replacing the solution of PminE via an actuation and measurement step
on the physical cable net. However, such an approach is considered to be too expensive
in the construction application. Instead, the combination of parameter identification
and model-based optimal control exploits the measurement information and the model
knowledge and thus the number of expensive measurements and cable length actuations
on the construction site can be reduced.

Algorithm 12.3 Complete control algorithm: Re-identification of the model and com-
putation of (sparse) control inputs in Algorithm 12.1 (12.2).

1: Input: Target coordinates r
(des)
I , material parameters EA, convergence bound cc,1,

2: Initialization: Set k = 1, r
meas,(0)
I =∞, u(1) = 0, take first measurement rmeas,(1),

3: while |‖rmeas,(k)
I − r

(des)
I ‖Qr − ‖rmeas,(k−1)

I − r
(des)
I ‖Qr | ≥ cc,1 do

4: Identify l
(k)
0 as per Algorithm 11.1,

5: Update l
(k)
0 and r̄B = r

meas,(k)
B in Pκ

SQP (Pκ
SQP,l1

) and PminE,

6: Compute u(k+1) (u
(k+1)
l1

) as per Algorithm 12.1 (12.2)

7: with updated models in Pκ
SQP (Pκ

SQP,l1
) and PminE,

8: Apply u(k+1) (u
(k+1)
l1

),

9: Take measurement rmeas,(k+1),

10: Update measurement data set,

11: k = k + 1,

12: end

13: Output: rmeas
I , stationary point of ‖rmeas

I − r
(des)
I ‖Qr .

12.5 Simulation Results

We consider again the model of a 1:4 prototype of the HiLo roof, which will be described
in detail in Section 13.1. Simulation results for the control of its geometry from a
perturbed configuration with chosen reference inputs to a desired one are presented in
the following. For the simulation, feasible desired target coordinates are chosen, i.e.,
they can exactly be achieved by the cable net. This is a choice, which is not necessary
for the control, but which is useful for the validation of the algorithm in simulation, as
the global optimal solution to the control problem is thus known.

The parameters used in the simulation are the same as in Section 11.4: The material
of the cable net is polyamid P A6 with E = 3000 Nmm2 and A = π · (3.8 mm)2 for all
edges. The cable net has nI = 295 interior nodes and nB = 75 boundary nodes, a total
of m = 606 edges, whereof mB = 75 boundary edges. The number of boundary edges,
mB, equals the dimension of the input vector, as defined in (10.6). The dimensions of
the system are approximately 3 m× 4 m× 2 m.
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Figure 12.2: — Desired target configuration, — Initial configuration, — Optimal con-
figuration resulting from control input computed in 20 iterations of Algorithm 12.1.

Control Input Computation

We start from an initial perturbed configuration, r(ini), which is obtained by shortening
all boundary lengths by 0.05 m with respect to the desired configuration, r(des). This
would actually represent a very large deviation for the real application. We assume the
parameters of the system are known, as they can be identified. We then perform 20
iterations of Algorithm 12.1 with target coordinates r

(des)
I corresponding to the desired

unperturbed configuration of the design model. Figure 12.2 shows the initial perturbed
configuration, the desired one as well as the one resulting under the applied control
input. In Figure 12.3, the decrease of the cost function value is plotted over 20 iterations
of Algorithm 12.1. We observe exponential convergence to the global optimum with
cost function value zero. Other simulation examples with random perturbations on the
boundary edges qualitatively show the same result.

Sparse Control Input Computation

For the sparse input calculations in Algorithm 12.2, the sparsity of the solution and the
cost depend on the parameters τ , ǫ and γ. They also depend on the initial solution u(1)

of the first iteration ν = 1, with γ = 0, of Algorithm 12.2. If the vector u(1) contains
many small entries compared to other entries and the weights w

(2)
i are therefore not all
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Figure 12.3: Cost function values ‖rI − r
(des)
I ‖2

2 for 20 iterations of Control Algorithm
12.1

equal, simulations show that Algorithm 12.2 converges to a sparse solution within a few
reweighting iterations.

We show a simulation example, where the reference input is randomly chosen from a
uniform distribution in the range of 2 cm for all boundary edges. The reference input is
illustrated in Figure 12.5 in blue. Four iterations of Algorithm 12.2 are performed, and
within each iteration, 10 iterations of Algorithm 12.1 are performed (as described in step
10 of Algorithm 12.2). The cost function values in the iterations of Algorithm 12.2 are
shown in Figure 12.4. In the first iteration, a dense input is obtained. At the beginning
of iterations 2, 3, and 4, the reweighting in Algorithm 12.2 takes place. The number
of edges with zero input at the end of iterations 1, 2, 3 and 4 are 0, 21, 38, and 40,
respectively. The resulting sparse input, ul1, is shown in Figure 12.5 in red.

12.6 Conclusions

For a fixed (re-identified) model of the cable net system, a control algorithm has been
presented that is guaranteed to converge to a stationary point of the optimal control
problem. An SQP variant has been presented, where the problem structure is exploited
in a Gauss-Newton approximation to compute a descent direction, and in a line search
for computing the next feasible iterate by convex programming. An extension of the
algorithm to compute sparse inputs has been presented.

The control input computation represents the second step in each iteration of the
complete cable net reconfiguration. This complete control algorithm has been presented
to combine the two steps of model identification and control input computation. An ex-
perimental validation of the proposed control algorithm will be presented in Chapter 13.
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Figure 12.5: Reference input (blue) and sparse solution (red) at the end of 4 iterations of
Algorithm 12.2. Boundary edge numbers correspond to a consecutive edge numbering.
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CHAPTER 13
Experiments

This chapter presents experimental results on a prototype of the cable net system for
the HiLo roof, which was described in Section 9.1.2. The objective is an experimental
validation of the complete control loop as presented in Section 9.3.2. The results in this
chapter have been published in [18] and [19].

The chapter is structured as follows. Section 13.1 describes the experimental ca-
ble net system prototype. In Section 13.2 the measurement process is described. The
experimental results are presented in Section 13.3, before Section 13.4 concludes this
chapter.

13.1 Prototype Cable Net System

The experimental prototype is based on the design of the HiLo Roof, which will be built
on the NEST building [126] as introduced in Section 9.1.2 and illustrated in Figure 9.3.
The model has been used in the simulation results in Sections 11.4 and 12.5. It is on a
scale of 1:4 with dimensions of approximately 4 m × 3 m × 2 m. The frame supporting
the pre-stressed net structure is built as a timber housing. A top view of this prototype
is shown in Figure 13.1.

The net is realized using plastic and metal rods rather than wire cables. This however
is compatible with our cable net assumptions as the configurations are chosen such that
all edges are in tension. In simulation and from measurements, this can be verified by
computing ∆l for each edge. The edges are connected via steel connectors to steel rings
that are the nodes of the net. The net has a total of n = 295 nodes, and m = 606 edges,
including mB = 75 boundary edges, which are connected via turnbuckles to the anchored
boundary points on the wooden frame. The realization of the net and the connection
to the frame can be seen in Figures 13.2 and 13.3. The edges are constructed from rods
of plastic material, PA6. From material tests and connected load cells in the four upper
corner edges of the net system, an approximately linear elastic behavior of the material
was confirmed during the experiments, with a Young’s modulus of E = 1650 MPa up
until 25 MPa, which is equivalent to a force of 860 N in the rods. The initial corner rod
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Figure 13.1: Top view of the prototype with stiff wooden frame and cable net structure.
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Figure 13.2: Turnbuckle connecting the cable net structure to the boundary node at the
wooden frame and realization of a node in the net as ring construction with attached
rods and with markers for the image-based measurements.

forces were between 130 N and 170 N, and remained below 415 N, which is less than half
of the yield load.

13.2 Measurement Process

While the ideal model of the net consists of lines and ideal intersection points, the nodes
of the prototype are realized as ring elements, shown in Figure 13.2. This makes the
estimation of the nodal positions of the net more challenging. The nodes of the ideal
model in Chapter 10 are defined as the points, where the forces of the adjacent edges
balance. For the prototype, these points lie close to the center of the ring elements.

For the experiments, the measurement method is based on image processing. The
prototype is equipped with black spherical markers, which can be seen in Figure 13.2.
Because of the construction, they cannot be directly attached to the nodes in the center
of the rings. Therefore, instead of directly measuring the nodal positions, the measured
marker positions are used to estimate the nodal positions. The nodal positions of the
k-th measurement are denoted by a superscript (·)meas,(k), i.e., r

meas,(k)
I , or by rmeas,(k).

In order to measure the marker positions, the spatial directions from known reference
positions to the markers are measured. Based on these measurements, the positions of
the markers are calculated via triangulation. For the measurements of the directions
to the markers the vision-based theodolite system QDaedalus [168]–[171], is used in a
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Figure 13.3: Theodolite station underneath the net structure pointing towards a marker.

semi-automated way. In Figure 13.3, the theodolite station which is used to measure
the marker positions is shown under the prototype cable net structure. For more details
about the measurement method, we refer to [18]. The measured marker positions have
sub-millimeter accuracy. We estimate the nodal positions by interpolating the marker
positions around each node. The accuracy of this interpolation depends on the locations
and number of markers around each node. Near the boundary of the net, the estimated
nodal positions were found to be less accurate due to a smaller number of markers and
non-uniform marker placement around the nodes.

13.3 Experimental Results

The objective of the experiments is the validation of the control strategy in Algo-
rithm 12.3. In the experiments, we performed only one identification step and one
control actuation step, as the control performance was already very good. The details
of the identification step and the control step are described in the following.

Parameter Identification

Because of the ring construction, and the necessary interpolation of the measured marker
positions, we can estimate the nodal displacements precisely, but the estimated abso-
lute nodal positions are not as accurate. Therefore, we use a simplified approach for
determining the l0 values, instead of the methods proposed in Chapter 11. A simple
model is chosen, where the same material properties are assumed for all edges. The first
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configuration of the net, rmeas,(1), is chosen such that its stress state is approximately
uniform. The forces of the edges are at the lower range of possible forces for linear-
elastic behavior of the material, however still sufficient to avoid slack edges in the net.
This was verified by force measurements at the upper corners of the net and by manual
inspection of the edges. We define u(1) = 0 and from the measured nodal coordinates of
this initial configuration the parameters of the unstressed lengths of the edges, rmeas,(1),
are determined to be

l0,(s,t) = 0.990 l
(1)
(s,t), if (s, t) is an elastic edge (plastic rod),

l0,(s,t) = 0.999 l
(1)
(s,t), if (s, t) is a stiff edge (metal rod),

(13.1)

where l
(1)
(s,t) = ‖rmeas,(1)

s − r
meas,(1)
t ‖2 is the actual measured length of the edge (s, t) in the

initial configuration, denoted by the superscript (1). The stiff edges of the prototype are
made of metal because of construction constraints. The choice of the scalings for l0 in
(13.1) is based on the following relation, which holds for the plastic rods,

f elast
(s,t) = EA(s,t)

∆l(s,t)

l0,(s,t)
⇐⇒

∆l(s,t)

l0,(s,t)

=
f elast

(s,t)

EA(s,t)

=
150 N

1.65× 109 N
m2 π(32.4 mm)2

≈ 0.01,

where EA(s,t) = 1.65×109 N
m2 π(32.4 mm)2 is given and f elast

(s,t) = 150 N was measured. The
strain ∆l/l0 of the plastic rod edges is therefore ≈ 1%. Based on the assumption of a
uniform stress state in the initial measured configuration, a uniform strain is assumed for
all plastic edges. For the metal edges, the Young’s modulus is higher by approximately
a factor of 100. Precisely accounting for this would lead to a model for which the
derivatives of the edge forces would have values in significantly different ranges and the
optimization problem in (12.2) would become harder to solve numerically. Therefore,
the parameters of l0,(s,t) for the stiff edges are chosen as in (13.1). For comparison, the
model with higher values of stiffness for the metal rods was used in a simulation study
with a small step size and required many more iterations to converge. It was confirmed
that the simplified model assumptions do not compromise the precision of the simulation
results.

After this initial measurement for determining the unstressed lengths l
(1)
0 , several

additional configurations were used to validate the identified model behavior. Nodal
positions were computed from the model, the identified parameters, the measured boun-
dary coordinates, and the inputs of the configurations. These nodal positions were then
compared to the measured positions. The comparison showed a good match between the
computed model behavior and the behavior of the experimental prototype in terms of
the displacement of the nodes under the applied inputs. However, the match between the
simulated and estimated absolute position coordinates was not very accurate for some
nodes and had a large variation over the net. Possible reasons for this are the inaccuracies
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in the nodal position estimates introduced by interpolating the measured marker positi-
ons from a small number of markers, and from non-uniformly placed markers around the
nodes. This appears especially at the boundary regions of the net due to construction
limitations. To reduce the effect of this estimation error in the absolute nodal positions,
the weighting matrix Qr is chosen such that it gives more weight to the coordinates that
more precisely match the simulated nodal coordinates. This leads to control inputs that
correct for the control error rather than correcting for the measurement interpolation
errors.

Control of the Nodal Positions

In the second phase of the experiments, the goal was to compute and apply (dense
and sparse) control inputs, corresponding to the second part of the control algorithm,
and to evaluate the resulting control performance. We use the superscripts (ini), (des),
and (con) to denote the initial, desired and controlled configurations. As before, the
controlled configuration resulting from a sparse input vector ul1 is denoted by r

(con)
l1

.

We present the results of one of several control experiments, as it is representative of
the observed control performance. Figure 13.4 shows the manual process of applying the
computed control inputs to the prototype system and a motivation for computing sparse
input vectors. The turnbuckles are manually actuated to adjust the unstressed lengths of
the corresponding boundary edges, while measuring the change in unstressed lengths via
calipers. In Figure 13.5, the three measured configurations of the 1:4 HiLo roof prototype
are shown. Blue depicts the initial configuration, r(ini). Black shows the desired target
configuration, r(des), and green shows the resulting controlled configuration, r

(con)
l1

, after
applying the computed sparse inputs. The red triangles N, and black diamonds �, show
the actuated boundary edges, which are lengthened and shortened, respectively.

In order to be able to evaluate the control performance, the target configuration r(des)

is defined by measuring an actual configuration. This has the advantage of knowing that
the target is achievable, and also specifies the inputs required to achieve it. Furthermore,
we know that the stress state corresponding to this configuration lies within the range
of the linear material behavior of the edges, and that no slack edges are present. The
control experiment is then started from an initial configuration, r(ini), which is achieved
by perturbing the target configuration, r(des). The inputs that would then result in the
target configuration are depicted in Figure 13.6 as a reference. Their input locations cor-
respond to the ones shown in Figure 13.5 by red triangles N, and black diamonds �. Note
that r(ini) and r(con) correspond to rmeas,(1) and rmeas,(2), respectively, in Algorithm 12.3,
since only one iteration is performed. However, in the experiments, we chose the starting
configuration to be different from the rmeas,(1), as explained before. For comparison, both
the fully actuated and the sparse input vectors are computed and their performance is
compared in terms of the error norms ‖r(des)−r(con)‖2

Qr
and ‖r(des)−r

(con)
l1
‖2

Qr
, respectively.
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Figure 13.4: Manual application of control actions: Measuring the changes in lengths
of the boundary edges by calipers and adjusting the turnbuckles to apply the computed
control inputs.

Note that in this case the solution is known to be sparse because of the chosen configura-
tion of the initial condition and the target. Figure 13.6 shows the fully actuated control
input vector u computed by Algorithm 12.1 with parameters c1 = 10−4, c2 = 0.9 and
ρ = 0.8 in the line search in (12.6) and in the backtracking. Figure 13.7 shows the sparse
input vector ul1 resulting from Algorithm 12.2 with parameters τ = 10−4, ǫ = 10−8 and
γ = 0.3. In the experiment, only the sparse input vector is applied to the prototype lea-
ding from the initial perturbed (blue) configuration, r(ini), to the controlled (green) one,
r

(con)
l1

. Because of the very good control performance, only one control iteration was per-
formed on the prototype. The fully actuated control input vector u is not experimentally
applied to the prototype system. However, in simulation, both u and the sparse ul1 can
be compared. With r(con) and r

(con)
l1

being the minimizers of Problem PminE for the fully
actuated u and the sparse ul1, the error norms are ‖r(des) − r(con)‖2

Qr
= 1.669× 10−3 m2

and ‖r(des) − r
(con)
l1
‖2

Qr
= 1.883× 10−3 m2, respectively.

The experiments on the prototype show the following control performance. The me-
asured data reveal that the error norm is decreased by 98.8%, from ‖r(des) − r(ini)‖2

Qr
=

1.55×10−2 m2 to ‖r(des)−r
(con)
l1
‖2

Qr
= 1.82×10−4 m2. The unweighted error norm of the de-

viations is decreased by 98.7% from ‖r(des) − r(ini)‖2
2 = 2.21× 10−2 m2 to ‖r(des) − r

(con)
l1
‖2

2 =
2.81× 10−4 m2. The RMS-error, defined by ‖r(des)− r

(con)
l1
‖2/n, decreased by 88.5% from

0.134 mm to 0.0154 mm. Figure 13.8 shows the spatial distribution of the initial nodal
position errors over the net. The spatial distribution of the controlled nodal position
errors is shown in Figure 13.9. Figure 13.10 shows the histogram of the distribution
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Figure 13.5: Measured configurations: — Initial configuration r(ini), — Desired confi-
guration r(des), — Controlled configuration r
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and r
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l1

relative to initial configuration r(ini) are shown scaled by a factor of five for
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of the actuated edges correspond to a consecutive edge numbering.
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Figure 13.6: Reference inputs for shortening and for lengthening to steer the ini-
tial perturbed configuration r(ini) to the desired target configuration r(des), Computed
fully actuated control inputs from Algorithm 12.1.
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Figure 13.7: Reference inputs for shortening and for lengthening to steer the ini-
tial perturbed configuration r(ini) to the desired target configuration r(des), Computed
sparse control inputs by Algorithm 12.2.

of the measured deviation before and after the control on the prototype in terms of the
Euclidean distances. The highest deviations can be seen in the z-coordinates, which are
corrected from initial errors of more than 15 mm to final errors of approximately 2 mm.

13.4 Conclusions

This chapter presented experimental results conducted on a cable net system prototype
for a lightweight concrete shell structure. Some details in the construction elements, such
as the ring and marker design should be modified to reduce errors in the measurement
of the nodal positions. Despite these inaccuracies, the experiments showed a very good
control performance. With only one control iteration and a sparse input actuation, the
control is very efficient to implement in practice.
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CHAPTER 14
Conclusions and Outlook

The work presented in this thesis focuses on different aspects of digital fabrication. This
chapter summarizes the results, draws conclusions and provides an outlook on possible
future research directions.

14.1 Conclusions of Part II: Control of Intercon-

nected Systems

Automating construction processes, which are mostly performed manually to date, would
allow for more efficiency and precision in building construction. Because construction
tasks are typically complex, the potential that multiple cooperating robots provide can
be leveraged. Such multi-agent systems can be modeled as heterogeneous interconnected
systems with communication restrictions. Part II presents methods and results for dea-
ling with key challenges that arise when controlling such systems.

14.1.1 Conclusions

In order to overcome the computational challenges related to the controller design for
large-scale interconnected systems, a scalable method was proposed. Scalability is achie-
ved in two aspects. First, applying the full block S-Procedure (FBSP) allowed us to
decompose the controller synthesis matrix inequalities into smaller ones that are in the
order of the individual subsystems. Second, we proposed a distributed synthesis method
based on an ADMM scheme with only nearest neighbor communication and without a
central coordinator. While these methods are applicable to general heterogeneous sys-
tems, we introduced a new class of systems that describes systems for which the subsys-
tems and interconnections can be grouped. This class of so-called α-β-heterogeneous
systems thus consists of α groups of homogeneous subsystems with β different inter-
connection types. We showed how the model for heterogeneous systems is transformed
into a more compact form in the case of small values of α and β. This also implies an
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improved scalability of the decomposed controller synthesis. Furthermore, the methods
allow for different interconnection topologies of the plant and the controller.

In order to increase the achievable control performance in the case of a decentralized
control architecture, an augmented overlapping control scheme was proposed. Through
the augmentation of the state space representation with copies of states of neighboring
subsystems, the local model knowledge of the individual subsystems is increased. Thus
the performance is improved without introducing explicit communication. The augmen-
ted overlapping controller can be interpreted as a higher order decentralized controller or
as a controller with less structure, i.e., a distributed instead of a decentralized structure,
when contracted back to the original state space.

The problem of decentralized fixed modes (DFMs), which can destabilize the system
or limit the performance, was addressed. Methods to find a minimum communication
topology that eliminates all DFMs were proposed. Based on the formulation as a sub-
modular set cover problem, either a polynomial-time but suboptimal greedy algorithm
or an efficient tree search algorithm that finds the minimal sets of communication links,
can be applied.

14.1.2 Outlook

The presented results lead to further potential research directions. Some ideas are pre-
sented in the following.

Reduction of Conservatism

The structural assumptions on the Lyapunov matrix and multiplier matrices, which are
necessary to decompose the synthesis equations, introduce conservatism. A detailed
analysis of this source of conservatism is required in order to increase the achievable
performance by relaxing the corresponding structural constraints. Relaxing these con-
straints implies less structured Lyapunov and multiplier matrices, and thus potentially
more coupling between the decomposed synthesis conditions. In preliminary work we
have explored a direction of extending the controller synthesis conditions with an in-
strumental variable which avoids terms containing products of the Lyapunov matrix and
controller gains. This approach allows a free choice of the structure of the Lyapunov
matrix and the multiplier matrices. In particular, choosing them with the same structure
as the interconnection matrix allows again for an efficient decomposition of the synthesis
equations. Preliminary results show the potential of improving the control performance
and thus reducing the conservatism.
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More General System Classes and Interconnections

Although not considered in this thesis, the modeling framework allows for an extension
to more general system classes and interconnections. In particular, the modeling fra-
mework based on a linear fractional representation (LFR) of the system can represent
interconnected systems with linear parameter varying (LPV) subsystems. This provi-
des the possibility to model uncertain, time-varying, or nonlinear dynamics of subsys-
tems. The interconnection operator can also capture uncertainties, such as parametric
or time-varying uncertainties, or switching topologies. Based on the FBSP, a robust
or gain-scheduled controller design can be performed. Further extensions, such as time-
delayed interconnections, are possible within the broader framework of integral quadratic
constraints (IQCs), of which the FBSP can be seen as a special case.

Elimination of FMs through Sensing or Actuatuation

The methods presented for the elimination of FMs in Chapter 8 focus on introducing
communication links between the subcontrollers. The minimum cost coverage problem
formulation with submodular constraints can easily be extended to include the addition
of sensors or actuators. Both the greedy algorithm as well as the tree search algorithm
can be applied. However, the complexity in each iteration grows with the degrees of
freedom.

14.2 Conclusions of Part III: Control of a Cable Net

Structure

Part III of the thesis introduced a feedback-based form control of a tensioned cable net
which enables a novel construction method for lightweight structures.

14.2.1 Conclusions

A new control application was presented which enables a precise construction of light-
weight building structures such as thin concrete shells. Feedback-based form control
is introduced in order to precisely achieve the designed form of a cable net formwork.
Precision in the form of the pre-stressed cable net is necessary to guarantee the desired
mechanical properties of the thin concrete shell structures. The proposed form control
is therefore essential for enabling this novel construction method with flexible formwork.
The benefits of the cable net based formwork include a reduction of material and waste,
which is partially due to the possibility of re-using the cable net elements. This also
leads to a reduction in cost. These benefits can favor a broader use of lightweight thin
concrete shell elements in future constructions.
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The form control is based on measurements of nodal positions of the cable net and
adjustments of the boundary edge lengths. For an efficient control, the number of ex-
pensive measurements and actuations on-site is minimized. This is achieved through an
iterative two-step control algorithm which exploits model knowledge as well as measu-
rement data. Based on the form measurements, the algorithm iteratively updates the
model parameters and then computes control inputs to minimize the error norm bet-
ween the measured and desired form of the cable net. The parameter identification is
based on a distributed optimization algorithm. The control input calculation is an SQP
variant where all iterates are feasible. This prevents the algorithm from converging to
stationary points of local infeasibility. The feasible iterates are efficiently computed by
convex programming. Convergence of the algorithm to a feasible stationary point of the
optimal control problem was proved. For practical application, sparse input vectors can
be enforced by adding an l1-norm regularization term to the cost. The sparse input furt-
her reduces the time and cost of actuations. A prototype of a cable net based formwork
for the construction of a lightweight roof was used for an experimental assessment of the
method. The experiments showed very good control performance.

14.2.2 Outlook

The results of this work can be extended to consider the following research questions.

Stress Bounds

If the structural design is optimized for minimal material use, the structural robustness
with respect to possible control inputs can be compromised. In this case, additional
constraints, which account for possible bounds on the maximum allowable stresses within
the cable net elements, should be introduced. A design which is structurally robust
against all necessary control actuations, and can thus tolerate all forces caused by the
control, would, however, be a more desirable approach with respect to the achievable
control performance.

Uncertainties and Robust Approaches

In addition to errors in the unstressed cable lengths, there are other uncertainties and
sources of model mismatch, such as nonlinear material behavior or uncertainties in the
load distribution. They could be incorporated in the proposed model identification. In
this work, two steps of identifying an exact model and applying control inputs computed
based on the identified model, were proposed. Alternatively, a robust control approach,
which is robust against possible model mismatch and uncertainties, could be implemen-
ted. This could however compromise the achievable precision of the cable net form.
Some first results in this direction will be published in [172].
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Furthermore, the initial design problem of the cable net could be modified. Instead
of solving a nominal form design problem, which defines the topology of the net and the
force distribution within the cable elements without taking into account any uncertain-
ties, the fabrication tolerances could be directly included in a robust design problem.
This would lead to a robustness of the cable net form with respect to pre-specified
uncertainties in the model or load.

Controllability and Actuation

The cable net is highly underactuated because all nodal positions in the interior of the net
are controlled by possible adjustments at the few boundary edges of the net. Therefore,
not any desired form of the net is achievable. Relating the ratio between the number of
boundary edges and the number of interior nodes to some notion of controllability would
be an interesting analysis.

The controllability could be improved by introducing more possibilities of actuation,
which are not limited to the boundary edges. Changing the lengths of interior edges may
be possible but would not be very practical. Alternatively, interior nodal positions could
directly be controlled by different methods of actuation, for example by strings that are
attached to interior nodes and anchored to the ground.

More General Forms

The presented cable net system is a very efficient structure. It gains stability and rigi-
dity from the prestressing forces, which allows for a reduction of the required material.
However, the forms of the cable net are limited to doubly-curved surfaces. The use of
different structural elements in addition to cables is a possible approach to extend the
types of forms that can be considered. Bending elements, such as gridshells [173], gain
stiffness through internal moments and are another class of efficient structural elements
that are interesting in this context. However, with an increased complexity in the form
comes an increased difficulty in analytical modeling. As a possible direction to mitigate
this challenge, a data-driven approach for parameter identification will be presented in
[174].
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APPENDIX A
Appendices

In the following, details about the linearizing variable transformations and the iterative
solution method for dynamic output feedback control in (5.34) are presented. They will
be used in Chapter 7 in a numerical example. For the case of static state feedback
control, the convexifying variable substitution of (5.34) is given. Then, the derivation of
the consensus ADMM update steps in Algorithm 5.1 is presented.

A.1 Dynamic Output Feedback Controller Synthesis

The multiplier condition in (5.33) is convex, however, the nominal condition in (5.34)
with the closed-loop matrices in (5.23) is not convex. This is due to the terms that
involve products of the Lyapunov matrix with controller matrices and products of the
controller matrices with themselves and with multiplier matrices. Therefore, first a
linearizing variable transformation is applied, which eliminates the product terms with
the Lyapunov matrix. However, the transformed equations still involve bilinear terms
of the multipliers and the interconnection output matrix, which need to be solved in an
iterative way.

Variable Transformation

In the following, we perform the variable transformation [68] from the Lyapunov matrix
X and the controller gains, given as

(AKd
, AK i

, BK d
, BK i

, CKd
, CKi

, DKd
, DKi

, X )

to (AKd
, AKi

, BKd
, BK i

, CK d
, CK i

, DK d
, DK i

, Z, Y ),
(A.1)

with the symmetric matrices Z, Y , and the transformed controller gains in bold. As
proposed in [68], the following congruence transformation is applied to the nominal
condition in (5.34). Defining

TY =

[

Y I

V ⊤ 0

]

, TZ =

[

I Z

0 U⊤

]

, (A.2)
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with XTY = TZ , and Z, Y > 0 and U, V such that I − ZY = UV ⊤, this leads to the
following transformed nominal condition

[

⋆
]⊤














0 I 0 0 0 0

I 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q̃i S̃i

0 0 0 0 S̃⊤
i R̃i
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
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


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
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I 0 0

T ⊤
Z AiTY T ⊤

Z B1,i T ⊤
Z B2,i

0 I 0

C1,iTY D11,i D12,i

0 0 I

C2,iTY D21,i D22,i














< 0, (A.3)

with the following transformed closed-loop matrices in bold






T ⊤
Z AiTY T ⊤

Z B1,i T ⊤
Z B2,i

C1,iTY D11,i D12,i
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


 =





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


 . (A.4)

With the closed-loop matrices from (5.23), the expressions in (A.4) can be factorized
into
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with

[

AKd
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i

CK d
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i DKd
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=
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(A.6)

As defined before, the controller matrices denoted by a superscript (·)d are the block-
diagonal, decentralized parts, i.e., AK d

i = AK
ii , BKd

i = BK
ii , CKd

i = CK
ii , DKd

i = DK
ii .

For the ease of presentation, the interconnected controller gains are given as AK i
i = AK

ik ,
BKi

i = BK
ik , CK i

i = CK
ik , DKi

i = DK
ik , where it is assumed that the subcontroller i is

interconnected to only one neighboring subcontroller k. This is easily extended to more
interconnections per subcontroller by extending the interconnection channels.
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The transformed nominal condition to solve thus becomes

[
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where the last inequality ensures that the Lyapunov matrix is positive definite. The
terms Ai, B1,i and B2,i are affine in the transformed variables and the product terms
with the Lyapunov matrix are thus eliminated. However, (A.7) yields now product terms
of multiplier variables with C2,i, which depend on V and Y . Therefore, (A.7) needs to
be solved iteratively as briefly sketched in the following.

Iterative Solution Steps

The iterative solution, similar as proposed in [68], is based on the fixing of a set of
optimization variables and solving for the other ones and vice versa. In the first part,
the goal is to find a feasible solution without minimizing the performance bound. To
do so, first, a decentralized controller for the plant without interconnections, i.e., with
P being set to zero, is found. In the subsequent iterations, the interconnections of the
plant are scaled as rP, with r between 0 and 1. The factor r is iteratively maximized by
bisection, and the goal is to compute an interconnected controller for the interconnected
system. This is achieved by iteratively keeping one of the sets of variables Q, R, S, Ki,
or Y, V, U, Kd fixed and optimizing over the other one, and vice versa.

Departing from this stabilizing controller, in the second part, the performance bound
γ is optimized. The same iterations of fixing optimization variables and solving for the
other ones, as described before, can be performed.

A.2 Static State Feedback Controller Synthesis

In the case of state feedback, i.e., Cy = I and Dyw = 0 and Dyu = 0, a variable
transformation can be applied which yields a convex controller synthesis. We assume
now local control inputs, i.e., Buik

= 0, such that the controller can be interconnected.
For example, for static state feedback (SSF), the linearizing variable substitution from
X to Y = X−1 and from the controller gains DKd

i and DKi
i to the transformed ones DK d

i

187



Chapter A. Appendices

and DK i
i can be performed. The transformed closed-loop matrices can be factorized as
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with
[

DK d
i

DK i
i

]

=

[

DKd
i

DKi
i

]

Y , (A.9)

which is affine in the new variables DK d

i , DK i

i and Y . The synthesis conditions have
thus been transformed to LMIs which can be solved by convex programming.

A.3 Derivation of Algorithm 5.1

The derivation of Algorithm 5.1 is presented as follows. We start by formulating the
consensus ADMM problem as in [32], where global coordination is required. By intro-
ducing a specific set of local variables, the problem is decomposed. Finally, the update
steps of Algorithm 5.1 are derived.

Distributed Synthesis With Global Coordination

Let us define the selection matrices Hi and Ei such that the entries of Hi l correspond
to the copies of local variables of Eisi. With this definition, and with the global variable
l and the local variables si, for subsystems i, as defined in Section 5.5.2, we formulate
the following global consensus constraints

Ei si = Hil, ∀i ∈ N .

The decomposed synthesis problem with global consensus is formulated as

min
si

N∑

i=1

(

fi(si) + gi(si)
)

,

s.t. Eisi = Hi l, ∀i ∈ N ,

(A.10)

with fi(·) as defined before and with

gi(si) = I(5.33)(si) + I(5.34)(si), ∀i ∈ N .

The local augmented Lagrangian of subsystem i for the synthesis problem is given as

Lρ,i =fi(si) + gi(si)

+ λ⊤
i (Eisi −Hi l) +

ρ

2
‖Eisi −Hi l‖2

2.
(A.11)
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Gi Gk

tik

· · ·· · ·
tki

Eik si Eki sk

Figure A.1: Local variables per subsystem (here: i and k ∈ N ) and global variables per
edge (here: (i, k) and (k, i) ∈ E).

Subsystem i Subsystem k

Consensus constraints Dual variables Consensus constraints Dual variables
Eik si = tik uik Eki sk = tki uki

Eki sk = tik vik Eik si = tki vki

Table A.1: Consensus constraints and corresponding dual variables per subsystem with
neighboring subsystems (here i with k).

The consensus ADMM as in [32] involves the following update steps.

s
(κ+1)
i = argmin

si

Lρ,i(λ
(κ)
i , l(κ), si), ∀i ∈ N ,

l(κ+1) = argmin
l

∑

N
Lρ,i(s

(κ+1)
i , λ

(κ)
i , l),

λ
(κ+1)
i = λ

(κ)
i + ρ (Eis

(κ+1)
i −Hi l(κ+1)), ∀i ∈ N .

This formulation involves a global consensus of all local variables Eisi with the correspon-
ding parts of the global variable Hi l. If a central instance is available and broadcasting
is assumed, these global consensus steps can directly be implemented.

Decomposed Synthesis Problem With Local Consensus Variables

In order to avoid a global coordinator, we aim to eliminate the global consensus variable
l. Therefore, we introduce the local consensus variables tik, and tki per interconnections
(i, k) and (k, i), and corresponding dual multipliers uik, vik, uki, and vki for subsystems
i and k, respectively, which allows us to form the consensus constraints as shown in
Figure A.1 and Table A.1.

We formulate the decomposed synthesis problem for all subsystems i with local con-
sensus variables as

min
si,tik

N∑

i=1

fi(si) + gi(si)

s.t. Eik si = tik,

Eki sk = tik.






∀i ∈ N , k ∈ Ni.

(A.12)
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Derivation of the ADMM Iterations in Algorithm 5.1

Because of the symmetry of the undirected communication graph T , problem (A.12) can
be transformed into the simplified two-step ADMM algorithm, as given in Algorithm 5.1.
The derivation follows the steps in [114] and is presented in the following.

For the optimization problem in (A.12), we formulate the augmented Lagrangian as

Lρ(s, t, (u, v)) =
N∑

i=1

(

fi(si) + gi(si)

+
∑

k∈Ni

(

u⊤
ik(Eik si − tik) +

ρ

2
‖Eik si − tik‖2

2

+ v⊤
ik(Eki sk − tik) +

ρ

2
‖Eki sk − tik‖2

2

))

,

(A.13)

where s, t, u, and v are defined as the stacked vectors s = concati∈N (si), t = concat(i,k)∈E(tik),
u = concat(i,k)∈E(uik), and v = concat(i,k)∈E(vik).

The standard consensus ADMM iterations as in [32] with respect to Lρ(s, t, (u, v))
are the following.

s
(κ+1)
i ← argmin

si

{

fi(si) + gi(si)

+
∑

k∈Ni

(

(u(κ)
ik + v

(κ)
ki )⊤(Eik si)

+
ρ

2
‖Eik si − t

(κ)
ik ‖2

2 +
ρ

2
‖Eik si − t

(κ)
ki ‖2

2

)}

,

t
(κ+1)
ik ← argmin

tik

{

− t⊤
ik(u(κ)

ik + v
(κ)
ik )

+
ρ

2
‖tik − Eik s

(κ+1)
i ‖2

2 +
ρ

2
‖tik −Eki s

(κ+1)
k ‖2

2

}

,

u
(κ+1)
ik ← u

(κ)
ik + ρ

(

Eik s
(κ+1)
i − t

(κ+1)
ik

)

,

v
(κ+1)
ik ← v

(κ)
ik + ρ

(

Eki s
(κ+1)
k − t

(κ+1)
ik

)

.

(A.14)

The minimization step of t
(κ+1)
ik admits the closed-form solution

t
(κ+1)
ik =

1
2

(

Eik s
(κ+1)
i + Eki s

(κ+1)
k

)

+
1
2ρ

(

u
(κ)
ik + v

(κ)
ik

)

. (A.15)

Summing the update equations of u
(κ+1)
ik and v

(κ+1)
ik , and replacing t

(κ+1)
ik with the explicit

solution in (A.15) leads to

u
(κ)
ik + v

(κ)
ik = 0, (A.16)

and thus, the minimization step of t
(κ+1)
ik simplifies to the following update

t
(κ+1)
ik =

1
2

(

Eik s
(κ+1)
i + Eki s

(κ+1)
k

)

. (A.17)
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Furthermore, the update step of u
(κ+1)
ik becomes

u
(κ+1)
ik ← u

(κ)
ik +

ρ

2

(

Eik s
(κ+1)
i + Eki s

(κ+1)
k

)

. (A.18)

Note that for initial conditions t
(0)
ik = t

(0)
ki , it follows from (A.17) that t

(κ)
ik = t

(κ)
ki for all

κ > 0. Also, it follows from (A.16) and (A.18) that for initial conditions u
(0)
ik = v

(0)
ik = 0

and u
(0)
ik = u

(0)
ki = 0, then u

(κ)
ik = −v

(κ)
ik and u

(κ)
ik = −u

(κ)
ki , for all κ > 0. If we define

λi = uik − vik = 2uik,

this leads to the update

λ
(κ+1)
i = λ

(κ)
i + ρ

∑

k∈Ni

(

Tik s
(κ)
i − Tki s

(κ)
k

)

,

and we arrive at the ADMM iterations in Algorithm 5.1, with Tik as defined in Section 5.5.2.

Remark A.1. In the case of the consensus over νi over all subsystems i, and the pairwise
consensus over the multipliers defined per undirected edge of two neighboring subsystems,
the dual multipliers are defined by

λi =




∑

k∈Ni

(uνik
− vνik

), concatk∈Ni

([

u⊤
mik
− v⊤

mik
, u⊤

mki
− v⊤

mki

])





⊤

= 2




∑

k∈Ni

uνik
, concatk∈Ni

([

u⊤
mik

, u⊤
mki

])





⊤

,

(A.19)

where the first sum takes care of the consensus over γi and the remaining parts account
for the pairwise consensus over the multipliers of the edges.

A.4 Derivation of the Residuals in ADMM

The following presents the derivation of the residuals in (5.42). Starting from the defi-
nition of the primal and dual residuals [32], we have

r(κ+1) = concatN
i=1

(

concatk∈Ni

(

r
(κ+1)
ik

))

,

d(κ+1) = concatN
i=1

(

concatk∈Ni

(

d
(κ+1)
ik

))

,
(A.20)

with

r
(κ+1)
ik = Eiks

(κ+1)
i − t

(κ+1)
ik ,

d
(κ+1)
ik = t

(κ+1)
ik − t

(κ)
ik .

(A.21)
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Replacing t
(κ+1)
ik and t

(κ)
ik by the expressions in (A.17), we obtain

r
(κ+1)
ik = Eiks

(κ+1)
i − 1

2
(Eiks

(κ+1)
i + Ekis

(κ+1)
k ),

d
(κ+1)
ik =

1
2

(Eiks
(κ+1)
i + Ekis

(κ+1)
k )− 1

2
(Eiks

(κ)
i + Ekis

(κ)
k ),

(A.22)

which leads to the primal and dual residuals in (5.42) in Section 5.5.2 which can be
considered as convergence criteria.
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