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Abstract

In the past years technological advances and the availability of inexpensive hardware
with sensing, communication and computational capacities have favored a trend of digi-
tization and automation in many industries. The fields of architecture, construction and
civil engineering, however, have hardly been affected by this trend so far. Challenging
operating conditions and complex tasks are key factors why the advances in automation
are not transferable to construction. The emerging field of digital fabrication aims at
introducing more efficient building processes, and enabling completely new methods in
design and architecture by leveraging tools from digital design and computation, ro-
botic fabrication and automation. This thesis deals with two main aspects of digital
fabrication: Firstly, the automation of complex construction tasks through efficient dis-
tributed control of multi-robot systems, and secondly, a completely new building process
for lightweight construction, enabled by the form control of a cable net based formwork.

Interconnected systems, such as cooperating multi-agent systems, have a great po-
tential of performing highly complex tasks. In the first part of this thesis, contributions
towards efficient scalable distributed control design for heterogeneous interconnected sy-
stems are presented. Based on a linear fractional representation of the system with a
decentralized part and an interconnection part, the full block S-procedure is applied for
controller synthesis. For scalability of the design, we introduce structural constraints
on the Lyapunov and multiplier matrices, which allows us to decompose the matrix
inequalities into smaller ones of the order of the individual subsystems. Furthermore,
a distributed solution method of the resulting coupled synthesis equations based on
the Alternating Direction Method of Multipliers is proposed. The design only requires
nearest-neighbor communication and no central coordination. The proposed methods
are applicable to general heterogeneous systems, and the communication topology of the
controller is a design choice. By introducing a new system classification consisting of
multiple groups of homogeneous subsystems and different interconnection types, a more
compact controller synthesis is derived with improved computational scalability. In order
to improve the control performance given a communication topology, the interconnected
controller design methods are applied to an augmented state space representation of the
system. The individual augmented subsystem models contain copies of states of neig-
hboring subsystems, which provides them with model information about their couplings.
This is particularly beneficial if the number of communication links is to be minimized.
Moreover, we present efficient methods for the design of minimum communication topo-
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Abstract

logies to eliminate all so-called fixed modes, which would prevent the system from being
stabilizable, or limit its performance, if not removed.

The second part of this thesis introduces a novel control application, where feedback-
based optimal control is introduced into the construction process. Tensioned cable nets
can be used as a component of lightweight flexible formwork for the construction of thin
concrete architectural shells. However, meeting the structural and mechanical specifica-
tions of such shells requires precise positioning of the nodes of the cable net to precisely
achieve the designed and optimized form. Therefore, the goal of the proposed control
method is to minimize the deviations of the tensioned cable net from the target form in
the presence of fabrication tolerances and model uncertainties. The form control is crucial
for enabling the use of this efficient lightweight formwork. It is based on measurements of
the nodal positions of the cable net and possible actuation of the boundary cable lengths.
Because taking measurements and making cable lengths adjustments is time-consuming
on the construction site, a two-step algorithm is proposed which exploits model know-
ledge and measurement data. In each control iteration, first, the measurements are used
to identify model parameters by a distributed optimization method. Second, for the con-
trol input computation, a sequential quadratic programming variant is proposed. For a
given identified model, it generates a sequence of feasible iterates for the form optimi-
zation problem. The efficient computations involve solving quadratic and second-order
cone programs. The algorithm is proved to converge to a Karush-Kuhn-Tucker point
of the form optimization problem. A sparsity-promoting optimization-based method is
proposed to further reduce the number of cable adjustments. The developed control
strategy is experimentally validated on a quarter-scale prototype of a flexible cable net
formwork for a doubly-curved roof shell.
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Zusammenfassung

Technologische Fortschritte und die Verfiigbarkeit giinstiger, mit Sensorik, Rechenleis-
tung und Kommunikationsfahigkeit ausgestatteter Hardware haben in den letzten Jahren
in vielen Industriezweigen einen Trend zur Digitalisierung und Automatisierung hervor-
gerufen. In den Bereichen der Architektur und der Bauindustrie ist dieser Trend aller-
dings kaum merkbar. Schwierige Arbeitsbedingungen und komplexe Bauprozesse sind
Griinde daftir warum die Automatisierung anderer Industriezweige nicht auf das Bau-
wesen libertragbar sind. Die Ziele des neuen Forschungsfeldes der Digitalen Fabrikation
sind zum Einen das Einfithren effizienterer Bauprozesse, und zum Anderen das Ermog-
lichen komplett neuartiger Methoden sowie Design in der Architektur. Dies wird durch
Techniken der computergestiitzten Berechnung und Entwurfs, sowie des robotergestiit-
zten Bauens und der Automatisierung, ermoglicht. Diese Dissertation beschéaftigt sich
mit zwei Aspekten der Digitalen Fabrikation: Zum Einen mit der Automatisierung kom-
plexer Bauprozesse durch effiziente verteilte Regelung von Multi-Roboter-Systemen, und
zum Anderen mit einem komplett neuartigen Bauprozess von Leichtbaustrukturen, der
durch die Formregelung einer Seilnetz basierten Schalung erméglicht wird.

Verteilte Systeme, wie zum Beispiel kooperative Multi-Roboter-Systeme, haben ein
grofles Potenzial komplexe Aufgabenstellungen zu bewaltigen. Im ersten Teil der Dis-
sertation werden Resultate flr eine effiziente skalierbare Synthese verteilter Regelalgo-
rithmen fiir heterogene verteilte Systeme présentiert. Basierend auf einer Linear Fractio-
nal Representation des Systems in einen dezentralen Systemteil und einen Kopplungsteil,
wird die Full Block S-Procedure fiir die Reglersynthese angewandt. Fir die Skalier-
barkeit der Synthese fiihren wir Bedingungen an die Struktur der Lyapunov und der
Multiplier Matrizen ein, was es uns ermoglicht die Matrix Ungleichungen in kleinere
in der GroBenordnung der einzelnen Subsysteme zu zerlegen. Des Weiteren wird eine
verteilte Losungsmethode der gekoppelten Regleersynthesegleichungen eingefiihrt, wel-
che auf der Alternating Direction Method of Multipliers basiert. Sie benétigt lediglich
Kommunikation zwisichen gekoppelten Nachbarsystemen, jedoch keinerlei zentralisierte
Koordination. Die Methoden sind auf heterogene Systeme anwendbar. Die Kommunika-
tionstopologie des Reglers kann bei der Reglerauslegung frei vorgegeben werden. Durch
die Einftihrung einer neuen Systemklasse, die aus mehreren Gruppen homogener Subsys-
teme mit verschiedenartigen Kopplungen bestehen, wird eine kompaktere Reglersynthese
mit verbesserter Skalierbarkeit abgeleitet. Um unter einer gegebenen Reglerstruktur die
Reglergiite zu verbessern, werden die Synthesemethoden des verteilten Reglers in ei-



Zusammenfassung

nem erweiterten Zustandsraum angewandt. Die erweiterten Systemmodelle der einzelnen
Subsysteme enthalten Kopien von benachbarten Subsystemen, und somit Informationen
iiber deren Kopplungen. Das ist insbesondere dann von Bedeutung, wenn die Anzahl
der Kommunikationsverbindungen minimiert werden soll. Wir stellen effiziente Metho-
den fiir das Auslegen minimaler Kommunikationstopologien vor, die alle sogenannten
Fized Modes eliminieren, welche die Stabilisierbarkeit des Systems verhindern oder die
erreichbare Reglergiite beschranken wiirden.

Der zweite Teil dieser Dissertation prasentiert eine neuartige Regleranwendung, in der
eine rickfithrungsbasierte optimale Regelung in den Bauprozess integriert wird. Vorge-
spannte Seilnetze konnen als Komponente einer flexiblen Leichtbauschalung fiir den Bau
diinner architektonischer Betonschalen verwendet werden. Um allerdings die strukturel-
len und mechanischen Anforderungen an die Schalen zu gewéhrleisten, ist eine prézise
Einhaltung der Seilnetzform unabdingbar um die entworfene und optimierte Form zu er-
reichen. Deshalb ist es Aufgabe der Regelung die Abweichungen der Netzseilkonstruktion
von der Sollform unter Unsicherheiten und Toleranzen zu minimieren. Die vorgestellte
Formregelung ist dadurch eine Schliisselmethode, die die Verwendung solcher effizien-
ter Leichtbauschalungen erméglicht. Die Regelung basiert auf Positionsmessungen der
Knotenpunkte des Seilnetzes und moglicher Aktuierung der Seillingen am Rand des Net-
zes. Da Messungen und Seillangenverstellungen auf der Baustelle zeitintensiv sind, wird
ein zweischrittiger Algorithmus vorgestellt, der Modellwissen, sowie die Information der
Messdaten ausnutzt. In jeder Iteration werden zuerst die Messdaten dazu genutzt die
Modellparamter durch einen verteilten Optimierungsalgorithmus zu bestimmen. Dann
wird fir die Regeleingangsberechnung eine Sequential Quadratic Programming Variation
vorgeschlagen. Fiir ein gegebenes Modell wird eine Folge an Punkten generiert, die die
Nebenbedingungen des Formoptimierungsproblemes erfiillen. Die effizienten Berechnun-
gen bestehen im Losen von quadratischen und konischen Optimierungsproblemen. Der
Algorithmus konvergiert zu einem Karush-Kuhn-Tucker Punkt des Formoptimierungs-
problems. Um die Anzahl der Seillingenénderungen weiter zu reduzieren wird eine opti-
mierungsbasierte Methode zur Berechnung diinnbesetzter Eingangsvektoren vorgestellt.
Die entwickelte Regelstrategie wird an einem Seilnetzbasierten flexiblen Schalungspro-
totypensystem experimentell validiert.
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CHAPTER 1 .

Introduction

1.1 Digital Fabrication

The availability of inexpensive hardware, computational power, and sensors has given
rise to a fast growing trend of digitization and automation in many domains. Digital
technologies, robotics and smart infrastructures increasingly dominate many industries
and applications: Service robots, the smart grid and self-driving cars are only a few of
the numerous examples. While many branches of industry have significantly benefited
from this transformation, others seem to have been far less affected. Obvious examples
of the latter are the fields of architecture, building construction and civil engineering. In
fact, many traditional processes in construction buildings have not changed much in the
last decades.

However, when analyzing automated manufacturing processes, it can be noted that
robots in automated production lines are limited to highly structured, static and con-
trolled environments. Furthermore, the tasks are repetitive and predefined. Most of
the tasks involve manipulating small objects which can easily be handled by one or
two robots. All of this reduces uncertainties in the tasks and eliminates some of the
major control challenges. In contrast, the conditions in building construction or civil
engineering cause some unsolved challenges. Many of them arise due to highly unstruc-
tured, uncertain and dynamic environments and large fabrication tolerances. Building
processes involve complex tasks and heavy objects of large dimensions. Safety of human
workers who possibly share the workspace with robots also needs to be considered. The
advances in automation of many other industries are not easily transferable to these
demanding conditions. However, developing methods that can cope with the outlined
challenges will have a tremendous impact on building construction and civil engineering.
This is the goal of the new emerging field of digital fabrication.

Digital fabrication aims at revolutionizing the way buildings will be designed and built
in the future. Besides allowing for more efficient and precise construction processes,
completely new ways of designing and building will be enabled. Furthermore, digital
fabrication can have an impact on the sustainability of building processes [1], [2]. This
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field has recently seen a lot of innovation, such as robotic on-site fabrication [3]-[8],
cooperative robotic fabrication [9], and new ways of designing reinforcement structures
[10], [11]. However, commonly applied processes lack digitization and many challenges
remain to be solved. The following section outlines how this thesis addresses some of
the highlighted challenges.

1.2 Scope and Contribution

This thesis is structured into two main parts and provides contributions to two areas
of digital fabrication. In particular, Part II is motivated by enabling automated con-
struction processes through an efficient control of large-scale multi-robot systems, and
Part III provides a control method that achieves precision in lightweight construction.

Many of the highly complex tasks in pre-fabrication or on-site fabrication seem to be
too difficult for a single robot. Such tasks, for example, involve manipulating objects,
holding in place and fixing elements, or stabilizing and assembling large structures.
Cooperative multi-robot systems are well suited for these tasks. While the individual
robots can be simple, an interconnected system of many, possibly different (heteroge-
neous), subsystems has the potential to perform very complex tasks. Efficient scalable
control of heterogeneous large-scale systems however still poses open research questions.
Limited infrastructure and disturbances are other challenges that are specifically related
to the construction site and limit the available communication capabilities. The first part
of this work thus focuses on scalable distributed control of heterogeneous interconnected
systems with potentially reduced communication.

Apart from rendering building processes more efficient, another significant goal of
digital fabrication is to enable completely new approaches in architecture by combining
the potential of digital design, computation and automation. Motivated by lightweight
construction and enabled by digital design tools, building structures are commonly op-
timized in their form with respect to minimal material use and maximal mechanical
stability. However, such optimized structures are typically not very robust to uncertain-
ties and deviations in their form. Due to large fabrication tolerances it is challenging
to precisely achieve the designed form. High-precision construction processes which aim
at minimizing deviations from the optimized form are therefore required. The second
part of this work presents a novel construction method which introduces feedback-based
optimal control to on-site construction in order to obtain a high-precision formwork that
can be used for lightweight construction.

The thesis is structured as follows. Part I provides mathematical preliminaries.
Part II focuses on scalable distributed control of interconnected systems. In Chapter 4, a
detailed introduction, literature review and outline of the contributions related to Part 11
are given. The main results of Part II are given in Chapters 5-8. Part III addresses
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the form control of a cable net based formwork. In Chapter 9, an introduction to the
topic, and outlines of related work and of the contributions of Part III are provided.
Chapters 10-13 present the main results of Part III. Part IV gives conclusions and an
outlook.

1.3 Publications

The work presented in this thesis is the result of collaborations with many colleagues.
The thesis is mainly based on the following publications.

1.3.1 Publications Related to Part 11

e Yvonne R. Stiirz, Annika Eichler and Roy S. Smith. “A framework for distribu-
ted control based on overlapping estimation for cooperative tasks”. IFAC World
Congress, pp. 14296-14301, July, 2017 [12].

e Yvonne R. Stiirz, Annika Eichler and Roy S. Smith. “Fixed mode elimination
by minimum communication within an estimator-based framework for distributed
control”. IEEE Control Systems Letters, vol. 1, no. 2, pp. 346-351, June, 2017 [13].

o Yvonne R. Stiirz, Annika Eichler and Roy S. Smith. “Scalable controller synthe-
sis for interconnected systems with heterogeneous subsystems and heterogeneous

interconnections applicable to an overlapping control framework”. IEEE European
Control Conference, pp. 2561-2568, June, 2018 [14].

e Yvonne R. Stiirz, Annika Eichler and Roy S. Smith. “Distributed control design
for heterogeneous interconnected systems”. Transactions on Automatic Control,
[under review] [15].

1.3.2 Publications Related to Part II1

e Yvonne R. Stirz, Manfred Morari and Roy S. Smith. “Sequential quadratic pro-
gramming for the control of an architectural cable net geometry”. American Control
Conference, pp. 3503-3508, July, 2016 [16].

e Yvonne R. Stiirz, Manfred Morari and Roy S. Smith. “Two methods for the iden-
tification of uncertain parameters of an architectural cable net geometry”. IEEFE
Conference on Control Applications, pp. 3503-3508, September, 2016 [17].

o Andrew Liew, Yvonne R. Stiirz, Sébastien Guillaume, Tom Van Mele, Roy S.
Smith, and Philippe Block. “Active control of a rod-net formwork system pro-
totype”. Automation in Construction, vol. 96, pp. 128140, December, 2018 [18].
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e Yvonne R. Stiirz, Manfred Morari and Roy S. Smith. “Control of an architectu-
ral cable net geometry”. IEEFE Transactions on Control Systems Technology, to
appear, 2019 [19].

1.3.3 Other Publications

The following articles were published by the author during her PhD studies. However,
they do not contribute to the content of this thesis.
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CHAPTER 2 .

System Theory

In this chapter, some fundamental properties of continuous-time linear time-invariant
(LTT) systems are introduced. The discussion is focused on results which will be used in
Part II of this thesis.

2.1 LTI System Representation

We consider linear time-invariant (LTI) systems with continuous time dynamics given

by
°(t) = Ax“(t) + Buw(t),
z(t) = Cx(t) + Dw(t),

where ¢ € R"=° is the state vector, w € R™ is the input vector, and z € R"* is the

(2.1)

output vector. In the following, we will not explicitly indicate the dependency on the
time variable ¢. The system in (2.1) can be represented by the following state-space

o[-k 38

2.2 Lyapunov Stability

description

The system in (2.1) is stable if and only if there exists a symmetric, positive definite
matrix X that satisfies [23]

ATX + XA <0, (2.3)
which can equivalently be formulated as
0 X||I
T : 2.4
I AT l e 0] <0 (2.4)

The matrix X is referred to as Lyapunov matrix.
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> g 3

Figure 2.1: System with performance channel from w to z.

2.3 System Performance Measures

We consider the system in Figure 2.1, with a stable transfer function matrix G(s). The
performance is typically measured in terms of the input output behavior, i.e., by a
measure of how large the output z can become for given allowed inputs w. In this work,
we will mostly use the induced L5 system norm. In the case of LTT systems, this norm
reduces to the H,, system norm, which is defined in the following.

2.3.1 H, System Norm

Definition 2.1. [25] Given a proper and stable LTI system G(s), the Hoo norm is the
induced Ly norm, defined in the frequency domain as

1911710 := SUD Omax (G(iw)) = sup [|G(iw)]]2. (2.5)
weR weR

Alternatively, in the time domain, the following characterization can be used,

=]l

[wll2=1

In the course of this work, it will be of interest to provide an upper bound on the
performance in terms of the performance index v as follows

12l]2 < 7 [lwl]2. (2.7)

For an LTI system, this performance specification is equivalent to the system being
strictly dissipative with respect to the supply rate s(w, z) = v?||w||3 — ||2||3 [24]. In this
case, it holds that

/OOO [wh 27| _gT” f{’] m dt <0, (2.8)

with

2.3.2 H, System Norm

Instead of the H., norm, the Hs norm can be used as performance measure, which is
defined as follows.



2.4 Interconnected LTI Systems

Definition 2.2. /23] Given a strictly proper and stable LTI system G(s) in state space
realization, the Ho system norm is defined as

16 =\ [ 0G0 G 0) 29)

where 1 indicates the conjugate transpose and tr indicates the trace, i.e., the sum of the
diagonal elements.

2.3.3 Bounded Real Lemma for LTI Systems

Using (2.4) and (2.8), the following necessary and sufficient conditions for stability and
performance can be derived, similar to the Bounded Real Lemma:

Lemma 2.1. [24] The LTI system G in (2.1) is stable and has an Ly gain less than =,
i.€., |G|l < v if and only if there exists a symmetric matriz X > 0 that satisfies

0 X 0 O0][I o0
I AT,0 Cc']|lx 01 0O o| |A B
___________ 7 <. 2.10
[0 BT I DT[[0 01— 0|0 I (2.10)
0o 0 0 IJlc D

2.4 Interconnected LTI Systems

In Chapters 5 and 6, so-called interconnected systems that are assemblies of coupled
subsystems will be considered, which will be defined in more detail in Chapter 4. We
will use tools from robust control, which allows us to exploit the system structure to
reduce the complexity of the controller synthesis. In the following, we briefly introduce
the required tools.

2.4.1 LFR of an Interconnected System

We consider the interconnection of system G¢ with P as illustrated in Figure 2.2. This
interconnection has the same structure as usually encountered in robust control or linear-
parameter-varying (LPV) control. In these cases, P is an uncertainty or a system part
that depends on time-varying parameters, usually denoted as A. We will use this system
structure to model interconnected systems, which are assemblies of coupled subsystems.
In this case, G¢ represents the decentralized system part, and P is introduced as an
interconnection operator, which is assumed to be a static linear operator, i.e., a matrix,
in the following. The interconnection of system G with P can be described by a linear
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Figure 2.2: Interconnection of system G with P.

fractional representation (LFR) given as

2.4.2 Full Block S-Procedure

¢ A : B By |z°
z|l=|c 1Dy Du| |w|
q° Co !D21 Doy | |p°
Pqc.

(2.11)

In order to exploit the structure of the system in (2.11), the Full Block S-Procedure
(FBSP) can be applied, which is a tool from robust control and LPV control. In these
cases, interconnections of systems with uncertainties or with time-varying parameter

dependencies are analyzed. In the case of system (2.11), the interconnection operator P
plays the role of the uncertainty. The FBSP for the system in (2.11) is given as follows.

Theorem 2.1 ([25]: Bounded Real Lemma with Full Block S-Procedure). Given the
stable continuous-time LTI system as in (2.11), the system has an Lo-gain from w to z
smaller than 7 if and only if there exist matrices X = X" >0, R=R", Q=Q" and S
of appropriate dimensions such that

ek

0 0100
0 0,00
2T o000
0 I'00
0 0'QS
0 0'STR

SR
I 1ST R||T
(1 0 0

A B B
0 I 0
¢t Du_ Dip
0 0 I
| [C2 D21 Do

> 0, (2.12)

< 0. (2.13)

Equations (2.12) and (2.13) in Theorem 2.1 are referred to as multiplier and nominal

conditions, respectively.
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The matrices ), R, and S in the conditions in Theorem 2.1 are called the multiplier
matrices. For full multipliers, i.e., with no assumptions on ), R, and S, the conditions
in Theorem 2.1 are equivalent to the ones in Lemma 2.1, i.e., they represent necessary
and sufficient conditions for Lemma 2.1 to be satisfied.

In contrast to full block multipliers, structural conditions can be imposed, similar to
the so-called D scalings and DG scalings in robust control. For D scalings, it is assumed
that R > 0, Q = —R and S = 0, and for DG scalings it is assumed that R > 0, ) = —R
and S = —ST. In the case of D scalings, it is easy to see that for |P| < 1and RP = P R,
(2.12) holds. And for DG scalings, the same is true with the additional assumptions of
SP =7PS and P = P". The FBSP with full multipliers will be used in Chapters 5
and 6 in order to exploit the sparse structure of interconnected system matrices in the
controller synthesis.
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CHAPTER 3 .

Convex and Numerical Optimization

This chapter gives a brief overview about formulations and tools from convex and nu-
merical optimization which will be relevant in the course of this thesis.

3.1 Function Definitions

Definition 3.1 (Convex Function). A function f(:) : D — R is convex if its domain
D C R" is a convex set and if for any x1,x5 € D and any X € [0, 1], it holds that

S+ (1= M) < Af(a1) + (1= A) f(22). (3.1)

The function is called strictly convex if inequality (3.1) is strict for any x1,z2 € D and
any A € [0,1].

Definition 3.2 (Concave Function). A function f(-) : D+ R is concave if the function
—f(x) is convex.

Definition 3.3 (Lipschitz Continuous Function). A function f(-) : D — R with domain
D C R™ is Lipschitz continuous if there exists a constant v > 0, such that for all
x1,To € D, the following holds:

[f(x1) = fl@2)lla < 7|21 — 222 (3.2)

Definition 3.4 (Monotone Function [26]). A set function f : 2F — R is monotone, if
for every Ty C Ty, C E, it holds that

f(T) < f(Ty).

Definition 3.5 (Submodular Function [26]). A set function f : 28 — R is submodular,
if for every Ty, Ty C E, it holds that

f(NT) + f(T1UTy) < f(Th) + f(T2).

Equivalently, a set function f : 2F — R is submodular, if for every Ty C Ty C E, and
e € E\ Ty, it holds that

f(Tyu{e}) = f(Th) > f(To U {e}) — f(T3).
13
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This definition shows a diminishing returns property, i.e., increasing a set argument 75
by an element e cannot give a larger increase than increasing a subset of the set argument
Ty C Ty by e. The expression f(7T3U{e}) — f(T1) is also referred to as the marginal gain
of the function f at T} with respect to e.

3.2 Terminology in Optimization

A mathematical optimization problem consists of a cost function f(-) : R" — R, and a
constraint set § € R™ in which the argument of the cost function is constrained to lie.
The objective is to find a feasible decision x € S which minimizes the cost f(z). This is
denoted as the program

(3.3)
st. xe€S8.

A feasible decision which has the minimum cost is denoted as a minimizer z*. The
problem is called feasible if the set & is non-empty, otherwise it is called infeasible.
Similarly, the point z is called feasible if z € S, and otherwise it is infeasible. If S = R"
the problem is unconstrained. It is called unbounded if for any M > 0 there exists a
point € S such that f(z) < —M. A point z* is a global minimizer if f(2*) < f(z) for
all z € S. A point z* is a (strict) local minimizer if there exists a neighborhood A (x*)
of z* such that f(z*) < (<) f(z) for all z € N(z*) NS. For general cost functions and
constraint sets, the optimization problem (3.3) can be hard to solve. Efficient solution
methods exist for some common classes of convex optimization problems which will be
of relevance in the course of this work. Therefore, they are introduced in the following.

3.3 Convex Optimization Problems

A significant advantage of convex optimization problems is that any local minimizer is
also a global minimizer. Some common convex optimization problems which are relevant
for this thesis are introduced in the following. For these classes of problems efficient
solvers exist. For further details, the reader is referred to [27].
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3.8  Convex Optimization Problems

3.3.1 Quadratic Program

A quadratic Program (QP) has a quadratic cost function that is to be minimized subject
to affine inequality constraints. A possible representation is the following,

mxin 2 Hr+c'z
st. Ax =0, (3.4)
Cx <d,

where H € R™ " is required to be positive semi-definite in order for the program to be
convex. If H is positive definite the program is strictly convex.

3.3.2 Linear Regression and Least-Squares

An example of a QP with a wide range of application is the so-called linear least-squares
problem, or linear regression problem. The objective is to minimize the convex quadratic
function

min | Az — bl|2.

If the problem is unconstrained, it can be solved analytically as z* = A'b. However,
if affine equality and inequality constraints are added, it no longer has an analytical
solution. This problem will be of relevance in Chapter 11.

3.3.3 Second-Order Cone Program

A second-order cone program (SOCP) is characterized through a linear cost function that
is to be minimized, subject to second-order cone constraints. The standard second-order
cone of dimension n is defined as

K, = {[ﬂ vER”‘l,teR,Hng gt}. (3.5)
An SOCP can be written as
min ¢z
s.t. Az =0, (3.6)

||-PZ'I+QZ||2 < r;rx+$i7 1= ]-7"'7N7

where P, € R(v=Dxn g c R%=1 r, € R™ and s; € R form a second-order cone constraint
B i
of dimension n;, which can equivalently be written as [ T} T+ ¢
i Si
details on SOCPs the reader is referred to [28]. SOCPs will be of relevance in Chapters 10
and 12.

€ K,,. For more
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Chapter 8. Convex and Numerical Optimization

3.3.4 Semi-Definite Program

A semi-definite program (SDP) consists of a linear cost function that is to be minimized,
subject to linear matrix inequality (LMI) constraints. It can be represented as

min ¢z
X

S.t. MO + ZSL’ZMZ > 0,

i=1

(3.7)

where z; € R, © = [z1,...,7,] " € R® and M; € R™" Vi = 1,....,n. The constraint is an
LMI and the left-hand side is thus constrained to be positive semi-definite. As the set
of positive semi-definite matrices is a convex cone, SDPs are convex programs.

A variety of problems in control and system theory can be formulated as or relaxed
to convex problems that involve LMIs. While for only some of these problems analytical
solutions exist, they can be efficiently solved numerically, for example by interior-point
methods [29]. The reader is referred to [24], [30] for an overview of LMIs and their
applications in control and system theory. In this thesis, LMIs will be of importance in
Chapters 5 and 6.

3.4 Lagrangian Duality

The general optimization problem in (3.3) can take the form

s.t. h(z) =0, (3.8)
g(x) <0,

where f(zx) is assumed to be bounded below, and the equality and inequality constraint
functions, h(z) : R" — R™ and g(z) : R” — RP, respectively, are allowed to be non-
convex. The so-called Lagrangian of (3.8) is defined as

L(z,v,\) = f(x) + X h(z) 4+ v g(z), (3.9)

where v and \ are referred to as Lagrange multipliers or dual multipliers.

The associated dual program of (3.8) is defined as

max d(v, ), (3.10)

v>0, A
with
d(v, ) = min L(z, v, \).
x
The dual function is a pointwise minimum over affine functions in the Lagrange mul-
tipliers v and A, and is thus a concave function. For primal feasible points z, the
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3.5 Distributed Optimization

Lagrangian with v > 0 is a lower bound on the primal function value, i.e., £(Z, A\, v) <
f(z), Y(z € S,v > 0, ). This implies that also the dual function is an under-estimator
of the primal function value, i.e., d(v, ) = min L(z,v,A) < f(z), V(z € §,v > 0,}). In
particular, the maximum of the dual problem in (3.10) always provides a lower bound
on the minimum of the primal problem. If the maximum of the dual problem is equal
to the minimum of the primal problem, so-called strong duality holds.

3.5 Distributed Optimization

If large-scale optimization problems are considered, first-order methods are particularly
efficient. The computations in the iterations are typically inexpensive and can be execu-
ted in a distributed manner if the problem has some structure that can be exploited for its
decomposition. Numerous methods for distributed optimization exist in the literature.
For a comprehensive overview, the reader is referred to [31]. In this thesis, the Alterna-
ting Direction Method of Multipliers (ADMM) is chosen due to its fast convergence in
practice.

3.5.1 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) is a Lagrangian based first-
order method. It relies on a splitting of the optimization variables in order to decompose
the problem into subproblems, which exhibit some (ideally sparse) coupling.

In this thesis, the consensus form ADMM is used in Chapters 5 and 11. It is assumed
that a partitioning of the so-called global optimization variable vector z = [z] ,...,z4]" €
R™ into N global variable vectors x; € R™ associated with N subproblems is possible.
The constraint set § is assumed to be decomposable into N constraint sets S; which
only depend on so-called local variables ;. The objective function is decomposable
into a sum of N objective functions that depend on only the local variables y;, i.e.,
f(x) = =X, fi(y;)). In the consensus ADMM, the local variables y; usually contain
copies of entries of the global variable vector x. This introduces equality constraints, the

so-called consensus constraints. The decomposed problem can be written in the form

N
o in ; filys)

st. y, €38, Vi=1,...,N,
Y, = Eil‘, \V/Z == 1, ...,N,

(3.11)

where F; are selector matrices, which for each local variable y; select entries from the
global variables of the vector x.
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Chapter 8. Convex and Numerical Optimization

For ADMM the so-called augmented Lagrangian is of importance. It is denoted by £,
and is defined similarly to the Lagrangian in (3.9), with an additional quadratic term.
The augmented Lagrangian for problem (3.11) is given as

N
Lo,y V) = (Sl + T ) + N (= Bie) + Sy — Biall3) . (3.12)

i=1

where Zg, (y;) is the indicator function for the constraint y; € S;, and p > 0 is the so-
called penalty parameter. This decomposition of the augmented Lagrangian into the
sum L,(x,y,\) = SN, L,:(z,y:, ) in (3.12) is possible due to the problem structure
in (3.11). The individual terms L,; are referred to as the partial or local augmented
Lagrangians.

ADMM is an iterative minimization scheme for computing a saddle point of the aug-
mented Lagrangian. The distributed consensus ADMM steps are given in Algorithm 3.1.
Often, the minimization step in = can be simplified by exploiting the (potentially sparse)

Algorithm 3.1 Distributed Consensus ADMM [32].

1: Input: Parameter p > 0,

2. Initialization: Set x =0, A\¥ =0, 2 =0,

3: while primal, dual residuals not converged do

4: gt = argmin L,i(yi, v A9, Vi=1,..,N,

Yi
5 2t = argmin YN, £, (5, 2, A,

6: ATV =AW 4 p5 ) B gty i =1,
7 kK=r+1,
8: end

coupling structure of the subproblems. Furthermore, the Ad-update step is only coupled
through the F;x terms. Some communication between coupled subproblems is required
for the steps in line 5 and 6 in Algorithm 3.1, however.

If the cost functions f;(y;) are closed, proper and convex, and the unaugmented La-
grangian has a saddle point, i.e., there exists a point (z*, y*, \*), such that £,(z*,y*, \) <
L,(z*, y*, \*) < L,(x,y, \*) [32], and if additionally local solutions to the = and y; update
steps in line 4 and 5 of Algorithm 3.1, respectively, exist [33], then strong duality holds
for the problem. In this case, the cost function Y, fi(y;) asymptotically converges to
the primal optimum [32]. As convergence criteria, the so-called primal and dual residuals
can be defined as r{"™ = B+ — gt and s = pE (2D — 20 respectively,
which asymptotically converge to zero. Note that the cost function does not need to be
differentiable. In particular, the cost function can contain indicator functions of closed

nonempty convex sets.
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3.6 Optimality Conditions

3.6 Optimality Conditions

The following results are used to characterize a solution of an optimization problem.

3.6.1 Linear Independence Constraint Qualifications

Given the optimization problem in (3.8), the active constraint set at a point  is defined
as the union of the set of all equality constraints and the set of those inequality constraints
that are active at z, i.e., that hold with equality at the point x.

Definition 3.6. Let us consider the optimization problem (3.8). Given a point T and
the active constraint set at that point x, then the linear independence constraint quali-
fication (LICQ) holds if the set of active constraint gradients {Vh;(x),i = 1,...,m} U
{Vyg;(z), j|gj(x) =0} is linearly independent.

The LICQ implies that at a feasible point, the set of first-order feasible directions coincide
with the tangent cone of the feasible constraint set.

3.6.2 Karush-Kuhn-Tucker Conditions

The first-order necessary optimality conditions for problem (3.8) with the Lagrangian
defined in (3.9) are the following:

Ve L(x, A\, V)

>

()
()
(

Vigi\x

S
IA

0,
0,
0, (3.13)
0, Vi=1,..,p,

0,

14

v

where v and \ are the Lagrange multipliers as introduced before. The conditions in (3.13)
are known as the Karush-Kuhn-Tucker (KKT) conditions. They imply stationarity,
primal and dual feasibility, and complementary slackness. If the constraint v;¢;(x) = 0 is
such that exactly one of the values, v; or g;(x) are zero, then strict complementarity holds.
Together with the LICQ, these conditions guarantee that the optimal dual multipliers
A*, v* are unique.

3.7 Numerical Optimization: Line Search Methods

in Unconstrained Optimization

Except for special problems, finding an analytical solution of an optimization problem is
in general not possible. Therefore, numerical methods are employed to find an approx-

19



Chapter 8. Convex and Numerical Optimization

imate solution in an iterative manner. Typically, a sequence of iterates is constructed
that starts from an initial point and terminates at an approximate minimizer in a fi-
nite number of iterations. A necessary assumption is that the problem is feasible and
tractable for the chosen optimization algorithm. In Chapter 12, line search methods
will be used. For simplicity, let us consider an unconstrained problem as in (3.3) with
S = R™. Then, line search methods consist of iterations where first a descent direction
is computed at the current iterate and then a step length is chosen. The iterations are
given as

2"t = 2" 4 o Ax”, (3.14)

with the chosen step length o > 0 and the descent direction Az" of iteration k. The
descent direction is often chosen as

Az" = —B(2") v f(a"), (3.15)

with B(z") being a symmetric and nonsingular matrix. For example, in the steepest
descent method, B(z") is the identity matrix, i.e., the descent direction is chosen to be
the negative gradient of the cost function.

3.7.1 Newton’s Method for Unconstrained Optimization

In Newton’s method, the term B(z") in (3.15) is motivated by a Taylor approximation
and coincides with the Hessian, i.e., the descent direction Ax" is computed by solving

VAf(2")Ax" = —v f(z"). (3.16)

However, the computation of the exact Hessian can be computationally expensive. Met-
hods with inexact Hessian approximations, such as the Gauss-Newton method, can be
used instead. Necessary assumptions for the application of the Newton method are that
the problem is strongly convex, i.e., the Hessian is positive definite, and the cost function
is Lipschitz continuous with a small Lipschitz constant, such that the Taylor approxi-
mation represents a good approximation of the problem. Then, a quadratic convergence
rate can be reached by this method.

3.7.2 Gauss-Newton Method for Unconstrained Nonlinear Least-
Squares

The cost function is considered to be the following nonlinear least squares problem

fla) = 5 Do), (317



3.7  Numerical Optimization: Line Search Methods in Unconstrained Optimization

where r;(z) are the so-called residuals. The Gauss-Newton (GN) method differs from
the Newton method by the approximation of the Hessian

V2 f (") = vr(a®) T vr(z®), (3.18)

where Vr(z%) is the Jacobian of 7(x) = [ry(x), ..., rx(x)]" with respect to z. A GN step
is thus computed by solving

vr(z®) ' vr(z®) Az® = —v f(z"). (3.19)

The advantage of the GN method is that no exact Hessian information is required. In
problems where the second order term in the Hessian is small, i.e., where the residuals
ri(z") are nearly affine or small, the approximation is close to the real Hessian and the
convergence rate is similar to Newton’s method. Furthermore, if the Jacobian vr(z")
has full rank and the gradient V f(z") is non-zero, the GN direction is always a descent
direction. This can be seen by first noting that v f(z%) = vr(x*) "r(2"), which we then
use, together with (3.19), to derive the following relation,

Az"TY f(2") = Ax" T vr(a”) 2"
= —Az"Tvr(z®) vr(z®)Az” (3.20)
= —[[vr(=")Az"]; < 0.
The last inequality is strict unless Vr(z*)Az" = 0. In that case, with the assumption of
Vr(z") being full rank, we have that v f(z") = 0, and z* thus is a stationary point.

Alternatively to solving (3.19), the GN direction can also be computed by solving
the problem
1
Iglig = §||T(:E"“) + Vr(x®)Az"||. (3.21)

The reader is referred to [34] for more details and related proofs. This method is exploited
in Chapter 12.

3.7.3 Backtracking Line Search

In order to determine a step length o, different methods can be used. If an uncon-
strained problem is considered, the line search needs to ensure that sufficient progress is
made in terms of a sufficient decrease in the cost. If a constrained optimization problem
is considered, the line search additionally needs to guarantee that the iterates do not
become “too infeasible”. In constrained optimization, the line search is therefore perfor-
med on a merit function ®(x) which consists of a penalty term for the cost and a penalty
term for the infeasibility of the point x. In general, computing an exact step length, i.e.,
computing the solution to the problem

a” = min O (2" + aAz"®) (3.22)
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is expensive. Inexact line search methods can be used instead. Such inexact methods
aim at computing “good” step lengths « that satisfy conditions guaranteeing sufficient
progress. A common inexact line search method is the so-called backtracking line search.
Starting from the unit step length, i.e., &« = 1, the step length is iteratively reduced by
a factor p with 0 < p < 1, until some conditions for sufficient progress of the next
iterate " 4+ aAx" are satisfied. These conditions can for example be the so-called Wolfe
conditions described in the following.

3.7.4 Wolfe Conditions

Wolfe conditions are commonly used conditions to determine the step lengths in inexact
line search and are defined as follows

flzF 4+ aAx") < f(2") + 1"V f () T A",

<
K K K\ T K K\T K (323)
V(" +a"Ax") Ax" > oV, f(a") Azx”,

with 0 < ¢; < ¢g < 1. The first condition, the so-called Armijo’s condition ensures a
sufficient decrease in the cost, and the second condition ensures that the step length
is large enough. While in (3.23), the Wolfe conditions are given in terms of the cost
function f(z), in constrained optimization, they usually need to be satisfied for a merit
function ®(z), as discussed before.

3.7.5 Convergence of the Gauss-Newton Iteration

The following assumptions are required for convergence of the GN-iteration from Sec-
tion 3.7.2 to a stationary point of f(x). The Jacobians Vr(z") are assumed to have
their singular values uniformly bounded away from zero in the region of interest, i.e.,
Jv > 0 such that ||vr(z")Ax*|s > v ||Az"||y for all Az® and for all 2" in a neigh-
borhood of the bounded level set L = {z* | f(x*) < f(2°)} with 2° the starting point
of the iteration. Furthermore, f is assumed to be bounded below and continuously
differentiable in an open set containing the level set L. The residual functions r;(z") are
assumed to be Lipschitz continuously differentiable in a neighborhood of the bounded
level set L, which implies that Vv f(x*) is Lipschitz continuous in some neighborhood of
L. Then, the iterates " generated by the GN-method with step lengths o” satisfiying
the Wolfe conditions in (3.23), converge to a stationary point of f(z"), i.e., it holds that
16113010 vr(zF) Tz = 0.

A sketch of the proof is the following. The GN direction Az" is guaranteed to be
a descent direction as noted in (3.20). Then, the proof consists of showing that the
angle between the search direction Ax* and the negative gradient —v f(x*) is uniformly
bounded away from 7. Next, the so-called Zoutendijk condition implies that the gradient
norms converge to zero since the search directions are not too close to orthogonality with
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3.8 Sequential Quadratic Programming

the gradient. For the detailed proof, the reader is referred to the proof of Theorem 10.1
in [34].

3.8 Sequential Quadratic Programming

Let us consider problem (3.8) again where f(z), g(x) and h(x) are allowed to be non-
convex. A possible solution method for the problem is Sequential Quadratic Program-
ming (SQP). This algorithm generates a sequence of iterates by solving QPs. The QPs
are approximations of the original optimization problem (3.8) at the current iterate. At
iteration k, the following QP is solved

1
IIAliIl aA:ETH“Ax + V(@) Az

st. h(z®) 4 Vh(z")" Az =0, (3.24)
g(z") + vg(z") " Az <0,

where H* is the Hessian of the Lagrangian or an approximation thereof. The sequence
of iterates is then updated according to

"t =2+ a"Ax”, (3.25)

where o is a step size that, for example, satisfies the Wolfe conditions for a chosen
merit function, and Az" is the minimizer of (3.24). Some assumptions on regularity and
boundedness of H”*, f, g, h and their first and second derivatives need to be satisfied in
order to guarantee convergence. The reader is referred to [35] for details. Chapter 12 will
introduce an SQP variant with feasible iterates and convergence is shown in Section 12.2.
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CHAPTER 4 .

Introduction to Interconnected Systems

This chapter gives an introduction to the topic of interconnected systems and a literature
review about related work. Then, an overview about the contributions of Part II of this
thesis is provided.

4.1 Interconnected Systems

Interconnected systems refer to systems that can be modeled as an ensemble of multiple
subsystems which can be interconnected in different ways. In particular, the intercon-
nections can be related to coupling in the dynamics, to a common task, i.e., a performance
objective, or to sensing or communication.

Multi-agent systems (MAS) [36], [37] are a subclass of interconnected systems. The
subsystems, or agents, are usually dynamically decoupled, as for example in groups of
autonomous robots, formations of unmanned aerial vehicles (UAVs), satellites, underwa-
ter vehicles or vehicle platoons. In cooperative robotics, coupling forces may, however,
arise through the manipulation of objects that can be interpreted as a coupling of the
dynamics.

4.1.1 Cooperative Multi-Robot Systems in Digital Fabrication

Large-scale interconnected systems offer the potential of performing complex tasks while
the system can be an assembly of simple subsystems. This gives multi-robot systems the
potential to perform automated fabrication tasks in construction processes. In particular,
complex tasks for constructing buildings, such as the manipulation of heavy or large
objects, can be achieved by cooperative multi-robot systems [9].

Articulated robots, such as robotic arms with several rotary joints are often used
for manipulation tasks. Even though they have highly nonlinear dynamics [38], [39],
usually a hierarchical control architecture is used for manipulation tasks, where local
lower-level controllers of the individual robots perform a feedback linearization. Lower-
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Figure 4.1: Classification of subsystems and interconnections with respect to homoge-
neity. Different box colors, and different arrow types symbolize different subsystems and
different interconnections, respectively.

level impedance controllers, for instance, transform the closed-loop dynamics into virtual
mass-spring damper systems [40]. This enables the control of the ratio between the force
and the position of the end-effectors which is beneficial in two aspects: For the control
task, it prevents from exerting high end-effector forces in the presence of uncertainties in
the cooperation. For the higher-level control design, the robotic arm can be modeled as
a linear time-invariant (LTT) system. This work therefore focuses on interconnected LTI
subsystems which can be physically coupled as for example in cooperative manipulation
tasks. More details about the subsystems and the interconnections are given in the
following.

4.1.2 Classification of Subsystems and Interconnections

In this work, systems that consist of N interconnected finite-dimensional LTT subsys-
tems are considered. While a homogeneous system consists of identical subsystems and
identical interconnections, a heterogeneous system consists of subsystems and intercon-
nections which may all be different. In Chapter 5, a new characterization of systems that
parametrizes the structure of the interconnection is proposed, which is referred to as a-
[-heterogeneous systems. They consist of a groups of homogeneous subsystems with
[ different types of interconnections. The different classes of systems are illustrated in
Figure 4.1. We will refer to neighbors of a subsystem as those subsystems to which it is
coupled.

4.1.3 Controller Architectures

Different approaches for the control of interconnected systems have been proposed. A
centralized approach is able to find optimal control inputs by exploiting the full informa-
tion about the system. However, the complexity, large scale and spatial distribution of
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Figure 4.2: Classification of controller architectures for an examplary interconnected
system. Centralized control unit (a) and subcontrollers without (b) and with (c¢) com-
munication to neighboring subcontrollers.

such systems make the control by a central unit intractable. In contrast, a decentralized
approach, where each subsystem has an individual subcontroller which computes its in-
puts based on local information, has less computational requirements [41], [42]. However,
depending on the system and the task, the control performance may be unsatisfying. As
a remedy to the downsides of both centralized and decentralized approaches, distributed
architectures have been proposed [43], [44], where the subsystems have local sensing,
control, and communication capacities. In contrast to decentralized control, communi-
cation between neighboring subcontrollers is introduced in distributed control to account
for the coupling of the system and to increase the control performance. The different
controller architectures are illustrated in Figure 4.2.

4.1.4 Challenges and Open Problems

In both the distributed controller synthesis and the implementation major open chal-
lenges exist. Distributed control design is a non-trivial task because of informational
constraints [45]-[47], possible heterogeneity of the systems, and the coupling through
dynamics, constraints or the objective. Furthermore, if large-scale systems are conside-
red, centralized synthesis methods become computationally intractable. If the problem
is solved in a distributed way, many design choices concerning the decomposition of the
system or the communication topology need to be made. These choices imply a trade-
off between the computational effort, the amount of communication and the achievable
performance. In decentralized control schemes, so-called fixed modes can prevent the
stabilizability of the system or limit the achievable performance [48], [49], which makes
a minimum of communication necessary.

Some proposed algorithms rely on a distributed optimization that is performed on-
line, or on information about future trajectories of neighboring subsystems, which requi-
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res extensive communication [50], [51]. In many applications, however, communication
between the subsystems however is unreliable, delayed, or restricted, which makes dis-
tributed control methods that rely on extensive communication schemes intractable.
Examples of such applications are autonomous underwater vehicles, spacecraft formati-
ons, mining, or any applications with limited bandwidth and a large number of agents
[52], [53]. Challenges related to the unreliability of communication potentially also arise
on the construction site. They can be caused by missing infrastructure, by obstructions
due to iron reinforced walls, or by disturbances from electromagnetic radiation, e.g.,
originating from welding processes.

4.2 Related Work

This section provides an overview of the state-of-the-art approaches for the topics related
to the first part of this thesis. Specifically, related work on distributed control of complex
interconnected systems, overlapping control, and decentralized fixed modes is presented.
This overview is not exhaustive. The particular focus lies on approaches that will be
relevant in the course of this work.

4.2.1 Modeling Approaches for Interconnected Systems

As large-scale distributed systems in general have high-dimensional state, input and out-
put spaces, a centralized state-space representation is prohibitive and not useful for a
scalable controller synthesis. In fact, the modeling of interconnected systems is closely
linked to the distributed controller synthesis. Therefore, it is beneficial to model dis-
tributed systems as interconnected systems composed of a decentralized part and an
interconnection part. The decentralized part is the ensemble of the individual subsys-
tems, and the interconnection part can be modeled through an interconnection operator.

A general representation based on a linear fractional representation (LFR) of the sy-
stem has been introduced by [54] and [55] for gain-scheduled and decentralized controller
design, respectively, and later on has been used in [56] and [57] for distributed control
design. In [43], [44], [58] similar models have been used to represent spatially intercon-
nected systems by means of spatial shift operators. In these approaches, distributed
controllers of heterogeneous systems over undirected graphs are synthesized, where the
interconnection structure of the controller is assumed to be equal to the one of the plant.

In [59], [60] so-called decomposable systems are introduced, which can be modeled
as an LFR resulting in a compact system model. The systems are required to be homo-
geneous and the interconnection topologies are restricted to be diagonalizable. Genera-
lizations have been made that extend the approach to different groups of homogeneous
subsystems [61], to time-varying subsystems [62], and to directed interconnection graphs
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[63]. The system models in [61]-[63] are however restricted to equal interconnections
within the groups of homogeneous subsystems.

4.2.2 Controller Synthesis for Interconnected Systems

Due to the described complexity of the problem, the controller synthesis for intercon-
nected systems requires some form of decomposition. Based on the previously described
modeling approaches which separate the system into a decentralized part and an intercon-
nection part, tools from robust and gain-scheduled controller synthesis have successfully
been applied [64], [65].

In [36], a consensus protocol for MAS is considered. A signal transformation in form
of a Schur transformation is used to decouple the synthesis for homogeneous multi-agent
LTI systems into synthesis conditions of the order of the subsystems that only differ
by the Laplacian eigenvalues. This approach is limited to MAS. Furthermore, only
stability guarantees are provided. In [66], the approach from [36] is extended to include
performance objectives in form of the H,-norm. In [67] an approach for distributed
stabilizing controller synthesis is presented, where a chordal decomposition is applied
and a sequential design procedure is performed. However, if a performance criterion is
to be optimized, this approach can in general lead to conservatism or infeasibility.

While the approaches in [36] and [66] are limited to dynamically decoupled MAS, a
diagonalizing signal transformation to decomposable systems, which may be dynamically
coupled, is applied in [60]. This allows for the system to be modeled as an LFR, to
which the full block S-procedure (FBSP) can be applied [25], [68]. Under structural
assumptions on the Lyapunov and multiplier matrices [60], this approach allows the
decomposition of the synthesis matrix inequalities into equations of small dimensions for
the individual subsystems. For the case of multiple groups of homogeneous subsystems
interconnected over undirected graphs, applying a singular value decomposition (SVD)
is proposed in [61] which results in a similar decomposition but potentially introduces
more conservatism compared to applying the FBSP. Instead of the signal transformation
in [59], a congruence transformation is proposed in [62] to cope with time-varying and
heterogeneous subsystems. Groups of homogeneous subsystems are considered, which
are required to be interconnected by undirected interactions within the groups and by
directed ones between the groups. In [63], a transformation which can deal with directed
graphs is introduced. The approaches in [61]-[63] however cannot handle different types
of interconnections within the groups of homogeneous subsystems.

In addition to structural assumptions on the Lyapunov and multiplier matrices, struc-
tural constraints as in DG scalings are imposed in [56], which in general introduces further
conservatism. Together with the assumption of undirected interconnections, synthesis
equations for each subsystem are derived which are coupled to the equations of neig-
hboring subsystems. The synthesis needs to be solved in a centralized way. In [69],
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a distributed algorithm for controller synthesis is proposed which is based on a primal
decomposition and subgradient method. Couplings in the synthesis equations given in
[56] correspond to interconnections between subsystems. For each such connection, both
involved subsystems compute subgradient information for the distributed synthesis al-
gorithm, where the updates occur sequentially. The work in [57] makes use of a similar
framework as in [56] for synthesizing a controller with an interconnection structure which
does not need to replicate the structure of couplings in the plant. The FBSP is applied,
however, no distributed synthesis method is proposed.

In [70]-[72] decentralized state feedback control design methods are introduced where
not only the gains, but simultaneously the controller structure is optimized. The appro-
aches iteratively solve convex relaxations of the design problem. In [73], these so-called
sparsity-promoting control ideas are extended and applied to the control of power net-
works. In [74], gradient based methods are used in order to design the control gains and
the control structure by means of placing virtual inertia in power grids.

Other distributed control approaches have been proposed in the framework of distri-
buted model predictive control (MPC). Some cooperative distributed MPC schemes rely
on extensive communication between the subcontrollers [75], [76]. Other directions have
been explored where the subsystems are robust against the coupling in the system, such
as in tube-based MPC [77], [78], where less communication is required. Plug and play
schemes [79]-[81] hinge on the existence of weak interconnections in the system, which
makes the system robust against certain changes in the interconnection topology.

In the so-called System Level Synthesis approach [82], the controller synthesis is
transformed to an optimization problem over the closed-loop system responses. Based on
the assumption of finite impulse responses, convex subspace constraints for the problem
can be formulated, and the distributed structure of the system response can be included,
as shown in [83].

4.2.3 Augmented Overlapping Control and Estimation

In numerous applications strong coupling between subsystems exists. Examples include
physical coupling between robots, such as in cooperative manipulation tasks, or coupled
control goals as in formation control. In these cases, completely decentralized controllers
typically achieve a poor control performance. With the concepts that are introduced
in [84], and extended in [42], [85], [86] and related literature, it has been shown to be
beneficial to design decentralized controllers in an augmented overlapping state space,
so that the augmented subsystems incorporate information about the strong coupling of
the system.

The concept of overlapping decompositions is based on the Inclusion Principle [42],
and has been intensively studied in the literature [42], [84], [85]. The goal in [42], [86]
and related work is a tractable control design for large-scale systems. The computational
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tractability is achieved through a decentralized controller synthesis in an augmented
state space where the strong dynamic couplings are moved to the diagonal blocks of
the overall augmented system matrices. Therefore, the subsystems are only coupled by
weak interconnection terms on the off-diagonal blocks of the system matrices, which
are neglected in the decentralized controller design. After the decentralized controller
synthesis, the controller is contracted back to the original state space for implementation.
The contracted controller has a distributed structure and thus potentially achieves a
better performance than a decentralized controller in the original state space.

Distributed dynamic output feedback control can be viewed as a decentralized or dis-
tributed control scheme which is based on distributed estimation. Distributed estimation
has been studied in the literature [87]-[89], with the goal of estimating the overall state of
a plant with a consensus approach. In [90], [91], distributed moving horizon estimation
schemes were proposed. In [52], distributed control is proposed based on parallel esti-
mation where each subsystem estimates the whole system state. As the computational
requirements of the individual subsystems scale linearly with the number of subsystems,
this architecture becomes intractable for large-scale systems.

In [12], a distributed control scheme based on overlapping estimation is introduced.
Instead of explicitly communicating states of interest to neighboring subsystems, the
latter can implicitly gain information on states of interest by estimating them in addition
to their own local states. As the computational requirement for each subsystem stays
constant for a constant degree of overlap, the complexity scales linearly with the number
of agents, which is beneficial for the control of larger systems. In [12], systems are
considered which are small enough for centralized controller and estimator design but
require decentralized implementation and communication. Implementing a distributed
Kalman filter may require a lot of communication in general. Therefore, the structure of
the estimator gains is a design choice, which corresponds to choosing the communication
structure.

4.2.4 Fixed Modes and Minimum Communication Design

Decentralized fixed modes (DFMs) are defined in [48] as the modes of the system which
are fixed under any decentralized controller. The concept of fixed modes (FMs) thus cor-
responds to the concept of decentralized controllability and observability. In [92], [93],
different methods for the characterization of FMs are given. The method in [93] is based
on rank tests. In [53], decentralized overlapping fixed modes (DOFMs) are introduced as
FMs which cannot be moved by a controller of a given decentralized overlapping struc-
ture, corresponding to a distributed structure of the contracted controller. A method for
their detection based on bipartite graphs is proposed. In [94] and subsequent work of the
same authors, a measure of decentralized controllability is considered to give a metric
for how far a system is away from having FMs. In [95], pole-placement for non-FMs is
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addressed, which stabilizes the system if all FMs lie in the left half plane. In [96] an
approximate DFM measure is used to improve the control performance.

If FMs exist that are not stabilizable or unacceptably limit the performance, they
need to be removed. Methods to eliminate FMs have been considered in the literature,
for example by changing the structure of the feedback matrix, [97], or by approaches that
are more general than LTI control for special cases of FMs [98]. Finding a minimum
cost feedback pattern, i.e., an interaction structure of local LTI controllers with no
structural FMs, is considered in [99]. The problem formulation is based on a graph-
theoretic approach. In [100], finding an optimal information structure for overlapping
systems is considered. Based on the characterization of DFMs in [53] the method can
only handle unrepeated DFMs. In [101] a minimum cost constrained input-output and
control configuration problem is stated that minimizes the required sets of inputs, outputs
and feedback links that result in no FMs. Based on a graph-theoretic description, the
problem is reduced to a maximum matching problem. In [102], FMs within a parallel
estimation scheme of [52] are considered and a combinatorial search algorithm to find a
minimal set of communication links is given.

4.2.5 ADMM for Distributed Control and Optimization

In the area of distributed control and optimization, ADMM, as introduced in Section 3.5,
has become a widely used method [32]. It combines the advantages of dual decomposi-
tion, such as parallel and distributed computation, with the advantages of the method
of multipliers, such as convexification. ADMM has been used in numerous applicati-
ons, such as in electrical power systems [103]-[105], in distributed system and parameter
identification for large-scale systems [17], [106], in optimal traffic flow problems [107],
in sensor and actuator selection [108], or in distributed reinforcement learning [109]. In
[110], ADMM is used in a distributed model predictive control scheme based on the
system level synthesis.

4.3 Scope of Part II

In order to overcome some of the outlined limitations and challenges, Part II of this the-
sis focuses on the modeling of large-scale heterogeneous interconnected systems, on the
scalability of the controller synthesis related to such systems, and on increasing the achie-
vable controller performance while minimizing the number of required communication

links.
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4.8  Scope of Part I1

4.3.1 Scalable Controller Synthesis for Heterogeneous Inter-
connected Systems

We make use of a modeling framework for heterogeneous interconnected systems that is
similar to the one in [56], [57]. The N subsystems and the |€| directed interconnections
can all be of different type. We propose a scalable controller design for large-scale
heterogeneous interconnected systems. The proposed controller synthesis allows for the
computation of a controller with a directed interconnection structure, which can differ
from the plant coupling structure.

Through applying the FBSP and allowing for structured full block multipliers we
potentially reduce conservatism compared to imposing a structure as in D or DG scalings
as done in [56]. Based on a congruence transformation and on structural assumptions on
the Lyapunov and multiplier matrices, we can decompose the synthesis equations. The
resulting coupled matrix inequalities are of the order of the individual subsystems.

For general heterogeneous systems, the number of small decomposed synthesis equa-
tions grows linearly with the number of subsystems. To further improve the scalability
of the controller synthesis, we propose a distributed method for solving these coupled
synthesis conditions. The distributed synthesis is based on ADMM [32]. By choosing
the variable splitting in a specific way, the ADMM algorithm can be simplified to two
steps per iteration only involving communication with nearest neighbors.

4.3.2 Special Class of Heterogeneous Interconnected Systems

We introduce a novel classification of systems, referred to as a--heterogeneous systems.
They consist of a groups of homogeneous subsystems with 3 different types of intercon-
nections. Based on this classification, we show how the general heterogeneous system
model of N subsystems and |€]| interconnections can be transformed to a more compact
model in the case where 1 < a < N and 1 < # < |€]. As the controller synthesis is
tightly linked to the modeling of the system, this more compact model is beneficial for
the scalability of the controller synthesis.

This novel class of a-#-heterogeneous systems presents a significant extension with
respect to the system class in [61], where different groups of homogeneous subsystems
are required to have identical interconnections. While in [61], the interconnection topo-
logy of the controller needs to mirror the one of the plant, the controller interconnection
topology can be chosen freely in the approach for a-f-heterogeneous systems that we
propose. In particular, sparse interconnection topologies and therefore sparse communi-
cation topologies can be selected.
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4.3.3 Increased Performance for Sparse Communication

Instead of improving the control performance of decentralized control schemes by adding
explicit communication, the decentralized control performance can be improved by an
increase in local model knowledge. This is achieved through overlapping subsystem dyn-
amics in an augmented state space. Based on the idea in [12], where distributed control
based on overlapping state estimation is designed in a centralized manner, we introduce
a design of interconnected dynamic output feedback controllers in an augmented state
space. The augmented system is modeled as an interconnected system. which allows us
to employ the scalable controller synthesis methods based on the FBSP. The communi-
cation topology of the augmented controller is a design choice. In contrast to the existing
similar approaches on overlapping control given in [42], [84], [85], and references therein,
the local controllers that we synthesize in the augmented state space are not transformed
back to the original state space, but they are implemented with the augmented state
instead. Because of the increased overlap in the local models, more information of the
overall system is incorporated in the local controllers. This controller design thus allows
for a trade-off between the required communication, the computational effort, and the
achievable control performance.

4.3.4 Minimum Communication Design

We consider so-called fixed modes (FMs), which prevent the interconnected system from
being stabilizable or which restrict the achievable control performance under a decen-
tralized controller. The input-output structure of the system is assumed to be given.
We propose a method to identify FMs, based on rank tests from [93] and analyze the
existence of a communication topology between the subcontrollers to remove all FMs.
The communication of both measurements and controller states are considered.

The problem of finding the minimum communication topology to remove all FMs
is formulated as a minimum cost coverage problem and the constraints are shown to
be submodular. Therefore, a polynomial-time greedy algorithm is applicable and has a
guaranteed suboptimality bound [111]. We propose an alternative algorithm which finds
the communication set with the minimum amount of links based on a decision tree with
efficient cuts.

4.4 Summary of the Contributions of Part II

The contributions of Part II of this thesis are summarized as follows.

1. A general modeling framework for interconnected systems which allows for hetero-
geneous subsystems and heterogeneous directed interconnections is considered in

36



4.5 Qutline of Part II of the Thesis

Section 5.1. In Section 5.3, we show how general distributed systems with a cen-
tralized performance channel can be transformed into this interconnected system
model such that the system norm is not changed under the transformation. This
implies that the structure of the interconnected system model can be exploited in
a scalable controller synthesis while guaranteeing the performance specification for
the original system.

. A controller synthesis for heterogeneous interconnected systems is proposed which
is scalable in two aspects. First, a decomposition of the controller synthesis con-
ditions based on the FBSP is introduced in Proposition 5.2. Second, a distributed
solution method for the decomposed coupled synthesis conditions is proposed in
Algorithm 5.1. It only requires communication between neighboring subsystems
and no central coordination.

. We introduce so-called a-(-heterogeneous systems which consist of a groups of
homogeneous subsystems and [ different interconnection types and can be classified
to lie in between homogeneous and heterogeneous systems. «-f-Heterogeneous
systems can be described by more compact system models than heterogeneous
systems, which allow for a decomposed controller synthesis of reduced complexity,
given in Proposition 6.4. The controller topology is a design choice, which is
enabled by the consideration of different interconnection types.

. In order to improve the control performance without increasing the explicit com-
munication, we present an interconnected controller synthesis based on a system
decomposition with overlapping augmented subsystems. We prove that the per-
formance guarantees of the controller designed in the augmented space, given in
Proposition 7.2, hold in interconnection with the original system.

. To eliminate all FMs, we propose to introduce a minimum communication topology.
In Lemma 8.2 we prove which conditions are required in order to guarantee the
existence of a communication topology that eliminates all FMs. We show that the
problem can be formulated as a minimum set coverage problem in (8.17), which is
proved in Lemmas 8.3 and 8.4. Based on this result a suboptimal solution can be
found by a polynomial greedy algorithm, or the optimum can be found by the tree
search algorithm proposed in Algorithm 8.2.

4.5 QOutline of Part II of the Thesis

Part II of the thesis is structured as follows. Chapters 5 and 6 present scalable controller

synthesis methods for interconnected systems. While Chapter 5 focuses on heterogeneous

systems, Chapter 6 considers special classes of systems, in particular homogeneous sys-

tems and a-f-heterogeneous systems, for which the controller synthesis can be reduced
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in complexity. Chapters 7 and 8 propose methods for improving the control performance
while decreasing the communication. Chapter 7 presents an augmented controller design
which can improve the achievable control performance for a given sparse communication
topology. Chapter 8 introduces an algorithm to identify FMs and to find the minimum
communication topology required to remove them. Section 14.1 in Part IV provides
conclusions and an outlook related to Part II.
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Heterogeneous Interconnected Systems

This chapter proposes a scalable controller synthesis for heterogeneous interconnected
systems. As the modeling is closely linked to the controller synthesis, we will first present
a framework which introduces the system as an ensemble of decentralized subsystems
with an interconnection channel similarly as in [56], [57]. We apply multiplier-based
methods from robust and gain-scheduled control, in particular the FBSP [25], [68], to
this system model. We decompose the controller synthesis equations for a reduced com-
plexity. In comparison to using DG scalings as in [56], full block multipliers are used,
which potentially reduces conservatism. This chapter focuses on the most general case of
heterogeneous systems where all subsystems and interconnections can be different. Be-
cause of the generality of the system model, the decomposed controller synthesis scales
only linearly with both the number of subsystems and interconnections and polynomi-
ally with the number of neighboring subsystems. For a better scalability, we introduce a
distributed method for solving the decomposed synthesis equations which requires only
local communication. The interconnection topology of the synthesized controller can
be freely chosen, in particular, a sparse communication structure can be selected. The
contributions presented in this chapter have been submitted for publication in [15].

This chapter is organized as follows. Sections 5.1 and 5.2 introduce a framework
for modeling the interconnected plant, controller and closed loop. Section 5.3 shows
how a distributed system with centralized performance channel can be transformed into
the presented model. In Section 5.4, the FBSP is employed. Based on some structural
assumptions on the Lyapunov matrix and the multipliers, we decompose the synthesis
matrix inequalities into small ones of the order of the individual subsystems. To solve
the decomposed equations, we introduce a distributed ADMM algorithm without central
coordination in Section 5.5. Numerical examples illustrate these results in Section 5.6
before Section 5.7 concludes this chapter.
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5.1 Model of Heterogeneous Interconnected Systems

We consider a system of N different LTI subsystems which are coupled by different
types of interconnections over an arbitrary directed graph. This section presents the
interconnected system model.

5.1.1 Graph Structure

We consider a connected graph 7¢ = {N, £9} where its vertices are N possibly different
finite dimensional LTI subsystems, associated with the node set N’ = {1,..., N}, which
is the index set of all subsystems G;,7 € N. We further define the set of directed edges
EY :={(i,k)} for all pairs (i, k) where subsystem i is influenced by subsystem k. The
interconnection topology of the subsystems is captured by the interconnection matrix
PC%, which is an N x N matrix, of all zeros except for non-zero entries in the places
corresponding to interconnections between subsystems i and k, i.e., the entry P%;, is
non-zero if subsystem k& influences subsystem .

While the interconnection graph 7¢ capturing the interconnections between the
subsystems may be directed, we will later on assume that subsystems interconnected
by an edge in £Y can communicate in a bidirectional way during controller synthesis,
which will be presented in Section 5.5. To this end, and for the interconnection re-
presentation which will be introduced in Section 5.1.3, we introduce the mirror graph
TEM = IN,EEM} as the graph which completes 7% to an undirected one, i.e., for all
directed edges (i, k) € £Y for which there does not exist an edge (k,7) € £, there exists
an edge (k,i) in £M. The interconnection matrix P is defined for 7% analogously
to PY for TC.

5.1.2 Interconnected State Space Representations

The subsystems G; admit continuous-time state space representations given by

_i’z'_ _Ai | Bu,i | Bw,i | Bp,i_ _SL’z’-
- - e I 721 .-
i Cyi + 0 Dywi | Dypi| |wi
G;: y = ——y’——:—————:——y—’——:——yg’— --, 1=1,...,N, (5.1)
Zi Cz,i | Dzu, | 0 | sz,i wy
- D - - =" -
_Qi_ _Cq,i :un,i :qu,i : O ] _pi_

with the state vector x; € R™i, the local control input and measured output, u; € R™=
and y; € R™:, the local exogenous input and performance output, w; € R"i and z; €
R"= and the interconnection signals p; € R™: and ¢; € R"%, respectively.

Remark 5.1. The feedthrough matrices D,, ; and D, ; have been set to zero, because for
physical systems, D, ; is usually zero, and D,,, ; is often chosen to be zero by convention.
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Figure 5.1: Interconnection with performance inputs and outputs.

The feedthrough matrix D,,; is restricted to be zero, in order to avoid algebraic loops.
A transformation of a general distributed LTI system to the representation in (5.1) will
be given in Section 5.3.

Note that the model in (5.1) can consider different process noise and measurement
noise vectors. This is, for example, achieved by defining the stacked vector

w=[oT @] (5.2)

with © being the process noise and w the measurement noise. The stacked system
matrices are accordingly defined by

po=[57 o -
h .
Dyw=[07 DJ]

5.1.3 Interconnection Relations

We define the set of neighboring subsystems of subsystem 4, denoted by N, as the set
of subsystems for which there exists an interconnection with subsystem i, i.e., an edge
(i,k) in the union of edge sets £Y U EFM

NE = {k|(i,k) € (ESUENM) VEkeN, k#i}.
The interconnection signals p; and ¢; of the subsystems are further partitioned into

p; = concat, e (Pik) ,
ke (5.4)

g; = concaty e (qir) ,

where p;. € R™ix, g € R™ar are the ingoing and outgoing interconnection signals of
subsystem ¢ from and to subsystem k, respectively. This is illustrated in Figure 5.1. The
interconnection signals p € R™ and ¢ € R" of the system are then defined as

p = concat, .\ (p;)

(5.5)
q = concat;c - (qi) -
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Furthermore, we define the interconnection operator P¢ through the relation
p=PY%. (5.6)

The (i, k)-entries in P are the block elements P§ of the individual interconnection

relations pi = PG qri, which are shown in Figure 5.1. In the following, we will consider
ideal interconnections. In this case, the entries P are constant matrices of appropriate

dimensions.

Both PY as well as P¢ capture information about the interconnection topology of the
system. While P directly encodes the interconnections between the subsystems, P¢
describes the interconnections on the level of the edges, i.e., on the level of the ingoing
and outgoing interconnection signals, p and ¢, respectively. The following numerical
example illustrates the definition of the interconnection signals and the interconnection
matrix.

Ezample 5.1 (Definition of interconnections ¢,p and interconnection matrix P%). We
consider the following system composed of four subsystems with the interconnection
matrix

0 PG 0 0

R
—lo P§ o0 0>

0 P 0 0
indicating the interconnection topology of the subsystems. The interconnection channel
as defined in (5.5) is

ro % o o0 0 07
P12 e T q12
i G it
o PG, 0 0 0 OG .0 .
pes| 0 : 0 0 0 1Py 10 g23
P21 0 0 0 0 "0 PRI |an
P32 o 'o PE 0 , 0 , 0 432
42 e q42
~—~— Lo "o o PE , 0 | 0] —~~—
P q
'pG

For example, subsystem 1 has an interconnection channel of dimensions from n,, = n,,,
to ng = ng,, and subsystem 2 has an interconnection channel of dimensions from
Ny = Npyy + Ny + Ty 10 Mgy = Mgy + Mgy =+ Mgy

In the following, we denote decentralized, i.e., block-diagonal parts by a superscript (~)d,
and interconnection parts, i.e., off-block-diagonal parts by a superscript ()Z The decen-
tralized part of the plant, i.e., the ensemble of all G;, Vi =1, ..., N, is therefore denoted
as G?. The overall interconnected system, G, is given by the LFR with decentralized

part G and interconnection channel, as introduced in Section 2.4, as follows

. {Gd = diagiex (Gi)

5.7
S p (57)
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Note that with the definition of p; and ¢; in (5.4) over the interconnections (i,k) €
EFUECM the interconnection matrix P is defined over the undirected graph 7¢ + TEM
where 7™ introduces zero signals in the appropriate channels to complete the graph 7¢
to an undirected one. Therefore, in the following, w.l.0.g., we will consider undirected
interconnection graphs, and P¢ is thus symmetric.

The system G can also be written in terms of the stacked signal vectors of all subsys-
tems, given as

x = concat ,(z;), y=concaty,(y;), u = concatl(u;),
z = concat) (z), w = concatl’ (w;), (5.8)

p = concat{(p;), ¢ = concat{,(q:),
and the block-diagonally stacked system matrices, given as

At = diag | (Ay), B, = diag | (Bu.), C,*t = diag ,(C,,),

de = diagﬁ\;l(Bw,i) ) Dywd = diagi]\il(Dyw,i) ) Dgw = diagﬁ\;l (Dzwm‘) ) (5.9)
Cl = diagﬁ\;(Cz,i) ;o Dut = diagl (D)

)

where the matrices on the diagonal are the subsystem matrices from (5.1). They are
the decentralized system parts, e.g., A; = A;; € R"*™ Vi € {1,...,N}. The system
matrices of the decentralized system part G¢ that are related to the interconnection
channel are formed accordingly, as

Bﬁ = diagf\;(BpJ) ) Djp = diagfL(Dyp,i) ; DZPd = diagi]\il(DzPJ) )

5.10
€, = dingl1(Ci). Dy’ = dingly (Dy). 10
A possible realization of the subsystem matrices is the following
T
B, :concatkeN_G< Air Buik Bw,ik:| ) ,
T
sz,i = COHC&tkeN_G Cz,ik: Dzu,ik Dzw,ik:| ) )
T
C ik 0 D w,ik ) 9
! it (5.11)

Cyi = concatyya

Dy, = concat ¢ (

Dy, = concat, NG

)

All the system matrices of G? are thus block-diagonal.

Remark 5.2. If not all of the signals are interconnected, then the corresponding rows and
columns can be deleted, reducing the dimensions of the interconnection channels.
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Figure 5.2: Structure of the open-loop plant G = F(G?, P%), the controller K = F (K9, PK)
and the closed-loop system G = ]ﬁ(gd, P).

5.2 Controller Structure and Closed Loop System

This section provides details about the structure of the interconnected controller to be
synthesized and the resulting closed-loop system.

5.2.1 Interconnected Controller Structure

The objective of the controller synthesis is to find another interconnected system, the
controller K, such that the interconnection of the plant GG with the controller K is stable
and minimizes the induced Lo-norm of the closed-loop system, which we denote by G.
The controller structure is chosen such that the closed-loop system can also be modeled
as an LFR. This structure will be exploited in the controller synthesis. The structures
of the open-loop plant G = F(G?, PY), the controller K = F(K? PX) and the closed-
loop system G = F(G¢, P) are illustrated in Figure 5.2. The definitions of the individual
parts will be given in the following.

The state-space realization of the subcontrollers K; are given by

SUZI( AKZ BKZ i BpK,i .’L‘ZI(
KZ U/Z = _qfii_ ~ ;D_K_Z ~ _: _C(?Iiﬂ_ _y’i_ 5 Z = 1, ceey N (512)
qZK CqK i DqK,z : 0 sz



5.2 Controller Structure and Closed Loop System

A possible realization of the controller matrices is given as follows

-
Bk ; = concatkeMK ([AKZk } ) )

Cpx ;= concatkeNiK ({CKM } )T ) (5.13)
Cux i = concaty e yx ([I 0} )

Dk ,; = COHC&tkENiK ({0 I} )

In this case, the interconnection channel consists of the controller states and measured
outputs of the neighboring plants. Other formulations are possible, where for example
the controller states and the control inputs are communicated.

We define the neighboring subcontrollers of subcontroller ¢ by
= {k| (ki) € (X UM,

The interconnection signals of the subcontroller 4, p& € R and q € R , are defined
and partitioned analogously to the interconnection signals, p; and g¢;, of the subsystem 1.
Also the overall interconnection signals of the controller, p € R"* and ¢ € R"«* are
defined analogously to the signals p and ¢ of the plant. With the interconnection matrix
PE | the relations of the interconnection signals of the controller are defined by
PK = PEK.

As before for the plant, we define the interconnection graph 7% = {N,EX} for the
interconnected controller. Furthermore, we define the interconnection matrix P as the
N x N-matrix capturing the topology of the controller on the level of the subcontrollers.
The mirror graph 75 as well as the mirror interconnection matrix PXM are defined
analogously to 7¢M and P“M from before.

As before for the system, we denote the decentralized part of the controller, i.e., the
ensemble of all K;, Vi = 1,..., N, by K¢ The interconnected controller is then given by
the decentralized part K¢ and the interconnection channel as follows

K7 = diag;. (K
K . { 1agl€N( ) ) (514>

K _ pK K.
Again, as for the plant, the interconnection signals, p® and ¢, and the interconnection
matrix PX capture the topology described by the undirected graph 75 4 THKM,

The overall controller K can also be written in terms of the stacked signal vectors of
all subcontrollers, as

K
7

o5 = concatiﬁl(x ) . u=concaty,(u;), p= Concatfil( ZK) , (5.15)
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and y and ¢, analogously. The controller matrices corresponding to the decentralized
part K¢ are given as

AR = diag, (A%)), BN =diagl, (BX))

K = diag;_, (CKz) ; DK = diagi]il(DKi) , (5.16)

where the subcontroller matrices AX;, BX; C¥; and DX, from (5.12) are the diagonal
(decentralized) controller matrices, given as

n Kxnsi

AK? — AKz‘z‘ c Rnlszn”f(, BKjl — BKii c R ) ’ (517>

and O ? and DKf analogously. The system matrices related to the interconnection
channel are formed accordingly, as

B = diag’, (Byr,;), Cix = diagl, (Cpre,) (5.18)

p
and CjK and DZK analogously.

We also denote the off-block-diagonal parts of the system and controller matrices by

a superscript ()’ For example, in the case of the controller matrices, they are given as
AKT = AK _ A B’ = pK _ pK1

A . A ) (5.19)

CE' =k — K7, DX = DK — DK,

These matrices contain the blocks, e.g., AKX V(i, k) € EX, which constitute the matrices
related to the interconnection channel, e.g., Byx ; as in (5.13).

5.2.2 Interconnected Closed-Loop System

We define the closed-loop of the system G interconnected with the controller K, as illus-
trated in Figure 5.2, as G = F,(G, K) = Fu (F(G?, PY), Fu(KL, PE)) = F.(F(G4,P)),

with dynamics given by

G? = diag, g,
G- giew(9i) (5.20)
q° =Pp°,
with
#] [AL L B Bai] [
Gi=|z|=|Cui ,Dui Dl |wi|, VieN, (5.21)
qs C2i ' Do Dazil 0§
and where the state and interconnection signal vectors z§ € R"=<i, ¢f € R" and p§ €
R" of the closed-loop system are defined as the stacked vectors of the system and the

controller, given as

p

Z; c i c i



5.2 Controller Structure and Closed Loop System

respectively. With the interconnected system and controller realizations in (5.11) and
(5.13), the closed-loop matrices for subsystem ¢ of a heterogeneous system are the follo-

wing.
A = (A + BuiD*:Cy;  BuiC*;
' i BKiCy,i AKi ’
_Bw i T Bu iDKiDyw %
By; = oK e
7 B iDyw,i

Cii=|C.;+ Dzu,iDKiCy,i Dzu,iCKi} )
Dlli = _Dzw,i + Dzu,iDKiDyw,i:| )

82 o -Bp,i Bu,iCpK,i
L0 B | (5.23)
Co: = -qui + un,iDKiCy,z‘ un,iCKz‘
2 = L DqKJCy,i CqK,i ’
Dy = -quai + DguiD" i Dy,
" Dyic iDyu i :

Diy; = {sz,i D iCor i

o O un,iCpK,i
|0 0 '

Remark 5.3. From (5.23), we see that the closed-loop system can either have intercon-
nected control inputs, i.e., off-block-diagonal terms B, ;; # 0 which results in non-zero
terms D, ;, or interconnected controller terms CK,. # 0 and DX, # 0 which results in
non-zero terms C,x ;. They are not allowed to be simultaneously non-zero. Otherwise,
the term Dy ; # 0 would create an infinite interconnection loop.

With

7° = concatly_ (2¢), q° = concatl™, (¢f), p° = concatly (pf), (5.24)

the interconnection matrices P and P are then defined for the graph of the closed-loop
system, T, with T = {N, €}, where the edge set £ is given by

E=ECUETM YK Y ERM,

As before in (5.7), this interconnection structure can always be achieved by introducing
zero signals in the appropriate channels. The set of neighboring subsystems of subsystem
i in the closed-loop is defined analogously to the sets A% and N for the closed loop
and is thus the union of both sets, i.e., N; = N UNK.

Note that the controller interconnection structure does not have to be the same as the
plant interconnection structure, i.e., we allow for P¢ # PX . In particular, the controller
interconnection topology can be chosen sparse if the communication is restricted.
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Figure 5.3: Closed-loop of system G with controller K.

5.3 Transformation to Interconnected State Space
Representations

In general, the performance channel of a given distributed plant may not be localized as it
is assumed in (5.1). For instance, for cooperative control tasks, system-wide performance
goals can be formulated, and exogenous inputs can affect coupled parts of the system.
In this case, the performance channel is not localized and the system cannot readily be
modeled in the form given in (5.7), which, however, is required to achieve the structure
of the closed-loop system in Figure 5.2.

5.3.1 Distributed Systems with Centralized Performance

Let us consider a distributed continuous-time LTI plant with the following dynamics

i = Ar+ XY, By,u; + Byw,
G: Sy, =Cyx+ Dy, i=1,.N, (5.25)

z =Csx+ Dzyu,

with the stacked signal vectors x, u and y as in (5.8). The exogenous input and per-
formance output, which in general are not local, are given by w € R" and z € R"*,
respectively. We denote the closed-loop of system G with the controller K as G, which
is illustrated in Figure 5.3.

In order to decompose the system into local interconnected subsystems G;, we propose
to augment the global performance input and output, w and z, in (5.25), such that a
local performance input and output can be assigned to each individual subsystem. This
augmentation is given by

z=0Q287 and w= R Tw, (5.26)
with
z = concaty (), w = concat (w;) . (5.27)
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5.8 Transformation to Interconnected State Space Representations

In (5.26), S and T are matrices of full rank, and the matrices Q and R are weightings
which will be defined in Section 5.3.2. The augmentation of the related system matrices
is defined as

CZZQ%SCE DZUZQ%SDE’LH

_ _, (5.28)
B, = B,T'R> Dyw = Dy T'R2,

where the augmentation is chosen such that the resulting structure of the system matrices
is localized, as

C. = concatly | (C. ), D, = concat) ,(D.,),

.29)
o . (5

B,, = concat? (me‘) , Dy, = concatiﬁl(Dyw,i) .
Note that the performance channel does not need to be decentralized, i.e., the matri-
ces are not required to be block-diagonal, e.g., C. is not required to be of the form
diag),(C.,), but each subsystem needs to be equipped with a (possibly interconnected)
local performance channel w; to z; for the decomposed controller synthesis. This perfor-
mance input-output-transformation in (5.26) and (5.28) with (5.31) leads to the system

& = Az + Y, By + 2%, Buwi,
G:qy; = Cyiz+ Dy, w, i=1,..,N, (5.30)
Z = Z,i'r+Dzu7iu, 1= 17...,N’

which has local control and performance inputs and outputs, w;, y;, w;, and z;, respecti-
vely, and can thus readily be modeled as the interconnected system in (5.7).

5.3.2 System Norm-Invariant Transformation

As control objective, the H,,-norm of the closed-loop transfer function from w to z of
the system G under the controller K, i.e. ||G|#.., is to be minimized. For a scalable
synthesis of K, the goal is to exploit the structure of G and thus to minimize ||G||3...
We propose to chose the transformation of the performance channel such that under the
same controller K, this norm is equal to the norm of G, i.e., ||G||ln. = ||G|l2.. Let us
assume that the full rank matrices Q and R are chosen as

Q==51"St+ My, R=TT" + My, (5.31)
with
Mg =M}, Mp=M}, — STMeS=0, TMsT!' =0
The choice of the so-called complementary matrices Mg and Mpg is not unique. They

can for example be chosen such that C, and B, are as decentralized as possible, i.e.,
have as few off-diagonal blocks as possible.

With the augmentation of the performance channel in (5.28) and the choice of weigh-

tings in (5.31), the equality of ||G||#.. and ||G||s.. is stated in the following.
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Theorem 5.1. Given G and G, with the transformation in (5.28) and the weightings in
(5.31), it holds that

19113 = Gl

Proof. Similarly as in Lemma 9 in [59], for a transformation of a system G to G with
G =T, G T/, the following performance bounds can be proved

min T max
il T2y o1 < (G, < Cme(Tr)

Tmax (1) rom(T) 1G4 - (5.32)

With

1

T, = (STTST + MQ)%S, T, = (TTT + MR)jT,

we need to show that the transformation matrices 7; and T, are semi-orthogonal, which
is a generalization of orthogonality for rectangular matrices, i.e.,

T'T, =1, T,T =1

Semi-orthogonal m x n or n X m-matrices have m singular values of 1, if m < n. Then,
the bounds in (5.32) are tight since 0,0, = Omin = 1 and so the H.-norm is not changed
under the system transformation. To show that 7, is semi-orthogonal, we see that

.
T'T, = (IT7 + Mp)"3T) ((TT" + Mg)~37T)
T
=T ((TT" + Mg)™%) (TT" + Mg)"*T
=TNTT" + Mp)"'T =1,

which holds because of Mp = M.
Showing that T," T; = I follows along the same lines. O

The following proposition suggests that the augmentation of the performance channel is
also applicable for an Hs-based controller synthesis.

Proposition 5.1. Given G and G, it holds that

1G] = 11G 13-

Proof. As shown in [59], the Hy-norm is also unitary-invariant, and therefore the same
proof as in Theorem 5.1 can be applied to show that ||G|2, = ||G|l2.- O

5.4 Decomposed Synthesis

In the following, we will consider methods from robust and gain-scheduled controller
synthesis, where the interconnection plays the role of the uncertainty, as it is introduced
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5.4 Decomposed Synthesis

in Section 2.4. The block-diagonal entries in the system matrices are dealt with in a
decomposed way and the off-block-diagonal entries, modeled through the interconnection
channel, need to be accounted for in multiplier conditions that are coupled over the
subsystems. We present a decomposed synthesis for the interconnected controller K in
(5.14) based on the system representation in (5.20).

We use the FBSP as introduced in Theorem 2.1 in Section 2.4 for the controller
synthesis. This theorem can be directly applied to the system formulation in (5.20).
We show in the following proposition how the conditions in Theorem 2.1 can then be
decomposed into conditions of the dimensions of the subsystems by appropriate struc-
tural (block-diagonal) assumptions on the multipliers ), R and S and on the Lyapunov
matrix X.

Proposition 5.2 (Decomposed FBSP for Heterogeneous Systems). Consider a hetero-
geneous system G = F (G4, PY) given in (5.7). There exists an interconnected controller
K with PX as in (5.12) such that G = F,(G%, P) given in (5.20) is stable and has an
Lo-gain less than vy, if there exist matrices X; = X' >0, Vi € {1,..., N} and Ry, = R},
Qi = Q.. and Sy, V(i, k) € €, such that

T AZ' 5‘1 752
[*} lQTk Ak] [I k > 0,
S’ik‘ Rzk (nl’cikJrnPcki) (533)
V(i k) € &.
(0 & 0 0 1 00][I o0 0
X 0.1 0 0 00| | A By By
TI0O 0 | —~f L00l]o0 I 0
* <0,
§ 0 0} 0 31100 |C; Dui Dy (5.34)
00 ' 0 0 '@QS|]|O 0 I
(0 0 ' 0 0 'STR| [Coi Doy Doy
Vie{l,..,N}
with
Qi = diagycn. (Qir), Ri = diagycn, (Rix) , Si = diaggen, (Siv)
Qik = diag(Qix, Qki), Ry = diag( Rk, Rki), S = diag(Sik, Ski),
and with
- 0 P
-] ™.

Proof. When applying Theorem 2.1 to the interconnected system in (5.20) with the
structured Lyapunov matrix X = diagfil(Xi) and the structured multipliers

Q = diag,c (Qi), R =diagey(Ri), S =diagien(Si),
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the matrices in the nominal condition (2.13) are composed of only block-diagonal matri-
ces and therefore completely decompose into one condition per subsystem as in (5.34).

With 7 being an undirected graph, and with the structured multipliers

Qi = diagycn, (Qir), Ri = diagyen, (Rir), S = diagen, (Six)

the multiplier condition in (2.12) can be transformed into a block-diagonal matrix with
the conditions of (5.33) on its diagonal blocks. To see this, let us consider the intercon-
nection channel p¢ = Pq° as defined in (5.20). Then, we can always find a permutation
matrix 7', that reorders the entries of the signals ¢ and p° in such a way that those
corresponding to the same edge are consecutive, i.e.,

pr=Tp", ¢ =T¢,

with

Z;C = |:"'7p7?k;—|—7 pi}l—l—7 "']T7 dc = |:"'7Q7;ck;—|—7 QIS;ZT7 "']T

The similarity transformation of the multiplier condition with 7" leads to

g s P e e

ey .

involving the multiplier transformations
Q=TQT™', S=TST', R=TRT"

As the multipliers ), R and S are block-diagonal, this transformation results again in
block-diagonal multipliers Q, R and S with the same reordering of the blocks on the
diagonal as for the interconnection signals. This completes the proof that K stabilizes
G = Fu(G, K) and leads to an H,-norm less than ~. O

The following example illustrates the transformation in the proof of Proposition 5.2.

Ezample 5.2 (Transformation to block-diagonal P). Let us consider a closed-loop system
with the same interconnection structure as in Example 5.1. It is easy to see that the
transformation

~

I
O OO OO~
O OO O N~NO
O OO ~NOOo
O ~NO O OO
O O ~NO0 OO0
~N O O O OO
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applied to the system as in (5.35) gives

Pia 0 P2 | 0 0 | 0 0 5,
P51 Pan_0_,_0_0_,.0 0 [o5
Pzl _ | O 0 1 0 Pz 1 O 0 53
P |0 0 1P 0 10 0 a5,
P, 00 00 TT0 Pad| |gG,
% o o "o 0o 'Pe o] Ldg,
—— ~——

pe P ¢

Corollary 5.1. The controller K in Proposition 5.2 stabilizes G and leads to a perfor-
mance bound of less than v for G.

Proof. Note that from G to G, only the performance channel is transformed, and the-
refore stability of G, which is guaranteed by Proposition 5.2, implies stability of G =
Fu(G, K). Furthermore, it has been shown in Theorem 5.1 that the H,-norm is inva-
riant under the transformation of the performance channel, and thus the performance
bound ~ for G also holds for G. O

Convexification of the Synthesis Conditions

The synthesis problem for the dynamic output feedback (DOF') controller in (5.34) is not
convex. As proposed in [68], a variable transformation can be applied to transform (5.34)
into bilinear matrix inequalities (BMI). Then, an iterative algorithm can be applied,
iterating between fixing one set of variables and solving for the other one. Further
details can be found in [68]. For convenience, the variable transformation and an outline
of the iterative algorithm are given in (A.3) in Appendix A.1.

For the state feedback case, variable substitutions in the synthesis equations lead
to a convex problem. The synthesis equations can thus be formulated into LMIs. The
variable transformation is given in (A.8) in Appendix A.2. An overview about the
different controller synthesis problems and their convexity will be given in Table 6.1 in
Section 6.2.2.

5.5 Distributed Synthesis

The controller synthesis is based on the nominal conditions in (5.34) and on the multiplier
conditions in (5.33). While the nominal conditions are completely decoupled into small
conditions for each subsystem, the decomposed multiplier conditions in Proposition 5.2
introduce pairwise coupling between neighboring subsystems. Therefore, a decentralized
controller synthesis is not possible, and we propose a distributed design method in the
following. Our approach is based on a variant of the consensus ADMM [32], which
has been introduced in Section 3.5. In the algorithm presented here, only bidirectional
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Chapter 5. Heterogeneous Interconnected Systems

communication to neighboring subsystems is required. This variant has been introduced
in [112] where consensus ADMM for the distributed Lasso problem is considered. In [113]
this consensus ADMM scheme has been further extended towards an inexact method for
efficient computations in case of complex cost functions. In [114], the algorithm was
generalized to deal with conic constraints in the consensus couplings.

5.5.1 Decomposed Control Design Problem

We define the global variable vector [ containing the set of global structured controller
gains AKX BE CK DX asimplicitly given in (5.19), the global block-diagonal Lyapunov
matrix X', the multipliers Q;x, R, Six from Proposition 5.2, and v = 7_%, with ~ being
the performance bound in Theorem 2.1. The global synthesis problem of the distributed
controller can then be formulated as

min f(1) +g(1), (5.36)
with f(-) and g(-) being defined as

F)=-v,

(5.37)
(1) = Zia12)(1) + Zi2.13)(1).

Herein, Z(4)(b) denotes the indicator function of b satisfying the conditions in (a), i.e.,

0 if b satisfies (a),

oo otherwise.

I(a)(b) = { (538)

In order to decompose the global synthesis problem, we introduce the set of local
variables s; for all subsystems 7 € A/, which contain copies of all variables of the global
variable vector [ that are relevant to the respective subsystem i. The local variable vector
s; thus contains the local controller gains of K; in (5.12),

AZI<7BZI<7C’LI(7D’LI(7 A’le7BZI]:7C’LI]§7D’LIIg7 Vk G'A[ZK7 (5'39)

the local Lyapunov matrix Xj, the local copies v; of v, and the local copies of the
multipliers involved in the local synthesis problem (5.33), (5.34) of subsystem . In order
to ensure consistency over local copies of variables by different interconnected subsystems
1 and k corresponding to the same parts of the global variable [, we further define the
selection matrices F;; and Fj; and formulate the following local consensus constraint

Eik S; — Elm Sk, \V/(’l, k’) ef.

We further define the dual multipliers of subsystem ¢, corresponding to the consensus
constraints for s;, as A\;. The decomposed controller synthesis problem is now expressed
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as

ngn ; (fz(Sz) + gi(si)) )

(5.40)
s.t. Ezk S; = Ekz Sk V(Z, /{Z) eé.
with f;(-) and g;(-) being defined as
1
fls) = =g (5.41)

9i(5i) = L5.33)(5i) + Ls.30) (5i)-

5.5.2 Distributed Control Design Without Global Coordina-
tion

We present the distributed consensus ADMM algorithm in Algorithm 5.1 with only
nearest neighbor communication to solve the interconnected controller synthesis problem
of Proposition 5.2. The communication during the synthesis is defined over the graph
T = {N,E}, where the edge set £ is given by £ = EFUEM UEK U EXM | as introduced
in Section 5.2.2.

Algorithm 5.1 Consensus ADMM.

Input: Parameter p > 0, local subsystems Gj, interconnections P§ Vk € N,
PE vk € NE, initial values SEO), Vie N,

Initialization: Set x =0, A" =0,

while not converged do: Vi € N in parallel

Communicate E; sl(-“) to neighboring nodes k in N,
)\EHH) = )\EH) + P2 ken; (Tzk SZ(-H) — T S](:))u

s = argming f(si) + gi(si) + sT A,

Tige 88 4T 54
+p Chen; 1Tk 5 — 227052

9: K=Kk+1,
10: end
11: Output: Local controller gains in (5.39), bounds ~; = .

*

In step 6 of Algorithm 5.1, the matrices Ty, and Ty, select the elements over which
a consensus should be reached and place them in the right positions for the consensus
constraint with respect to ;. For convenience, a derivation of the steps of Algorithm 5.1
is given in Appendix A.3. A similar derivation of the steps can be found in [112], [114].
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Primal and Dual Residuals

As convergence criteria, the primal and dual residuals can be considered, which are given
as

r(*t) = concat? | (Concatke/\fi (Tz(ijﬂ))) ’

(5.42)
d**tY = concatly, (conca’ckE N, (dﬁ,’j“))) :
respectively, with
K 1 K K
Ti(kﬂ) _ 5 (Ezksl( +1) Ekib“;(g +1)) ’
(5.43)

K 1 K K K K
dl(-kﬂ) =3 (Eik<5( D _ )) + Em(sé ) _ S](g )>) .

% %

For their derivation, we refer to (A.22) in Appendix A 4.

Note that for determining convergence, the primal and dual residuals, r; and d;, can be
computed locally. Some higher-level communication protocol of only low communication
frequency is required to detect when convergence among all subsystems is reached.

As seen in Section 5.4, and as will be summarized in Table 6.1 in Section 6.2.2,
the controller synthesis equations (5.34) are convex in the state feedback case, and the
ADMM convergence results in [32] hold for the distributed synthesis in Algorithm 5.1.
If a dynamic output feedback controller is to be synthesized, the decomposed synthe-
sis equations are non-convex (bilinear) and need to be solved iteratively in step 7 in
Algorithm 5.1, and therefore no convergence guarantee for the ADMM iterations can
be given in this case. In the case of distributed output feedback control design, further
numerical techniques could be investigated in order to reduce the number of iterations to
convergence of the proposed ADMM scheme, such as warm-starting with solutions of the
previous ADMM iteration or early termination, such as proposed in [115] for real-time

ADMM.

Remark 5.4. Note that in addition to imposing the block-diagonal structure on the multi-
pliers, one could consider further restricting them to DG scalings or diagonal multipliers,
which would reduce the dimension of the consensus variables, and therefore both the di-
mension of the communicated signals as well as the computation and convergence time
could possibly be reduced. Since this would introduce more conservatism, we chose to
allow for (block-diagonally structured) full blocks.

5.6 Numerical Example

In the following, we consider randomly generated example systems based on coupled
mass-spring-damper subsystems. Each subsystem has a mass m; € V(5, 10), spring and
damping coefficients, k; € V(0.8,1.2) and d; € V(0.8,1.2), respectively, where V(a,b)
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O—@ O—0

© ©
1\\)\r ! !
O—x5—0 O
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£G = gK £=6GUegGM yegK ygkM

Figure 5.4: Interaction graph of the example system of N = 8 subsystems and subcontrollers
G = £X and the communication graph for distributed control design & = EGUEFMUEK UEEM

denotes the uniform distribution with support on the interval [a, b]. The interconnections
between the subsystems are described by the spring and damping coupling coefficients,
kg € V(0.2,0.4) and d, € V(0.2,0.4). The system matrices are given by
0 1 0 0
Aii = { ;A= lkk dik] ;

m; m; mE Mg

By = [bO], D..i= [Odl with by, deyi € V(1,1.3),

)

(5.44)
I
Cy,z' = [7 Czi = Onwi 5

N, N,

)

sz’ = [bo ‘| ) Wlth bw,i7 € V<17 12)’

and the remaining system matrices are zero.

We present the convergence of the ADMM scheme in Algorithm 5.1 for two example
systems. The first one contains N = 8 interconnected subsystems with matrices rand-
omly chosen, as given in (5.44), and the interconnection topology is chosen to be £¢ = {
(1,5), (2,1), (3,4), (4,2), (4,7), (5,6), (6,3), (7,8), (8,5) }, as shown in Figure 5.4. The
second example system is composed of N = 3 subsystems, which are interconnected in
a ring, as shown in Figure 5.6. We consider the synthesis of interconnected static state
feedback controllers, which are chosen to have the same interconnection structures as the
systems, i.e., £ = £, The communication topologies that are used for the distributed
controller synthesis, given by &€ = £ UEM U EX U EXM | are also shown in Figures 5.4
and 5.6. Figures 5.5 and 5.7 show the convergence of the bounds 7; on the H-norm
of the two example systems, and the convergence of the primal and dual residuals, as
given in (5.42).  This convergence behavior is representative for the simulated example
systems. The convergence time and the oscillatory behavior, however, depend on the
number of subsystems and on the interconnection topology.
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Performance Bounds +;, Vi € {1, ...,8} Primal Residual r Dual Residual d
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Figure 5.5: Convergence results for the ADMM scheme in Algorithm 5.1 for an example system
of N = 8 interconnected subsystems.

Q— Q—

£G =gk £=6CGUECM yegK yegKkM

Figure 5.6: Interaction graph of the example system of N = 3 subsystems and subcontrollers
G = £X and the communication graph for distributed control design & = EGUEFMUEK UEEM
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Figure 5.7: Convergence results for the ADMM scheme in Algorithm 5.1 for an example system
of N = 3 interconnected subsystems.
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5.7 Conclusions

The scalability of this distributed synthesis method will be illustrated in a numerical
example in Section 6.3, where it will be compared to the centralized synthesis and to
a more compact synthesis for special classes of interconnected systems which will be
presented in Chapter 6.

5.7 Conclusions

A modeling framework has been presented for heterogeneous systems interconnected over
arbitrary graphs, to which the FBSP can be applied. Under some structural assump-
tions on the Lyapunov matrix and multipliers, the controller synthesis equations have
been decomposed into small matrix inequalities of the size of the individual subsystems.
These decomposed equations are pairwise coupled according to the edges of the inter-
connection graph. A distributed solution method based on an ADMM scheme without
central coordination has been presented. The computational effort of each individual
subsystem per ADMM iteration scales linearly with the number of neighboring subsys-
tems. The communication topology of the synthesized interconnected controller is a
design choice and may differ from the plant coupling structure. In particular, a sparse
controller interconnection topology can be chosen in order to avoid excessive commu-
nication. Numerical examples have demonstrated the convergence of the distributed
synthesis. The scalability of the decomposed and distributed synthesis algorithm will be
illustrated in Section 6.3 of Chapter 6, where they will be compared to methods tailored
to special classes of systems.
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CHAPTER 6 .

Special Classes of Interconnected Systems

Depending on the degree of homogeneity of the subsystems, special classes of intercon-
nected systems can be defined. First, we review the case of homogeneous systems where
all subsystems are identical [59] and show how the model of heterogeneous systems and
the model for homogeneous systems are related by a transformation. Then we intro-
duce a new class of systems, referred to as a-f-heterogeneous systems. They consist of
multiple groups of homogeneous subsystems with different interconnections. We show
how the general model for heterogeneous systems from Chapter 5 can be transformed
into a more compact model for this special class of systems. This allows for a more sca-
lable controller synthesis. «-f-Heterogeneous systems are a significant extension with
respect to [61] where multiple groups of homogeneous subsystems are considered, but
all interconnections are required to be identical. In particular, the system model of
a-F-heterogeneous systems allows for a controller synthesis where the interconnection
topology of the controller is a design choice. This chapter is based on work that has
been published in [14].

The chapter is structured as follows. Section 6.1 addresses the special case of ho-
mogeneous systems. In Section 6.2 we introduce the new class of a-f-heterogeneous
systems. In Section 6.3, we present numerical results that demonstrate the scalability of
the decomposed methods from this chapter and we compare them with the methods for
heterogeneous systems presented in Chapter 5.

6.1 Homogeneous Systems

First, we present the most special class of interconnected systems, where all subsystems
and all interconnections are identical. This has been presented in [59] as decomposable
systems. We will show how the compact model of homogeneous systems [59] can be de-
rived by a transformation from the general model of heterogeneous systems presented in
Chapter 5. As the modeling framework and the synthesis methods are closely linked, also
the controller synthesis is simplified with respect to the formulation for heterogeneous
systems.
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Figure 6.1: Transformation of the interconnection channel.

6.1.1 Model of Homogeneous Systems

Definition 6.1 (Homogeneous System). Let M represent all system matrices A, B, Cy,
Dy, C., Dy, Dy, in (5.9). We define a homogeneous system if its system matrices
can be written as

M = Iy ® My + P% ® My, (6.1)

Md M?

with PC as defined in Section 5.1.1. This means that for a homogeneous system all local
subsystem matrices My;, ¥Yi € N (on the diagonal) are identical and all interconnection
subsystem matrices My,, (i, k) € EY (the off-diagonal block matrices) are identical.

Proposition 6.1. If the controller K is also chosen as a homogeneous controller, i.e.,
such that (6.1) holds with M representing the controller matrices A%, BX, CK and D¥,
and if P¢ = PX | then, the interconnected closed loop system in (5.20) can be transformed
to a representation where the interconnection operator takes the form

P=P®I,,, (6.2)

with P = PY = PX and the system matrices of (5.1) are transformed accordingly, such
that the closed loop system is not changed under the transformation.

Proof. We define the transformations of the interconnection channel, P, and of the
decentralized system part, G¢, as

P=Z"PZ,

G? = diag (I, ZT) G¢ diag (I, Z*T) , (6.3)

62



6.1 Homogeneous Systems

The transformation matrix Z is defined as the |€] x N matrix of all zeros except for ones
in the entries corresponding to an interconnection of an edge to a subsystem. The inter-
connection topology is captured in P = P®1,c and the interconnections are summarized
into one channel per subsystem. O

The transformation in (6.3) in the proof of Proposition 6.1 is shown in Figure 6.1.

The following numerical example illustrates the transformation in (6.3).

FEzample 6.1 (Transformation to more compact representation for homogeneous systems).
Let us consider the system in Example 5.1 in Section 5.1.3 again, which we assume to
be a homogeneous system. In interconnection with a homogeneous controller of the
same interconnection topology, the resulting closed-loop system can be described by the

interconnection matrix
0 Pio 0 0

_ P21 0 P23 P24
P - 0 P3o 0 0
0 Pyo 0 0

The interconnection channel, as defined in (5.5), for the closed-loop system is given as

7y B e i R L0 o i
S, P21 : 0 0 0 : 0 : s,
pg3 _ 0 | 0 0 0 | Pas | 0 qSS
P§4_ o , 0 0 o , 0 Poa 954_
Py 0 10 Px» 0 1 0 10 d59

_______________ g p
D42 0 "o "0 Pwm "0 T 42

N—— ! ! N——

pe P q°

As the system is assumed to be a homogeneous system, all the interconnection chan-
nels over the different edges of a subsystem are identical, because all off-block-diagonal
matrices My, are identical. Therefore, we can apply the transformation

O OO OO
O O NM~NMNO
O~NO O OO
~ O O O O O

which leads to the interconnection matrix

A P21 0 P2z Poy
P=2PzZ= 0 P32 O 0 (6.4)

The transformed interconnection matrix P captures the information about the inter-
connection topology on the level of the subsystems and summarizes all interconnection

signals from different subsystems to the same subsystem in one channel. The last equa-
lity in (6.4) assumes that the individual interconnection matrices Pj; can be captured
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in the form involving the interconnection matrix Pj, ® [npc. The decentralized part of
the system, G? is transformed according to (6.3) such that the closed loop system is not
changed.

The system matrices in (5.1) are thus transformed to the system matrices of G¢ as follows
u ik DBuw zk} ’
zp, Cz Jik zu ik Dzw,ik} )

= |4
= |
Dypi = |Cyit 0 Dywr]
= [f.
[

b oo, (6.5)
Dywi= [0 0 Inwk}
D=0 I, O}T

The controller matrices corresponding to the interconnection channel of subcontroller
¢ for a homogeneous controller can be defined as

Bpr i = [AKuc BKik} ;

Cp i = [CKik DKik} )

Coci= |1 O}T, (6.6)
-

Dk ; = [0 I}

Note that the representations in (6.5) and (6.6) are not unique. A similar model of
interconnected systems has been used in [59]. In this representation, the controller
synthesis equations can be simplified as described in the following.

6.1.2 Decomposed Synthesis for Homogeneous Systems

We state the following result without a proof. In the following, we will extend these
results to a broader class of systems and will give the derivations and proofs.

Proposition 6.2 (Decomposed Full-Block S-Procedure for Homogeneous Systems, [59]).
Let us consider a homogeneous system G = F(G?, P), which is given in (5.7) with
PC = PY®I, structured asin (6.2), assumed to be normal, and the system matrices are
structured as in (6.1). Then, there exists a controller K as in (5.12) with PX = P = P,
and with controller matrices satisfying (6.1), such that G = F,(G, K) is stable and has
an Ly-gain less than vy, if there exist matrices X; = X" > 0, and Q; = ~l-T, R = E’ZT
and S;, such that (5.34) and

Qi Si| [\,
Sl

where spec (+) means the spectrum, i.e., the set of eigenvalues.
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6.2 «-fB-Heterogeneous Systems

The implementation of the synthesis problem for homogeneous subsystems can be done
in a centralized way, or each subsystem can solve it in a decentralized way, assuming
knowledge of the eigenvalues of the interconnection matrices.

Note that the decomposed synthesis equations of Proposition 5.2 can also be used
in the case of homogeneous systems. Choosing identical multipliers Q;z, R and Sy,
respectively, for all edges (i, k), allows us to decompose the nominal and multiplier con-
ditions to identical small ones of the size of the individual subsystems. However, as
less structural knowledge about the interconnected system is exploited, in general more
conservatism can be introduced by the controller design in Proposition 5.2 than by the
one in Proposition 6.2. In particular, no information about the interconnection topology
of the subsystems is captured in the system representation. It can be observed that
the bound ~ of the resulting closed-loop system under the synthesized controller from
Proposition 5.2 is equal to the one from Proposition 6.2 (and therefore no additional
conservatism is introduced), only if the graph is regular, and if the spectrum of the
interconnection matrix is symmetric, i.e., if the smallest and largest eigenvalues satisfy
Amin(P) = —Amax(P). If these conditions are not met, it can be observed that Proposi-
tion 6.2 is less conservative than the synthesis based on Proposition 5.2 with identical
multipliers for all edges.

6.2 «-p-Heterogeneous Systems

In the following, we consider a more general model, where the system consists of diffe-
rent groups of homogeneous subsystems with different interconnections. This modeling
approach extends the special case in [61], which allows for different groups of homo-
geneous subsystems, but where the interconnections are restricted to be all identical.
While the synthesized controller in [61] needs to have the same interconnection topology
as the plant, the interconnection topology of the controller synthesized for the a-f-
heterogeneous systems is a design choice. Furthermore, instead of the singular-value
decomposition of the interconnection operator in [61], we propose a congruence trans-
formation which potentially reduces conservatism.

6.2.1 Model of a-5-Heterogeneous Systems

Definition 6.2 (a--Heterogeneous Systems). We define a system of a groups of homo-
geneous subsystems with [ different interconnection types, referred to as a-f-heterogeneous
systems, if the system matrices can be written as

M=Y" To i ®Mi+> Z (oo, P% @ M), (638)

Ma M
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Figure 6.2: Two groups of homogeneous subsystems interconnected by three different inter-
connections (8¢ = 3) symbolized by the different arrow types.

where PY are different interconnection matrices, and Ie, ,11ye, is an N x N matriz of
all zeros except that the diagonal entries corresponding to the indices from ©,_1 + 1 to
O, are ones. The index set variable ©; is defined as ©; = Zle N; with ©g = 0, where
N, is the number of subsystems in the group | € {1, ..., a}.

This means that within each of the o groups, all subsystems have equal matrices
M,;; and can have B¢ different matrices M, interconnected through the interconnection
matrices PG]-, respectively.

Figure 6.2 shows an example with two groups of homogeneous subsystems and 3% = 3
different interconnections. The matrices M;; correspond to those off-diagonal blocks of
M which represent the influence from all subsystems specified by the structure of P%
on the subsystems 1.

Proposition 6.3. If the controller K is also chosen to be composed of groups of ho-
mogeneous subcontrollers with different interconnection types, i.e., such that (6.8) holds
with M representing the controller matrices A%, BX, CX and DY, and with P].K and
BE instead of PjG and 3, then the interconnected closed loop system in (5.20) can be
transformed to a representation where the interconnection matriz takes the form

P = diag’_, (Pj ® anq) , (6.9)

with U P; being the union of the different interconnection matrices of the system and
j=T1..8
the controller, i.e., B is the number of different interconnection matrices PGj and PX;

in the closed-loop system.

Proof. We define the transformations of the interconnection channel and of the decen-
tralized system part similarly as in (6.3) as P = Z'PZ and G? = Z7'G?Z~ T, respecti-
vely. For the a-f-heterogeneous system, the transformation matrix Z is defined as the
|€] x (B N) concatenated matrix Z = Concatle(Zj), where Z; are the |€| x N matrices
of all zeros except for ones in the entries corresponding to an interconnection defined
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in P; between an edge and a system. With this transformation, the 3 interconnection
topologies are captured in P = diabgf:1 (P] ® Inpc). O

The transformation in (6.3) is shown in Figure 6.1. The following numerical example
illustrates this transformation for an a-g-heterogeneous system.

Ezample 6.2 (Transformation to more compact system representation for a--heterogeneous
systems). Let us consider the system from Example 6.1 again. Now, we assume that the
closed-loop subsystems 1 and 2 have equal diagonal matrices, i.e., My, = My =: M,
and therefore form a homogeneous group and subsystems 3 and 4 form another one, i.e.,
Mss = My, =: M, and thus a = 2. Furthermore, we assume that M, and My, are
equal and form one group of homogeneous interconnections, and Ma3, Mszo, Moy and My,
are equal and form another one, and thus # = 2. The different interconnection types are
important for the modeling of the interconnection matrices P;, which, for this example,
can be represented as

0 P 0 0 o0 0 0
_ |P1 0 00 _ |0 0 P33 Py
P = 0 0 0 of> P2_0P32 0 0
0 0 00 0 P2 0 0
We can apply the following transformation
I [ 0
I .0
_ 0 I 1
Z = 0 [ I ’
0 ! I
0! I
which leads to the interconnection matrix
[0 P20 0 ;0 0 0 0]
P2z 0 0 O ;O O 0 O
000 010 0 0 O
7T o o 0o 0o 'o 0o 0 o
P=Z2PZ=|¢-G7 0% 9 0 0
0 0 0 0 10 0 P23 Py
0 0 0 0 10 P32 0 O
L0 0 0 0 '0 Pz 0 O |

=diag(P ® I, ., P, ® I,, ,) = diag_, <Pj ® I, > .

The last equality uses the assumption that the individual interconnection matrices Pjy
can be expressed in the form P ® I,,.. The decentralized part of the system, G¢ is
transformed according to the transformation in (6.3) such that the closed-loop system is
not changed. Note that this modeling is not unique.
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A possible realization of the transformed system matrices of G¢ is given as follows.

By = Zfi (e;— ® [AU Buij B“”UD '
sz,i = Z]B:I (e;l' X |:Cz,2] Dzu,ij Dzw,i]}) )
Dy =" (@ [Chis 0 Dpuy)).
56 - (6.10)
Coi = ijl <ej ® {Inzj 0 0} > ,
Diywi = Zil (ej ® [0 0 Inwjf) :
D=3 " (ej @0 I, O}T) .

The controller matrices corresponding to the interconnection channel of subcontroller ¢
for an a-(-heterogeneous controller can be realized as

BpK,Z = ijl (ejT ® [AKij BKijD ’
B T K K
Cpre i = Zj:l (ej ® [C i D ”D ’ (6.11)
Cor i = Zf; (6}— ® [I O} ’
Dys=Y (¢ @ o 1))

As in the homogeneous case, instead of stacking multiple identical interconnection chan-
nels for neighboring subsystems, they are summarized in one interconnection channel per
subsystem. In order to transform the representation to this form, the interconnection
channel of each subsystem is augmented (by zero signals) such that each subsystem has
interconnection signals belonging to all different interconnection matrices P;. Therefore,
this formulation in general involves a larger dimension of the interconnection channel.
It depends on the degree of homogeneity of the system, i.e., on the values of o and S,
whether this formulation is beneficial for a reduction in complexity compared to Propo-
sition 5.2.

Remark 6.1. In comparison to the model in [61], the subsystems can have different
interconnections. For example, the states can be interconnected through a different
interconnection matrix than the performance inputs or outputs, or the control inputs.
An example will be given in Section 7.3.2 where the interconnected a-3-heterogeneous
system results from an augmented overlapping system representation.

In the following, we will show how the controller synthesis can be decoupled and made
more compact based on the system representation in (6.8).
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6.2.2 Decomposed Synthesis for a-5-Heterogeneous Systems

Proposition 6.4 (Decomposed Full-Block S-Procedure for a--Heterogeneous Systems).
Let us consider the system G = Fi(G4,PY), as given in (5.7), with system matrices as
defined in (6.8), Then there exists a controller K as in (5.14) with controller matrices
satisfying (6.8), such that the interconnection matriz of the closed-loop system is given
in (6.9), and such that G = F,(G, K) is stable and has an Lo-gain less than vy, if there
exist X; = X' >0, and Q= diagle (Qj), R= diagle (Rj) and S = diagle(gj), with
Qj = ~jT, Rj = RJT and Sj, Vi =A{1,...,8}, such that

HT[W@ fw@ﬂ B®dmsl o
In® S In®R, Inn,e ’
vje{l,..,8}, (6.12)
[0 &4 v 0 0 00]|[I o0 0
X 000 0 00| A B By
MTooi—ﬂ 10:00 0 I 0 <0,
0 0, 0 31 0001Ci Dui Dizi
00 ' 0 0'QS5 |0 0 I
0 0 ' 0 0 'STR||Coi Doy Doy
Vie{l,..,a}. (6.13)

Proof. The proof follows along the same lines as the one of Proposition 5.2 with the
structured Lyapunov matrix X = diag;,(Iy, ® &;) and the structured multipliers @ =
diabgf:1 (IN ® Qj), R = diagle (IN ® Rj) and S = diagle (IN ® Sj) Herein, N; is the
number of subsystems within the group . O

Note that if the system G is the transformed system from G in (5.25), Corollary 5.1
applies such that Proposition 6.4 also holds for G. Furthermore, Lemma 6.1 from [63]
can be applied in order to decompose the multiplier condition into small conditions.

Lemma 6.1 (adapted from [63]). Given the normal, real-valued interconnection matrices
P, =P ® Inpj with eigenvalues X\, then the following statements are equivalent

o[ 7]
Vi e{l,...,5},

. TIN®Q; IN®S;
(ii) M [IN®SJT InvoF,

>\In c

I pj] > 0, VA € spec (F;),

Pj ® Inpc.

J

>0, Vje{l,... 0}
Inn,e
J

Proof. We consider a diagonalizing transformation F'" P;F' = A;, which is guaranteed to
exist because P; is assumed to be normal. Then, the following regular transformation
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with Z = F® I and Z"Z = I can be applied. Using the properties of the Kronecker
product, this transformation yields the following equivalent statements,

coxz 0]z o] [Ive @, Ives)[z o]z o] |per
Z ' [+ M ~ Z >0,
0 Z] |0 Z| |[In®S] IN®R;| [0 Z||0 Z In,,j
Vi=1,..,0,
] X X P e
TIHIN®Q; IN®S; i@l
< |x ~ - > 0,
o [IN@@SJT In® Rj| | Ine
\v/j::[?"'?B’
The last inequality is equivalent to
e, §][M
x| | = - >0, VX € spec(P;),
. [SJT Rj] T pec(F3) (6.15)
vj e {]‘7""/6}7
since A;j = diagycqpec(p;) (A)- O

Introducing the additional constraint of Qj being negative definite imposes concavity of
the decomposed multiplier conditions in A\, which reduces the set of multiplier conditions
to the following

Corollary 6.1. If the interconnection matrices P; are normal, they can always be trans-
formed into diagonal matrices with their eigenvalues on the diagonal. Introducing the
additional constraint @j < 0 guarantees concavity of the multiplier condition in X. This
leads to the multiplier conditions

O

A
pj] > O, VA e {)\min (Pj),)\max (P])}

I . (6.16)

Vi e{l,.., 0}

Remark 6.2. Corollary 6.1 can be applied w.l.o.g. if any F; is not normal, as any
given interconnection matrix can be transformed and augmented into a normal one. For
simplicity the normal case is considered here. Possible transformations to obtain normal
interconnection matrices are given in [63].

Thus, in the case of o groups of homogeneous subsystems, there are o small nominal
conditions to be solved. Furthermore, for each of the [ interconnection types, two
multiplier conditions (for the smallest and largest eigenvalues of the P;), need to be
solved.

Remark 6.3. If some P; are simultaneously diagonalizable, i.e., if they commute in the
multiplication and are diagonalizable [59], [116], then  can be further reduced at the

cost of increased conservatism.
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Synthesis Problems DOF SSF

. . (2.12) convex (LMIs) convex (LMIs)
Centralized (5.36), e, (2.13) nonconvex (BMlIs) convex (LMIs)
Decomposed (5.33) convex (LMIs) convex (LMIs)
heterogeneous (5.34) nonconvex (BMlIs) convex (LMIs)
Distributed (5.40), i.c (5.33) convex (LMIs) convex (LMIs)
heterogeneous T (5.34) nonconvex (BMlIs) convex (LMIs)
Decomposed (6.7) convex (LMIs) convex (LMIs)
homogeneous (5.34) nonconvex (BMlIs) convex (LMIs)
Decogn i)osed (6.12 convex (LMIs) convex (LMIs)
a-f-heterogeneous (6.13) nonconvex (BMlIs) convex (LMIs)

Table 6.1: Overview of the different interconnected controller synthesis problems introduced
in Chapters 5 and 6. The resulting convexity of the optimization problems after the variable
transformations given in Appendices A.1 and A.2, for dynamic output feedback (DOF) and
static state feedback (SSF), respectively, are indicated.

Controller Synthesis

As discussed before, the synthesis conditions in Propositions 6.2 and 6.4 can be trans-
formed into convex ones in the case of state feedback. In the case of dynamic output
feedback, a variable transformation leads to bilinear matrix inequalities which need to
be solved iteratively. The transformations from (A.3) and (A.8) can be applied with the
simplifications due to the special cases of homogeneous or a-3-heterogeneous intercon-
nected systems. An overview of the different synthesis problems presented in Chapters 5
and 6, and their convexity after the variable transformations, is given in Table 6.1.

If the values of a and § are small, the decomposed synthesis equations can be solved
efficiently in a centralized way, i.e., simultaneously in one computer, or they can be solved
in a decentralized way by each individual subsystem, if all the required information is
available. For better scalability, the distributed design method in Algorithm 5.1 can
be used to compute a consensus over the multiplier matrices which introduces coupling
between the synthesis equations.

6.3 Numerical Example

In the following, we compare the computational scalability of the centralized synthesis
with full block multipliers for heterogeneous systems in Theorem 2.1 with the decom-
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Nominal condition Multiplier condition
Synthesis Number Size Number Size
Centralized 1 NX,xNX, 1 |E[ X < || Xm
Decomposed 1 X, x X, 9 XX X
homogeneous
Decomposed
a-B3-heterogeneous @ Ko X X 25 Ko X X
113ecomposed N X, x X, |E] X X X

eterogeneous

Distributed - =
heterogeneous* 1 Ko X Xn Wi Km X Xm

Table 6.2: Numbers and dimensions of synthesis conditions for the centralized (Theorem 2.1)
and decomposed synthesis for homogeneous subsystems (Proposition 6.2), a-3-heterogeneous
systems (Proposition 6.4), and heterogeneous subsystems (Proposition 5.2), with the (mean)
dimensions of the nominal, X,, (X,), and the multiplier conditions, X, (Xy,), for the single
subsystems. * Numbers and sizes of matrix inequalities are given per subsystem i and per

iteration of Algorithm 5.1.

posed synthesis for heterogeneous systems in Proposition 5.2, and for the special cases
of homogeneous systems and «-f3-heterogeneous systems in Propositions 6.2 and 6.4,
respectively, for a growing number of subsystems, N, and groups «, respectively. For
comparability, these problems are solved in a centralized way, i.e., in one computer. Their
scalability for a growing number of subsystems, N, or groups of homogeneous subsys-
tems, «, and for a growing number of interconnections |£|, is investigated in terms of
matrix inequality size, optimization variables, and solver times. A direct comparison
of the computational scalability of the centralized decomposed synthesis methods with
the distributed synthesis method in Algorithm 5.1 in terms of solver time is not possi-
ble, because the convergence time of the distributed synthesis heavily depends on the
interconnection topology of the system. Therefore, we compare the scalability of the cen-
tralized decomposed synthesis methods with the computational effort for one subsystem
in one iteration of the distributed synthesis.

The system matrices are chosen as in (5.44). We consider the worst case inter-
connection topology with respect to computational scalability, i.e., the case where all
subsystems are interconnected with all other subsystems. Table 6.2 shows the number
and dimensions of matrix inequalities to be solved for the centralized and the decom-
posed controller syntheses, and for the distributed synthesis per subsystem and ADMM
iteration. For simplicity, we assume that the dimensions of the single subsystems are
equal although they can be heterogeneous. We denote the dimensions of the decomposed
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nominal conditions by X, and the dimension of the decomposed multiplier conditions
by X,. Note that this is a simplification, as in general, the dimensions of the nominal
and the multiplier conditions for the different formulations in Propositions 5.2, 6.2, and
6.4, are not equal, but also depend on the number of neighboring subsystems (in Pro-
positions 5.2 and 6.4). This is indicated by X,, which represents the mean value of the
size of the synthesis conditions.

While the centralized synthesis scales polynomially with both the number of subsys-
tems, N, and the number of edges, |£|, the decomposed approach for heterogeneous
systems scales linearly in both the number of subsystems, N, and the number of edges,
|€], and polynomially in the number of neighboring subsystems, |[A;|. In the case of
a-[-heterogeneous systems this scaling is linear in o and /3, respectively. The factor 2 in
Table 6.2 applies to the normal case accounting for the smallest and largest eigenvalues
of P, or each P;, as in Corollary 6.1. For homogeneous systems, the computational effort
for the synthesis is constant, i.e., it does not depend on N and |€]|. For each subsystem in
each iteration of the ADMM scheme in Algorithm 5.1, the number of matrix inequalities
and their size, the number of optimization variables, and the amount of communication,
all scale linearly with the number of neighboring subsystems to which the respective
subsystem is interconnected. All of these variables are independent of the total number
of subsystems N. This result can also be seen in Table 6.2.

The number of optimization variables and the solver times, averaged over 10 computa-
tions, are shown in Figure 6.3 on a logarithmic scale. Note that for the a-/3-heterogeneous
system, we assume that § = 1 and the scaling is shown over the number of groups, a.
Therefore, the heterogeneous system involves more optimization variables, since it does
not only scale with the number of subsystems, but also with the number of neighboring
subsystems. However, this is compensated by less coupling because of the more structu-
red multipliers, which is why the solver times for both systems (in terms of one ADMM
iteration per subsystem for the latter) are very similar. Also note that for the centra-
lized synthesis of Theorem 2.1, we chose the multipliers to be block-diagonal for the
subsystems. Even with this simplification, the solver times rapidly become prohibitive.
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Number of optimization variables
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Figure 6.3: Number of optimization variables and solver times over the number of subsystems
N, the number of neighboring subsystems |N;|, and the number of groups «.
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6.4 Conclusions

Special classes of systems have been considered in this chapter. In particular, we have
reviewed the properties of homogeneous systems where all subsystems are identical. We
have shown how the general description for heterogeneous systems in Chapter 5 can
be transformed to a more compact model in the case of homogeneous systems. As the
controller synthesis is closely linked to the modeling framework, the control design for
homogeneous systems also simplifies. We have introduced a-(-heterogeneous systems as
a new class of systems in between homogeneous and heterogeneous systems. This ex-
tends the class in [61] and includes not only the case of multiple groups of homogeneous
subsystems, but also allows for different interconnection types. In particular, a choice of
interconnection topology of the controller is enabled. A further advantage is the potenti-
ally improved scalability of the controller design with respect to heterogeneous systems,
because the number of decomposed synthesis conditions scales linearly with the values
of @ and f3, instead of linearly with N and |£| and polynomially with |N;|. Numerical
examples have been presented to show and to compare the scalability properties of the
introduced synthesis methods for the different classes of systems from Chapters 5 and 6.
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CHAPTER 7 .

Augmented Distributed Control

Choosing between a decentralized, centralized or distributed control architecture im-
plies trading off between the required communication and computational effort and the
achievable control performance. While decentralized control schemes do not require any
communication, their control performance can be unsatisfactory, in particular for dy-
namically coupled systems. This chapter aims at introducing methods to improve the
control performance for control schemes that are decentralized or that have a sparse
communication topology. In particular, the synthesis of a controller based on a model
with an augmented overlapping state space is presented. In the augmented representa-
tion the individual subsystems contain copies of states of neighboring subsystems and
thus capture more model information about the overall system dynamics than in the
original state space, where only information about their own local states is captured.
This potentially improves the control performance with respect to a controller with the
same interconnection topology but without model overlap. By designing the overlapping
state space, where the degree of overlap is a design choice, and by designing the structure
of the explicit communication, the trade off between the required computational effort,
the communication and the achievable performance can be made. With the augmented
state space representation, the plant can be modeled and classified according to the fra-
meworks presented in Chapters 5 or 6, depending on its heterogeneity, and the scalable
control design methods can be applied. This chapter is based on the publications [12]
and [14].

The chapter is structured as follows. In Section 7.1, we present the mapping of a
distributed system to an augmented overlapping state space. Section 7.2 introduces a
model transformation that leads to an interconnected representation of the system in
the augmented state space. We prove that the performance guarantees for the controller
synthesis in the augmented state space also hold for the original system. In Section 7.3
we present numerical examples to illustrate the introduced concepts and to demonstrate
how increasing the overlap of the subsystem models causes an improvement in the control
performance for decentralized control, i.e., without communication between the subcon-
trollers.
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original mapping augmented
states x z to & states &

Figure 7.1: Augmentation of the original system to the augmented state space.

7.1 Augmented State Space

For distributed systems with strong coupling in the dynamics or in the performance, it
is beneficial for the subsystems to have overlapping information. Therefore, we are inte-
rested in designing a distributed controller based on an augmented system description,
where the control actions of the subsystems depend on overlapping parts of the state
vector. A reasonable choice of this overlap in the states of the subsystems depends on the
coupling to neighboring subsystems. For the controller design, the system is transformed
to an augmented state space, where the structural constraints on the controller become
block-diagonal. The augmented state space is obtained by expanding the original one
through creating copies of the overlapping state variables. This augmentation of the
state space is illustrated in Figure 7.1. More formally, we define the mapping from the
state vector x to the augmented state vector & by the matrix V; € R"*"=  The overall
augmented state vector & is the collection of all § € R™i 4 =1,..., N, i.e.,

¢ = concatly (&) € R™. (7.1)
The augmented state vector £ is obtained from z through the mapping V' as
£ =Vu, (7.2)
where V' is given by the collection of the matrices V; as
V = concatl ,(V;) € R"*™=, (7.3)

The matrix V' is assumed to have full column rank, i.e., the original state space of x is
completely spanned by the augmented state space of &.
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7.1.1 Augmented System

In the following, we will use a subscript £ to denote variables related to the augmented
state space. In order to describe the system in the augmented state space, let U be a
matrix of full row rank that satisfies

Uv =1.

Then, the dynamics of the overall system (5.25) in the augmented state space are given
by
£ = Aef + Bew + Beyu,
Gg Ny = ngg + Dyw’LD, (74)
z = ngf -+ Dguu,
with the augmented system matrices
ng = CyU + Mcy, ng =C;U + MCE- .

The complementary matrices My, M¢,, Mc., as in [85], are degrees of freedom, which
will be discussed in more detail in the following. In the trivial case of V' = I, it is obvious
that the augmented system is equal to the original system.

Inclusion Principle

The following results are based on the so-called Inclusion Principle [117]. As it is formu-
lated for a nominal system, let us consider the modified systems G™™ and G’gom, given by
the systems G in (5.25) and G¢ in (7.4), with By, Dyg, Cz, Ds,, and the corresponding
matrices for (_}’g, all being equal to zero. Then the following holds.

Definition 7.1 (Inclusion Principle [117]). The system Ggom is said to include the system

G if there exists U and V', with UV = I, such that for any initial state x(0) of G"o™
and any fized input u(t), it holds that

2(t,2(0), u(t)) = UE(L, Va(0),u(d), y(z(t)) = y(E1), vt =0.

Definition 7.2 (Restriction [117]). We consider the special case of a monic V, i.e., of
full column rank. If it holds that

§(t, Vr(0),u(t)) = Va(t, x(0), u(t), y(&(t) =y(=(t)), Vvit=0, (7.6)
then G™™ is called a restriction of GE™ to R(V), where R(V) is the range space of
V. This subspace R(V') is invariant in the sense that the solutions &(t) of (_}’Igom starting
from an initial state £(t) € R(V) stay in R(V') for any input u(t) and such solutions

£(t) are represented by the solutions x(t) of G*™. Since V is monic, there exists an epic
U such that UV = I and inclusion of G*™ by Ggom is therefore implied.
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Theorem 7.1 (Restriction [117]). Given the nominal systems G™™ and (_}’gom, as defined
before, and with V monic, then G*™ is included in G?Dm, if and only if the following
holds

MaV =0, Mg,V =0, (7.7)

Proof. The proof can be given by rewriting the equality of (¢, V(0),u) = V(t, 2(0), u)
in Definition 7.2 as

t
Veltz(0) + V / A7) Bu(7)dr (7.8)
0
t
= VAUTMAY2:(0) +/ eWVAUFMANE=T) Boy(7)dr, Y (0), u(t), (7.9)
0

which can easily be proved to be true if and only if the condition M4V = 0 in (7.7)
holds. Furthermore, the requirement y(£(t)) = y(x(t)), i.e., Cyx = (C,U + Mg, )¢ holds
if and only if M¢,§ = Mg, V§ = 0, and therefore Mg,V = 0. O

As the mappings between G™™ and G?om involves singular transformations, it is clear
that G™™ and Ggom are not algebraically equivalent. For example, for a fixed u(t) and a
fixed initial state 2(0) of G"™, there always exists an initial state £(0) of Ggom such that
y(x(t)) = y(&(t)). However, the opposite is not true in general. For compatible initial
states £(0) = V(0) however, the input-output behavior of the systems G™™ and égom
are equal.

Generalizations to Performance Channel

Considering the systems G and G¢ in (5.25) and (7.4), we assume in the following that
the complementary matrices satisfy the following conditions.

MuV =0, Mg,V=0, M.V=0. (7.10)

With this choice of augmentation in (7.5) and complementary matrices in (7.10), we
propose the following results, which are a generalization of the restriction in Theorem 7.1.

Proposition 7.1. Given the augmented system (_}’g in (7.4) with the augmented system
matrices in (7.5) and the complementary matrices satisfying (7.10), and given the ori-
ginal system G in (5.25), then for the choice £(0) = Vx(0), the following holds for the
trajectory of the state x(t) and the augmented state £(t),

E(t, Va(0),u(t),w(t) = Va(t,z(0),u(t), w(t)). (7.11)

Furthermore, it holds that
Z(t,&(t, Va(0), u(t), w(
y(t, (¢, Va(0), u(t), w(
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7.1 Augmented State Space

Proof. Redefining the input of system G™™ in Theorem 7.1 as [u(¢)", w(t)"]" and equi-
valently the system matrix as [B, Bgl, the results from Theorem 7.1 can directly be
applied to show that (7.11) holds. Furthermore, it holds that

Cez £(t, Vr(0), u(t), w(t)) = (C:U + Mo, )V w(t, 2(0), u(t), w(t)).
Cz
The same can be shown for y(t), and thus the results in (7.12) follow. O

Due to Proposition 7.1, also the input-output behavior from w to z of the original system
G and of the augmented system @5 under the same input u(t) are equivalent.

Modes of the Augmented System

nom

In the case of a restriction of the system ég onto G™™, the complementary matrix
My can be chosen as [117], [118]

My=Y([I-VU)=YVU, (7.13)

where Y is an arbitrary ne X ng matrix, V is a basis matrix for the null space of U,
and U is the unique left inverse of V, such that the null space of V is equal to the
range space of V. The choice of My as in (7.13) implies M4V = 0. In the case of a
restriction of the system @5 to G, the spectrum of the augmented system matrix Ae
is the union of the spectra of A and of UM4V. This means that the complementary
matrix M, introduces nge — n additional modes into the augmented system dynamics,
which are given by the eigenvalues of UM V. We will later see that these modes are not
controllable. In order to show the introduction of these additional modes, we consider
the closed-loop dynamics of the system and a static state feedback control CXi, which
corresponds to C’éK V = C¥ in the original state-space. Then, we define the matrices

W =[VV]and W' =[UT U] and perform the following transformation

A+ B,CE UMV

e (A5+B@C§<)W:[ 0 oM, 0|

(7.14)
which follows from the assumptions of the restriction and with UV =0and UV =0
by definition. The additional modes speC(U M AV) can be observable depending on the
complementary matrix Mc,. However, they are not controllable by the original control
inputs u. These modes are therefore so-called fixed modes (FMs), which will be further
analyzed in Chapter 8. As these modes only appear in the augmented dynamics, they
do not influence the original system G. For the controller synthesis in the following, the
complementary matrices however need to be chosen such that the pairs (Ag, Bg,) and
(Ag, Cgy) are stabilizable and reachable, and such that the introduced FMs do not limit
the achievable control performance. The complementary matrices can for example be
designed such that they minimize the condition number of the observability matrix, and
such that the additional modes introduce fast dynamics.
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Figure 7.2: Block-diagram of the original system and the dynamic output feedback controllers
in the augmented state space. The gray parts indicate the interconnections of the subcontrollers
enabled by communication (of measurements y, to subsystem 1 in this example).

7.1.2 Interconnected Augmented System, Controller and Closed-
Loop

The goal is to design an augmented interconnected dynamic output feedback controller,
K¢, which has the same structure as K in (5.14), given as

K¢ = diag, .\ (Kg) ,
ng{; ﬁgz;/v( i) (7.15)
Pt =P
with
gzK AK& BKEZ |BpK,z zK
Kei - w; | = CK@‘ D¥,; :CpK,i Yi |- (7.16)

The augmented controller states of the subcontrollers have the same dimensions as the
states of the corresponding subsystems, i.e., & € R":. As before, we denote the block-
diagonal and off-block-diagonal parts of the augmented controller gains with superscripts
()% and (-)', respectively, e.g., AKX, = AK? - AKE. The structure of this augmented
interconnected controller is illustrated in Figure 7.2.

The objective is to apply the scalable controller synthesis methods from Chapters 5
and 6 to design the augmented interconnected controller K¢. In order for the methods
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to be applicable, the system G in (7.4) is transformed into the following form.

(7.17)

G, - {G? = diag;cp(Gei) ,
p =P,

where G¢; has the same structure as G; in (5.1), but in the augmented state space. A
possible transformation from G¢ to G¢ that has desirable properties for the controller
synthesis will be given in Section 7.2.

Then, we can define the closed-loop system of G¢ in (7.17) and K¢ in (7.16) as

d _ Jiag. A
g£ . g£ lagZGN(gfi) (718)
q° = Pp°,
with
S| |Aei ) Beai Bei | &
ggi . _Zi_ = Cﬁl,i : Dfll,i D§12,i _wz_ , Vi € N, (719)
4 Cezi ' Deari Deani| | p§
and with
.
g=la" €], €= concatl, (&), (7.20)

and with the other signal vectors being defined analogously as before. The system
matrices for the closed-loop of the augmented system and the augmented controller,
Ae.is Betis Ceviy, Dein; and Deya;, are formed in the same way as the closed-loop matrices
in (5.23).

7.2 Transformation to an Interconnected Augmen-
ted System

In order to model the augmented system @5 as an interconnection of local subsystems
G, as given in (7.17), we can transform the performance channel of the augmented
system such that each subsystem is equipped with a local performance channel w; to z;.
This is done similarly to the input-output transformation of the non-augmented system
G to the system G in Chapter 5.

Norm-Invariant Augmentation of the Performance Channel

The objective is to transform the global performance input and output, w and z, of

system G¢ into a performance channel from w = [w,...,wy|" to 2 = [2],...,2{]" that
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o

Figure 7.3: Closed-loops of original system G and augmented systems G’g and G¢ with the
controller K¢. The block-diagonal parts of G¢ are in Gg and the off-block-diagonal parts in the
interconnection PY.

can be decomposed into local ones for the individual subsystems. The augmentation of
the performance channel is defined analogously to the one in (5.26), and is given as

C&z:Q%SC%Z—i_Mngu DZUIQ%SDEU7

2 " (7.21)
ng = Bg@jﬁR5 Dyw = DyzDTTR§7

where the matrices Q and R again are assumed to have full rank and they have to
satisfy (5.31). The additional complementary matrix Mc,, has to satisfy the constraint
Mc,.V = 0. Apart from this constraint, Mc,, is a degree of freedom, in addition to the
choice of the complementary matrices My and Mg as in (5.31). They can for example
be chosen to introduce sparsity into the matrices Ce¢, and Bg,,.

Control Design Concept

The goal is to design an augmented controller K¢, as given in (7.15), such that the H..-
norm of the closed-loop transfer function from @ to z of the closed-loop, i.e., ||G|/#..,
with G = F.(G, K¢), is minimized. For a scalable synthesis of K¢, the methods intro-
duced in Chapters 5 and 6 can be applied. This is possible by exploiting the structure
of the interconnected augmented system model G¢. In the controller synthesis, we thus
minimize ||Ge||y.., with Ge = Fu(Ge, K¢). The controller K will be implemented in the
original syst