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ABSTRACT

Improvement of design performances requires exploration of a larger amount of analyzed design solutions 
in the early design phase. Computational design systems use parametric modeling, building performance 
simulations and genetic algorithms to iterate through a large amount of design alternatives, converging towards 
optimal design solutions. Computational design systems proposed by most existing researches do not enable 
interconnected analysis of quantitative and qualitative design performances, however, and consequently are 
rarely used in the field of architecture. 

This thesis proposes a visual analytics system that visualizes design geometries and performances of 
a large data set of design alternatives in a highly interactive data environment. The visual analytics system is 
developed conjointly to the concept design of a nearly Zero-Energy sports hall. The sports hall is designed using a 
computational design system that generates a large set of design alternatives and analyzes energy performances, 
visual comfort performances and thermal comfort performances of each alternative. This thesis develops a 
prototype of the visual analytics tool to visualize a data set of sports hall design alternatives. Peer review and 
user experience determine whether the tool as a whole and whether its data analytics methods suit the design-
making process of practitioners in the field of architecture. The functionality of the computational design system 
is assessed by its suitability to facilitate a performance-driven design process. 

The computational design system proposed in this thesis uses multiple parametric models to create a varied 
set of design alternatives. The proposed visual analytics system is a game-like 3D environment. This environment  
integrates and displays a Self-Organizing map with other data analytics methods and all designs’ geometries in a 
single viewport. Multiple means of interaction facilitate deduction of qualitative and quantitative performances.

The visual analytics system is intuitive in use because of the use of metaphorical visualizations of data analytics 
methods. Peer review and testing of the visual analytics system indicate that the computational design system 
proposed in this thesis is generally able to improve design performances. The computational design system is 
effective in facilitating comparison of design alternatives and in use as a frame of reference throughout the 
design processes. Furthermore, the visual analytics system has potential in use for educative and documentation 
purposes.

KEYWORDS
Computational Design, Multi-Objective Optimization, Visual Analytics, Parametric design, Design Exploration, 

Performance-driven design, Building performance simulations, Sports Hall, Zero Energy, Self-Organizing Maps.
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17 Introduction

1.1 INTRODUCTION

The building sector has significant effects on the 
natural environment. The building sector accounts 
for 40% of total energy consumption in the European 
Union (Directive 2010/31/EU, 2010, p.13) and for 20.1% 
of the total delivered energy worldwide (EIA, 2016). 
Furthermore, the energy consumption in the building 
sector is increasing. From 1990 to 2010, electricity 
consumption of buildings in Europe has increased by 
around 1%/year, mainly due to an increase of energy 
consumption in non-residential buildings (1.5%/
year) (Enerdata, 2012). The U.S. Energy Information 
Administration (EIA, 2016) predicts that the energy 

consumption will keep increasing. Their projections 
predict an annual increase of 1.5% the total energy 
consumption in the global building sector from 2012 
to 2040, which would result in a total energy increase 
of 51.7% in these 28 years.

In order to decrease global warning and to prevent 
a critical global temperature rise of 2°C, as well as to 
achieve a 30% reduction of greenhouse gas emissions 
by 2020 compared to 1990 levels, the European Union 
has determined that in 2020 all new buildings should 
be nearly Zero-Energy Buildings (Directive 2010/31/
EU, 2010, p.21).

1.2 DEFINITION OF ZERO-ENERGY BUILDING

A ‘Zero-Energy Building’ (ZEB) is a building which 
energy requirements are met by non-polluting, 
renewable energy sources. ZEBs use methods of 
energy efficiency to reduce the energy demand and 
compensate for the remaining needs by means 
of renewable energy generation. Most ZEBs are 
connected to the grid. This allows for excess on-site 
generation to be sent to the grid (usually in summer) 
and enables energy consumption that exceeds 
generation (usually in winter). The building’s energy 
balance is therefore usually determined on an annual 
basis, resulting in a ‘Net Zero-Energy Building’. This 

method is applied because of current limitations of 
storage technologies (Torcellini, Pless, Deru & Crawley, 
2006).

ZEB calculations account for energy used for 
heating, cooling, ventilation, domestic hot water, 
indoor and outdoor lighting, plug loads, process 
energy and transportation within the building (U.S. 
Department of Energy, 2015). It is evident that 
the design of ZEB’s requires a large emphasis on 
quantifiable performance criteria and therefore 
requires a new method of design. The following 
subchapter substantiates this assertion. 

1.3 TRADITIONAL DESIGN PROCESS VS INTEGRATED DESIGN PROCESS

Traditional architectural design processes usually 
have the architect develop a conceptual design based 
on the client’s criteria. After a conceptual design has 
been made, other disciplines are introduced to the 
design process to implement their systems to the 
design. Shi & Yang (2013) discern two types of ‘green’ 
architects. 

The first kind of architect develops a conceptual 
design through conventional design methodologies 
and ask other design disciplines to add on sustainable 

interventions. As a result, the architectural design 
may suffer from requirements regarding technological 
interventions unforeseen by the architect, e.g. the 
necessity of running a ventilation shaft through a 
room. Sustainability of the building is sub-optimal if 
additional measures are required to ‘solve’ climate-
related ‘problems’ originating from the architectural 
design, e.g. heat gain of a large, south-facing façade 
window. 

ChAPTER 1: INTRODUCTION
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The second kind of ‘green’ architect aims for the 
creation of a sustainable building in the conceptual 
phase by using non-quantified and conceptual design 
methods. The performance of the final design depends 
on intuitive decision-making of conceptual ideas in the 
early design phase. Incorrect assumptions will result 
in a sub-optimal conceptual design and may result in 
problems during later phases of the design process. 
The great versatility of aspects influencing comfort 
performances regarding the various aspects of climate 
design complicates the making of well-informed 
trade-offs.

Both design strategies rely on non-quantitative 
decision criteria for decision-making in the early 
design phase. And although design decisions made 
in the early design phase have the most influence 
on the design performance (Shi & Yang, 2013) (Fig. 
1.1), they are rarely reviewed due to the amount 
of time and related costs required to generate and 
evaluate design options. A survey conveyed by Flager 
& Haymaker (2007) indicates that the generation and 
evaluation of one design option takes over a month, 
of which the majority of the time of the conceptual 
design process is spent on representing, documenting 
and coordinating information. Because of the limited 
time frame in the architectural design process, few 
design iterations can be considered during the design 
process. Consequently, sub-optimal design decisions 
made during the early design phase will most certainly 
form the baseof the detailed design process, resulting 
in a sub-optimal final design.  Optimal conceptual 
designs regarding both sustainability and architecture 
are therefore rarely achieved using such design 
approaches (Brunsgaard, 2009; Hopfe, Struck, & 
Hensen, 2006; Larsson, 2009; Löhnert, Dalkowski, & 
Sutter, 2003).

It is evident that Zero Energy Building requires a 
holistic view on the design process, in which energy- 
and comfort-related objectives are quantified and 
integrated from the early conceptual design and the 
decision-making process is driven by both quantitative 
and qualitative performance. Many researches have 
affirmed the capability of multi-disciplinary, multi-
objective design processes (also known as integrated 
design processes) to improve building performance 
(Brunsgaard, 2009; Larsson, 2009; Löhnert, 
Dalkowski, & Sutter, 2003; Shi & Yang, 2013, Yang, 
Sun, Turrin, von Buelow, & Paul, 2015). The concept 
of multi-disciplinary design processes is based on 
the observation that changes in a design process are 
easier to make at the beginning of the design process 
(Larsson, 2009). Multi-disciplinary design processes 
therefore aim to facilitate knowledge-driven design 
choices in the early design process. 

The integrated design process is commonly 
supplemented by computational design metho-
dologies that integrate geometric modelling and 
building performance simulations tools. These 
methodologies have proven to be essential tools 
in the integrated design process to improve design 
performance for a various amount of reasons. Firstly, 
the use of computational design for analysis and 
optimization processes decrease the amount of time 
required for the development of one design iteration, 
thus enabling the exploration of a larger portion of 
the design space (Flager & Haymaker, 2007). Secondly, 
information of multidisciplinary performance criteria 
derived from building performance simulations tools 
results in quantitatively substantiated decision-
making. Thirdly, computational design enables a 
holistic view towards sustainable design that is also 
aesthetical and functional (Negendahl, 2015). 

DECREASING IMPACT ON PERFORMANCE
INCREASING IMPACT ON COST AND DISRUPTIO

N

Design brief Design concept Conceptual design Final design Design construc�on

Fig. 1.1: Influence on performance and cost impact during design progress (based on Löhnert, Dalkowski, & Sutter, 2003, p.6).
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1.4 STATE OF ThE ART

Despite the great added value of computational 
design methodologies to improve design performance, 
computational design is rarely used in the early design 
process (Yang, Sun, di Stefano & Turrin, 2017). The main 
reason for this is that methodologies do not support 
rapid generation and analysis of design variations 
(Flager, Welle, Bansal, Soremekun, & Haymaker, 2009). 
In most conventional design tools the performance of 
only one design variation is simulated and analysed. 
Alternatively, one can generate ‘optimal’ design 
solutions by iterating through design solutions using 
an evolutionary algorithm. Comparison of design 
variations is time-intensive with these methodologies. 
Simulation tools are therefore often only used for 
the verification of a conceptual design, rather than 
exploration of the design space (Shi, 2010).  

Current developments involve non-destructive 
optimization processes. Non-destructive optimization 
processes run and store simulations guided by 
genetic algorithms in order to reach optimal 
solutions. Designers can analyse the results in the 
database by means of visual analytics; ‘analytical 
reasoning facilitated by visual interactive interfaces’ 
(Thomas & Cook, 2005). The applicability of visual 
analytics methodologies is widely researched in 
various engineering disciplines, such as aerospace 
and industrial design. These disciplines commonly 
make use of histograms, scatterplots and parallel 
coordinates charts for data visualization. Visual 
analytics tools allow users to analyse multi-variate 
data through interconnected data representations. 
One such tool is EDEN, developed by Steed et al. 
(2013), which aims to enable climate scientists to view 
high-dimensional data (Fig. 1.2). Another tool is LIVE 
(Fig. 1.3), for engineering design (Yan et al., 2011). 
Both tools integrate filtering methods via threshold 
sliders. LIVE enables hierarchical clustering for further 
design exploration.  

Various researches have transposed these 
techniques to the field of architecture. Jansen, 
Rolvink, Coenders & Schevenels (2014) used parallel 
coordinates charts in combination with a scatterplot 
as the visualization method for a multidisciplinary 
optimization system (Fig. 1.4). This visualization method 
allows for the exploration of relationships between 
(quantified) input parameters and performance 
objectives. The research suggests the implementation 
of an image renderer to allow for non-quantitative 
design criteria to be considered during the design 
process. Chen, Janssen & Schlueter (2015) visualized 
representative design variations of clusters alongside 
parallel coordinate charts (Fig. 1.5). This method 
visually summarizes 5000 design variations, and thus 
facilitates the analysis of large amount of design 

variations. Lamping (2016) introduced an interactive 
post-processing tool comprised of two scatterplots, a 
parallel coordinates chart and a visual representation 
of one design alternative (Fig. 1.6). Optimal design 
variations are highlighted. Chaszar, von Buelow 
and Turrin (2016) have researched the potential of 
interactive scatterplots and parallel coordinates charts 
for multi-variate, multi-objective data visualization 
(Fig. 1.7). The graphing methods were implemented 
in ParaGen, a software framework that is used to 
combine qualitative performance aspects (by means 
of visual images and data depictions) and quantitative 
performance aspects (by means of performance data). 
The design tool depicts a number of design solutions 
and plots a parallel coordinates chart of these 
solutions. 

The aforementioned researches introduce tools or 
methodologies to generate and visualize multi-variate, 
multi-objective data of large quantities of design 
iterations. These data analytics methodologies largely 
correspond to methodologies used in other engineering 
disciplines. However, although these methods may 
be suitable for engineering disciplines, they are not 
optimally suitable for architectural design. This is 
best explained by examining the differences between 
the design processes of aerospace and architecture 
industries, because although the design process of 
both industries consists of comparable design phases 
(as described by Flager & Haymaker, 2007) and both 
industries deal with multidisciplinary, multivariate 
design challenges, there are important differences 
between the decision-making processes. Whereas 
engineering industries deal with a number of (mostly) 
quantifiable performance objectives, architectural 
decision-making requires trade-offs between both 
quantifiable and non-quantifiable design aspects, 
such as aesthetical, financial, ecological, social, 
cultural, atmospheric, legal and practical criteria. This 
characteristic of architectural design necessitates an 
interconnectedness of quantitative and qualitative 
design performance in data visualization. 

Various researches suggest the same. A survey 
performed by Attia, Beltrán, De Herde & Hensen (2009) 
shows that 22.9% of architects consider graphical 
representations alongside building performance 
simulations the most important aspect of usability and 
information management (amongst six criteria). Flager 
et al. (2009) advise a tool that is able to simultaneously 
explore performance and geometries. This thesis aims 
to facilitate this, in order to enable architects to make 
performance-driven design decisions for Zero-Energy 
Buildings. The topic of this thesis is: ‘Visual Analytics 
for Generative Design Exploration’.
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Fig. 1.2: The interface of EDEN (Steed et al., 2013, p.4).

Fig. 1.3: The interface of LIVE. (a) scatter plot of output performance variables; (b) scatter plot of input design variables (displaying 
clustering results on top of data); (c) text description of decision rules; (d) TreeMap visualization of decision tree; (e) adjustable 
sliders of ranges of input and output variables (Yan et al., 2011).
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Fig. 1.5: Design performance interface, developed by Chen, Janssen & Schlueter (2015, p.257).

Fig. 1.4: Interactive optimization interface, developed by Jansen et. al (2014, p.6).
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Fig. 1.6: Post-Processing Optimization Tool, developed by Lamping (2016, p.59).

Fig. 1.7: Design solution images and parallel coordinates chart, developed by Chaszar, von Buelow & Turrin (2016).
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1.5 RESEARCh QUESTION

Current computational design systems do not 
facilitate interconnected quantitative and qualitative 
design performance trade-offs. As a result, they are 
not accessible to architects and climate designers 
for decision-making in the early design phase. The 
objective and final product of this graduation project 
is a prototype of a visual analytics tool that makes 
multi-variate, multi-objective decision-making of 
building performance simulations in the early design 
phase accessible to architects and climate designers, 
by allowing for the simultaneous exploration of 
both quantitative and qualitative performances.
Correspondingly, the research question of this thesis 
is: 

How can visual analytics be integrated in a 
computational design system to make multi-variate, 
multi-objective decision-making in the early design 
phase accessible to architects and climate designers?

The visual analytics tool is part of a computational 
design system that involves generating a data set of 
a large number of design alternatives and making 
their design performance data insightful by means of 
integrating multiple data visualization and interaction 
methods. Answering the main research question 
requires an answer to the following sub-questions:

• How can generation of large quantities of 
design alternatives contribute to extraction of 
building information for performance-driven 
design process by architects and climate 
designers?

• How do quantified and non-quantified design 
performances influence multi-objective 
decision-making of architects and climate 
designers?

• What data analytics methods are suitable for 
interpretation of high-dimensional building 
performance simulation data sets by architects 
and climate designers?

• How can data analytics methods be integrated 
and visualized in a manner that enables 
intuitive, goal-oriented exploration of building 
performance data for architects and climate 
designers in order to facilitate performance-
driven design processes?

‘Intuitive’ in this context is defined as being able 
to understand how data analytics methods should 
be used for design exploration, without the need 
of a profound understanding of the underlying 
mathematical organization system.

The research methodology of this thesis 
distinguishes various subsystems of the computational 
design system. The structure of this thesis is organized 
according to this classification. Therefore, the 
structure of this thesis is presented after elaboration 
on the research methodology, in chapter 2.4.
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2.1 RESEARCh METhODOLOGY

The visual analytics tool developed in this thesis is 
part of a computational design workflow. This workflow 
involves creating and visualizing a data set of a large 
number of design alternatives. It consists of various 
components, each with a distinctive function. Since 
the functioning of these components depend on the 
functioning of the system as a whole, both the visual 
analytics tool and the computational design workflow 
are characterized by a high interconnectedness of its 
components. Therefore, the workflow is developed 
in an iterative process that uses both a research by 
design and a design by research approach. 

Part of the research in this thesis involves finding 
a computational design workflow that facilitates a 
performance-driven design approach. This thesis uses 
a theoretical design assignment as a case study to gain 
experience in the use of computational design in the 

design process. The assignment concerns the design 
of a nearly Zero-Energy sports hall in Overhoeks, 
Amsterdam. This thesis explores various methods of 
accomodating the design process with computational 
design to gain insight in suitable design processes that 
facilitate performance-driven design. 

The other part of this research concerns the 
development of the visual analytics tool. Literature 
research gives the scope of existing data visualization 
methods that may suit the tool. Both existing 
visual analytics systems and commonly used data 
visualization methods are reviewed. Suitable methods 
of data visualization are determined based on their 
ability to aid users in finding optimal design solutions. 
Amongst other criteria, the visualization methods 
should be suitable for their intended function, should 
be easy to understand and should complement the 
tool’s other visual analytics methods. 

2.2 ASSESSMENT

The performance of the visual analytics tool and 
the Computational Design System are assessed based 
on their ability to facilitate a performance-driven 
design process. 

The performances are assessed by (1) the author, 
who extensively uses and tests the tool to develop the 
design, (2) Lucas Pol, an MsC Architecture student at 

TUDelft, who tests the prototype based on its suitability 
to improve the performance of his sketch design, and 
(3) a questionnaire held among MsC Architecture 
and MsC Building Technology students, as well as a 
few participants that do not have any experience in 
the field of architectural, climate and computational 
design, nor in the field of data analytics.

2.3 OVERVIEW OF COMPUTATIONAL DESIGN SYSTEM

2.3.1  Definitions

The main research question of this thesis 
concerns the implementation of visual analytics in a 
computational design system. ‘Computational Design 
System’ in this thesis is defined as a computational 
design approach that involves (1) generating a data 
set of a large number of design alternatives, (2) 
determining their performances and (3) making this 
data insightful by means of integrating multiple data 
visualization and interaction methods. 

The Computational Design System (CDS) 
consists of various components that have their own 
distinctive function in the workflow. In this thesis, 
the components are distinguished as hierarchically 
classified ‘Systems’ (Fig. 2.1). The CDS consists of an 
Iterative Design System, which generates a data set of 
design alternatives, and a Data Analytics system, that 
processes and visualizes this data set.

ChAPTER 2: METhODOLOGY
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The Iterative Design System, in turn, consists of a 
Generative Design System and a Performance Analysis 
System. The Generative Design System generates 
design alternatives. The Generative Design System 
may integrate parametric modelling and evolutionary 
algorithms for automated generation of design 
alternatives, but may also involve manual design 
iteration processes. The Performance Analysis System 
simulates and/or calculates performances of the 
design alternatives.

The Data Analytics System consists of a Data 
Processing System and a Visual Analytics System. The 
Data Processing System uses various (a.o. data mining) 
algorithms to organize the ‘raw data’ generated by the 
Iterative Design System for use in the Visual Analytics 
System. The Visual Analytics System provides an 
interactive environment that visualizes this data for 
multi-variate, multi-objective decision-making.

2.3.2  Workflow Computational Design System

Various researches have introduced workflows 
to generate and analyze building information of 
design alternatives through direct integration of 
Grasshopper and modeFRONTIER (e.g. Yang, Sun, 
Di Stefano & Turrin, 2017). As described in chapter 
1.4, data visualization of these researches is not 
suitable for application in the field of architecture. 
The main contribution of this thesis is a visual 
analytics tool that enables visualization of data and 
design geometries in a highly interactive, game-like 
3D data environment, to enable exploration of both 
quantified and non-quantified performances of a set 
of design alternatives. In order to do achieve this, the 
Computational Design System developed in this thesis 
uses various computer programs for the generation, 
simulation, processing and visualization of design 
iterations (Fig. 2.2). Design alternatives are generated 
using parametric models developed in Grasshopper 
(version 0.9.0076; Robert McNeel & Associates, 2017b) 
plug-in for Rhinoceros (version 5.14.522.8390; Robert 
McNeel & Associates 2017a). Various Grasshopper 
plug-ins integrate simulation tools in the Grasshopper 
environment. Building information is processed using 
modeFRONTIER (version 5.3.0; ESTECO SpA, 2017), 
Microsoft Excel and the Unreal Engine (version 4.17.1; 
Epic Games Inc., 2017a). The Unreal Engine is also 
used to provide a highly interactive environment for 
visual analytics.

This thesis uses a custom approach to exchange 
data between software. This approach uses comma-
separated (CSV) files as an intermediary between 
programs. CSV files use a text-based method to 
store tabular data. Each line in the file contains 
the information of one data items. Delimiters (e.g. 
commas) separate the items’ data attributes. This 
thesis uses an intermediary to enhance robustness, 
flexibility and versatility. CSV files find widespread use 
and can be imported by many computer programs. 
The data generated by the Iterative Design Process 
can therefore be analyzed by various tools. This is 
useful during the development of the Computational 
Design System, since the data can be reviewed 
using other tools. It also enhances the versatility of 
the computational design methodology that is the 
Computational Design System, enabling setup of 
the methodology using various alternatives to the 
computer programs used in this thesis. Since CSV 
files connect each subsystem of the CDS, subsystems 
can be easily exchanged. The CDS can therefore be 
used to facilitate an array of design assignments. Fig. 
2.3 summarizes the workflow of the Computational 
Design System.

COMPUTATIONAL DESIGN SYSTEM

GENERATIVE DESIGN 
SYSTEM

PERFORMANCE ANALYSIS 
SYSTEM

DATA PROCESSING 
SYSTEM

VISUAL ANALYTICS
SYSTEM

DATA ANALYTICS SYSTEMITERATIVE DESIGN SYSTEM

Fig. 2.1: Classification of subsystems in the Computational Design System.
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2.4 ThESIS STRUCTURE

The main body of this thesis is structured according 
to the classification of subsystems introduced in 
chapter 2.3 and visualized in Fig. 2.1. 

The thesis first describes the Iterative Design 
System in Chapter 3 and Chapter 4, which concern 
the Generative Design System and the Performance 
Analysis System, respectively. The Data Analytics 
System is described in Chapter 5 and Chapter 6, which 
concern the Data Processing System and the Visual 
Analytics System, respectively. 

Each of these chapters are identical in structure. 
First, the system is introduced. The introduction 
gives an overview of the system’s function in the 
computational design system, the workflow within the 
system and the implementation of the system in this 
thesis’s case study. Then, the various components that 
comprise the subsystem are described in designated 
subchapters. Each chapter ends with discussion on its 
respective system.

Chapter 7 presents the results of the Computational 
Design System and presents validations of its 
performance.

Chapter 8 presents the conclusions of the 
Computational Design System and of this research as 
a whole.

Chapter 10 presents the author’s reflection on this  
research 

Chapter 10 gives suggestions on further research 
in the field of the use of computational design systems 
in performance-driven design processes.

Rhinoceros
v5.0

Grasshopper
v0.9.0076

Ladybug
v0.0.64

Excel
2010

Unreal Engine
v4.17.1

ModeFRONTIER
v2017R1

Octopus
v0.3.4

Finches

Weaverbird
v.0.9.0.1

Honeybee
v0.0.60

EnergyPlus
v8.7.0

OpenStudio
v1.12.0

DIVA
v3.0.0.6

DAYSIM
v3.1e

Radiance
v5.0.a.6

Fig. 2.2: Scheme depicting the interconnectedness of software used in this thesis.
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Fig. 2.3: Workflow of the Computational Design System. Feedback loops related to the user (e.g. changes in the design concept 
because of findings in the visual analytics tool) are not shown in this workflow.
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ITERATIVE DESIGN SYSTEM

The Iterative Design System (IDS) generates and simulates design alternatives and exports their building 
information to data and geometry files. The IDS consists of a Generative Design System (GDS) and a Performance 
Analysis System (PAS). The GDS concerns the process of generating design alternatives. This thesis uses multiple 
variations of GDS’s that make use of either manual or automated processes to generate designs. The PAS runs 
building performance simulations of the design alternatives. Various performance objectives are derived from 
these simulations. Building information of both the GDS and the PAS is saved for use in the DAS.

The IDS set up in this thesis is used to facilitate the design process of a nearly Zero-Energy sports hall for a 
sports venue in Overhoeks, Amsterdam. The design process takes architectural qualities, energy demands and 
climate comfort levels into account and therefore uses multi-objective optimization processes.

The IDS is described in the next two chapters. Chapter 3 introduces the sport hall’s design brief and describes 
the GDS. Chapter 4 introduces the quantified performance objectives of the sports hall and describes the PAS.
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3.1 INTRODUCTION

3.1.1  Design brief

The Computational Design System of this thesis 
facilitates the design process of a nearly Zero-Energy 
sports hall of a sports venue in Overhoeks, Amsterdam. 
Overhoeks is a neighborhood in Amsterdam-North, by 
the river the IJ, right across the river from Amsterdam 
Central Station. The EYE film museum and the A’DAM 
tower (also known as the Shell tower) are well-known 
buildings in this neighborhood. 

The destination plan of Overhoeks prescribes 
a multifunctional program with, amongst others, 
2200 dwellings for 4000 citizens (Bestemmingsplan 
Overhoeks, 2016). Currently, no sports venue is in 
the vicinity of the neighborhood. Although the urban 
plan does not explicitly propose sports facilities to 
accommodate the citizens of Overhoeks, space is 
reserved for recreational facilities in the neighborhood 
(Gemeente Amsterdam, n.d.). The sports venue 
designed in this thesis will be embedded in the 
neighborhood and will be adjacent to a park (Fig. 
3.1). Across the park multiple high-rise buildings are 
planned, and diagonally is the EYE film museum. The 
sports hall will be primarily used for training and for 
regional competitions. However, because of its prime 
location near the Amsterdam city centre the sports 
hall should be able to host national and international 
championships as well. 

The sports hall will be a six-court hall, which is 
appropriate for both purposes. Six-court halls can host 
clublevel competition games of all sports and high-
level competition games of basketball, badminton 
and volleyball (Sport England, 2000). The hall can be 
subdivided to host multiple games simultaneously. 
A six-court hall has minimum dimensions of 
34x27x7.6m3, but county and national level badminton 
games require a height of 9.1m (Sport England, 2000). 
To fit within the scale of the urban context, it is decided 
that the court hall will be situated on the first floor, 
with the lobby and utility functions on the ground 
floor. The position of the sports hall with regards to 
the urban context is depicted in Fig. 3.2. Its orientation 
and shape are defined in the design process.

Since the sports hall hosts games of various levels, 
the hall has a variable occupancy. Different occupancies 
have different characteristics, requirements and 
optima with regards to performance criteria. The 
Iterative Design System takes variable occupancy into 
account by means of an annual occupancy schedule 
predicted by the author. Fig. 3.3 shows the annual 
predicted occupation of the Overhoeks sports venue. 
The schedule is presented in Fig. 4.2 and elaborated 
on in chapter 4.1.

This chapter describes the Generative Design 
System (GDS). The GDS concerns the process of 
generating design alternatives, which will be analyzed 
with the Performance Analysis System (PAS) and 
presented with the Data Analytics System (DAS).

Chapter 3.1 introduces the design brief of this 
thesis’s Iterative Design System (IDS) and describes 
the corresponding workflow of the Generative Design 
System. The Computational Design System (CDS) used 
in this thesis makes use of multiple architectural design 
variations and thus uses multiple parametric models.

 

A non-destructive evolutionary algorithm is used to 
iterate through and to optimize the parametric model. 
Consequently, the functionality of the evolutionary 
algorithm influences the development of the 
parametric models. The non-destructive evolutionary 
algorithm is described in chapter 3.2. 

Chapter 3.3 describes the parametric models, 
focusing on how the Computational Design System 
may best facilitate the architectural design process. 

Chapter 3.4 summarizes the findings of chapter 
3.3 and presents the author’s conclusions on how 
the Generative Design System may best facilitate the 
architectural design process.

ChAPTER 3: GENERATIVE DESIGN SYSTEM
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Fig. 3.1: Urban plan Overhoeks, with the sports hall site marked in red (SITE ud, n.d.).

Fig. 3.2: 3D model of the building context. The sports hall is depicted in green.
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3.1.2  Workflow GDS

The Generative Design System is set up in 
Rhinoceros (version 5.14.522.8390; Robert McNeel & 
Associates 2017a) and makes use of Rhinoceros plug-
in Grasshopper (version 0.9.0076; Robert McNeel & 
Associates, 2017b). The Generative Design System 
generates building models, which are used by the 
Performance Analytics System. The Iterative Design 
System is controlled by a non-destructive algorithm. 
The algorithm iterates through design alternatives 
and uses multi-objective optimization to converge 
to optimal design solutions. Each iteration’s building 
information is exported for use in the Data Processing 
System and the Visual Analytics System. The 
Grasshopper definition is available upon request from 
the author or either mentor.

Since the Performance Analysis System is also set 
up in Grasshopper, the Generative Design System is 
connected to the Performance Analysis System within 
the Grasshopper environment. Throughout the design 

process various methods of parametrically defining 
the building geometry are used. Each method can be 
connected to the Performance Analytics System. This 
is facilitated by a custom Grasshopper node (cluster) 
that collects all required information of a Generative 
Design System and distributes it to the various 
components of the Performance Analytics System 
(Fig. 3.4). This node enables the user to efficiently 
and swiftly exchange a Generative Design System for 
another one.

The Data Processing System requires CSV files 
containing numerical building information, such as 
building volume, orientation and window areas. 

The Visual Analytics System requires building 
models of each design alternative. The building models 
are exported as meshes in FBX file format. The wall 
geometry, window geometry and PV panel geometry 
are exported as separate files, so that materials can be 
separately applied in the Visual Analytics System.

Fig. 3.3: Annual occupancy distribution of Overhoeks’ sports venue.
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Fig. 3.4: Custom node (m.) connecting the Generative Design System (l.) to the Performance Analysis System (r.).
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3.2 NON-DESTRUCTIVE EVOLUTIONARY ALGORIThM

The optimization process of the GDS is based 
on non-destructive evolutionary algorithms. The 
GDS uses Grasshopper plug-in Octopus to perform 
multi-variate, multi-objective optimization. Custom 
components write and export each building’s 

information and the plug-in LocalCode exports each 
building’s geometries. The optimization and data 
writing components together form a non-destructive 
evolutionary algorithm.

3.2.1  Optimization process

The GDS uses Grasshopper plug-in Octopus (v0.3.4) 
to perform multi-variate, multi-objective optimization. 
Octopus uses a genetic algorithm and aims to minimize 
each performance objective (Vierlinger, 2017). A 
genetic algorithm creates an initial ‘population’; an 
array of design alternatives (‘individuals’). Then, in a 
looping process, the genetic algorithm (1) determines 
the fitness of each individual in the population, (2) 

culls the fittest individuals (individuals closest to 
the Pareto front) and (3) creates a new population 
consisting of the fittest individuals and an amount 
of new individuals based on these fittest individuals, 
by means of cross-over (‘sexual’ reproduction) and 
mutation. With each generation the genetic algorithm 
‘converges’ to the most optimal design solutions. 

3.2.2  Data export

The GDS exports the building geometry and the 
simulation values of each design alternative. 

The GDS writes information to various CSV files, 
each having their own purpose in the CDS. One CSV 
file contains the annual performance data of each 
design alternative. These values are the performance 
objectives of the evolutionary algorithm and are 
used to visualize overall performance in the VAS. 
Another CSV file contains geometry information of 
each design alternative, which is used to perform 
clustering. Geometry information used in this thesis 
concern the following building aspects, calculated 
by the GDS: floor area, building volume, building 
orientation, PV panel area, total window area of each 
façade and annual hours of insolation of each façade’s 
windows. Use of these building aspects (as opposed 
to slider values, for example) enables use of multiple 
parametric models and enables users to add ‘manually 
designed’ geometries to the data set. Furthermore, 
this information leads to more in-depth knowledge 
on interrelationships between design characteristics 
and building performances. Appendix A describes 
how the GDS calculates or determines geometry 

information. A third CSV file contains both geometry 
and annual performance information, used by data 
analytics methods in the Data Processing System to 
define similarity between designs. For each simulation 
objective, the GDS writes hourly values of each design 
alternative to their corresponding CSV files. This 
information leads to more in-depth knowledge on a 
design alternative’s performance. 

The GDS writes a ‘log’ for each design alternative. 
This log contains all relevant information of the design 
alternative. Amongst others, all slider values are 
written to the log so that the design alternative can 
be reinstated in the GDS. The various types of CSV files 
are illustrated in Fig. 3.5.

The building geometries are exported as FBX 
files using the LocalCodeExport component provided 
by Grasshopper plug-in Finches (Monchaux, 2017). 
The geometry is converted to a mesh, which is 
given a thickness using Weaverbird’s Mesh Thicken 
component (version 0.9.0.1., Piacentino, 2017). Wall, 
window and solar panel geometries are exported 
separately so that materials can be easily applied in 
the VAS. 
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Fig. 3.5: Types of CSV files used in the CDS. 
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3.3 BUILDING DEFINITION

The Computational Design System developed 
in this thesis uses multiple parametric models to 
generate design alternatives. The models explore 
various means of facilitating the architectural design 
process with the Computational Design System.

Chapters 3.3.1 to 3.3.3 describe the various types 
of geometries used in the research process. The 
subchapters mainly discuss the reasoning behind and 
functionality of each parametric model. Appendix B 
provides an elaborate explanation of the Grasshopper 
definitions of the model. 

3.3.1   Free-form geometries using Delaunay and Voronoi

The initial aim of the GDS was to precede the 
conceptual design phase by creating a very abstracted, 
‘amorphous’ geometry. Optimized design alternatives 
of such models were envisioned to fully represent the 
most optimal building form. The architect would then 
transform this abstract geometry into an architectural 
design. This design approach requires a free-form 
building mass with individually assigned windows and 
PV panels.

Two parametric models creating abstract, free-
form geometries are explored in this thesis. One 
model makes use of Delaunay triangulation of a three-
dimensional point array (Fig. 3.7). The other uses 
Voronoi partitioning to define each wall (Fig. 3.8). 
Both methodologies ensure planar, convex surfaces, 
which is a requirement of the simulation components 
of the Performance Analysis System.

Delaunay triangulation is defined as following: for 
a triangulation of three points in a set of points, the 
triangulation is a Delaunay triangle if no point is within 
the circumscribed circle of the three points. 

The Delaunay definition uses a three-dimensional 
grid of control points. The points are parametrically 
defined and are controllable by the evolutionary 
algorithm. Windows and PV panels are defined per 
surface segment. The windows are scaled down 
copies of their respective surface segments and are 
scaled based on a parametrically defined list of scale 
factors. Positioning of the PV panels is based on a list 
of Boolean values. 

Voronoi partitioning makes use of a set of points 
and Voronoi regions corresponding to each point. 
Each Voronoi region is closer to its corresponding 
point than to any other point. The region boundary of 
two neighboring points can be defined as a plane with 
an origin on the centroid of the two points and with 
a normal vector parallel to a vector through the two 
points.

The GDS defines Voronoi partitioning for each wall 
and for the roof separately and then uses intersection 
commands to trim the edges. Each wall uses 14 
points that can be moved with two vector inputs. The 
positions of the windows and pv panels are defined 
using an array of vectors that intersect the building 
shell. Windows and pv panels are placed on the 
wall segments that are intersected. Their sizes are 
parametrically defined.

Since each control point, each window and each 
PV panel is defined individually, both definitions use a 
large amount of design parameters (approximately 300 
and 200, respectively). Although these methodologies 
ensure great variation in design alternatives, it 
impedes the functioning of the evolutionary algorithm 
since interrelationships between input variables and 
performance values are difficult to discern. As a result, 
convergence towards optimal design solutions is 
hardly achieved and the definitions therefore generate 
a large amount of undesirable design solutions. 

Another disadvantage of both methodologies is 
that the design results are very expressive. Based on 
the author’s experience, this limits the architectural 
freedom of the designer, since it is difficult to interpret 
the building geometry and to create design variations 
based on these geometries.
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3.3.2  Rationalized geometry using repetitive elements

A third parametric model aims to facilitate 
convergence towards optimal design solutions and 
to encourage exploration of architectural design 
alternatives (Fig. 3.9). The definition is set up in a 
way that drastically reduces the amount of variables. 
In order to do so, some design decisions are pre-
emptively made regarding the effect of design 
aspects on performances. For instance, south-facing 
windows are not included in the geometry definition, 
since initial simulations have indicated that these 
correlate with the occurrence of glare. Windows are 
evenly distributed over the façade to improve solar 
uniformity and are equal in size, shape and orientation 
to reduce the amount of variables used to define the 
window geometries. An unfortunate side-effect of this 
approach is that the influence of context geometry on 
optimization of parts of the façade is not as evident; 
the characteristics of a façade window that is shaded 
by a nearby building cannot differ from the other 
windows in that façade that are not shaded.

The parametric model uses 40 design variables 
to create design alternatives. Twelve moveable 
cornerpoints determine the inclinations of eight wall 
segments, two per façade. The East and West wall, 
as well as the roof, are segmented following a zigzag 
pattern. Sliders control the position of the zigzag’s 
outer corner points and thus influence the facing 

direction of the windows and solar panels. 
Windows and PV panels are placed on opposing 

sides of the zigzag elements. The width and the height 
of the windows are variables and PV panels on the 
walls are controlled by booleans (on/off).

The parametric model generates generally well-
performing design alternatives. A large amount of 
design alternatives are zero-energy buildings and have 
adequate performance regarding temperature-related 
performance objectives. Furthermore, the author 
does experience a greater sense of architectural 
freedom with these design alternatives compared to 
the ones described in the previous subchapter.

Relative differences between the design 
alternatives are small, however. Likewise, the relative 
increase of performance is low. Partially because 
of this, the interrelationships between geometry-
related aspects and performances are not influential 
in the decision-making process. Consequently, the  
differences between the design alternatives are not as 
interesting for the user of the Computational Design 
System.

The following parametric models aim to achieve 
more variation in geometries. Furthermore, these 
geometries better aproximate the architectural 
concept envisioned by the author.

3.3.3  Geometries following architectural concepts 

The author envisions the sports hall as a robust, 
rock-like building that serves as a ‘counterweight’ to 
the Eye film museum. Two parametric models are set 
up to approximate this design vision. The architectural 
concept of both geometries is that of a solid mass that 
is carved to reveal an inner, more transparent box. 
The concept leads to similar results as the designs in a 
sketch of the landscape made during the early stages 
of the research (Fig. 3.6). 

The first model defines the geometry as an 
orthogonal mass (Fig. 3.10). The mass is split up into 
large segments and various segments are deleted to 
create indents. The indents are mostly transparent, 
with large, vertical windows. The outer mass is mostly 
opaque, with a few small horizontal windows allow 
for more equal light distribution. Although the mass 
is orthogonal, the user of the CDS can reinterpret the 
designs to create non-orthogonal design alternatives. 
Simulations of these alternatives verify whether 
their performance is similar to their orthogonal 
counterparts.

Fig. 3.6: Early stage sketch of the Visual Analytics System, 
with cubist-inspired designs.
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The second model uses a non-orthogonal mass 
(Fig. 3.11). Each wall is polygonal and can be tilted to 
either side. The roof is triangulated. The mass is sliced 
over the West-East axis. Segments of each slice are 
removed to create indents similar to the definition 
above. 

Both parametric models generate design alter-
natives that have desirable architectural qualities. 
The designs of the former definition match the robust 
architecture of the neighboring apartment blocks. The 
designs of the latter definition match the sculptural, 
polygonal architecture of the Eye museum.

3.4 DISCUSSION

The Generative Design System generates a set of 
design alternatives using parametric models and non-
destructive evolutionary algorithms. Exploration of 
various methods of defining parametric models gives 
insight in how the Computational Design System best 
contributes to the architectural design process.

Parametric models using Voronoi and Delaunay 
tesselation precede the conceptual design phase. 
These models aim to drive the development of 
the design concept by giving the designer an initial 
indication of design aspects that achieve certain 
performance objectives. Due to the large amount of 
design flexibility, the parametric models have a large 
amount of design variables. As a result, convergence 
of the evolutionary algorithm towards optimal design 
results is hardly achieved, resulting in a large amount 
of infeasible design solutions. Furthermore, because 
of their expressive geometries, interpretation of 
performance-influencing design aspects is difficult. 
Consequently, these geometries do not enable the 
user to create architectural designs based on their 
building information.

A model that aims to minimize the amount of 
design variables by implementing preliminary design 
decisions does not have either of these issues. The 
‘zigzag’ model explored in this thesis generates 
generally well-performing design alternatives and 
enables designers to create architectural designs 
inspired its abstracted geometries. However, because 
differences between the design alternatives of the 
‘zigzag’ model explored in this thesis are small, 
differences between design alternatives are not very 
interesting to the designer. Use of models with small 
design flexibility better suits optimization processes in 
later design stages.

Based on the author’s experience, basing para-
metric models on early architectural design concepts 
contribute the most to the design process. This 
methodology ensures that architectural performances 
are already achieved. Interpretation of design results 
is easier, since differences between design alternatives 
are larger. However, optimal design solutions are likely 
not reached since these models use a sizable amount 
of design variables.

Exploration of different types of parametric models 
in the CDS shows advantages and disadvantages for 
each type. The ‘zigzag’ model enables optimization 
towards optimal design solution, whereas the other 
models allow for exploration of a design concept. 
Therefore, this thesis recommends to use multiple 
parametric models to generate a data set of design 
options. This enables exploration and comparison 
of multiple architectural concepts. Use of various 
parametric methods is facilitated by the data 
workflow of the Computational Design System. The 
Generative Design System can be exchanged, allowing 
for analysis of various parametric models as well as 
non-parametric designs. Furthermore, as described 
in Chapter 5 & Chapter 6, the Data Analytics System 
enables simultaneous data processing and visualization 
of building information of multiple parametric models.
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Fig. 3.7: Selection of design alternatives generated using the Delaunay-based parametric model.
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Fig. 3.8: Selection of design alternatives generated using the Voronoi-based parametric model.
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Fig. 3.9: Selection of design alternatives generated using the ‘zigzag’ parametric model.
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Fig. 3.10: Selection of design alternatives generated using the ‘orthogonal mass’ parametric model.
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Fig. 3.11: Selection of design alternatives generated using the ‘non-orthogonal mass’ parametric model.
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This chapter describes the Performance 
Analysis System (PAS). The PAS determines various 
performances of the design alternatives generated 
with the Generative Design System (GDS). The 
performances are presented with the Data Analytics 
System (DAS).

Chapter 4.1 Introduces the performance objectives 
of the sports hall and describes the workflow of the 
PAS. The PAS runs multiple simulations to analyze 
building performances. Chapters 4.2 to 4.4 elaborate 
on the performance objectives of the sports hall and 
describes the setup of the various analysis componets 
that comprise the PAS.

4.1 INTRODUCTION

4.1.1  Performance objectives

 Sports venues have a significant energy 
consumption. There are 1.5 million sports and 
recreational buildings in Europe that together 
comprise 8% percent of the total building stock. 
They can account for up to 10% of the total energy 
consumption of the building sector (LEITAT, 2015). 
Research by Dutch energy research center ECN (Sipma 
& Rietkerk, 2016) has concluded that indoor sports 
accomodations without a swimming pool have an 
average annual energy consumption of 179 kWh/m2 
or 216 kWh/m2 (representing the building typology’s 
average energy demand and benchmark energy 
demand, respectively). These values are comparable 
to the average energy consumption of most other non-
residential building types such as offices, museums 
and hospitals, as measured by the ECN (Sipma & 
Rietkerk, 2016). 

Besides considerable energy demands, sports 
halls have unique requirements regarding lighting and 
indoor temperatures because of their significant impact 
on sports players’ performance. Tests performed by 
Galloway & Maughan (1997) and No & Kwak (2016) 
show that time of exhaustion is significantly shorter 
when environmental temperatures are uncomfortable. 
The Computational Design System developed in this 
thesis aims to optimize the sports hall design on 
energy-related performance criteria, thermal and 
lighting performance criteria, besides architectural 
qualities. The quantified performance objectives are 
listed in Fig. 4.1. Rather than solely considering the 
building’s total energy demand, performances of the 
various energy demands are considered as separate 
performance objectives, since each are influenced by 
different building aspects and each may favor different 
design solutions.

The sports hall designed in this thesis hosts multiple 
types of sports at multiple competition levels, as well 
as trainings. Furthermore, the sports hall is open 
even when no games are played, for administrative 
purposes (maintanance, cleaning, etcetera). These 
various activities have different temperature 
and lighting requirements and different levels of 
occupation. Therefore, the analyses make use of an 
annual schedule defined by the author (Fig. 4.2).  The 
occupancy levels are arbitrarily chosen by the author. 
The metabolism values are derived from  the ASHRAE 
standard on thermal environmental conditions for 
human occupancy (ASHRAE, 2010). The standard lists 
the metabolism rates of various tasks, among which 
tennis (3.6-4.0) and basketball (5.0-7.6) are listed. 
The schedule consists of a weekday and a weekend 
schedule that approximate the activity schedule of 
common neighborhood sports halls. Additionally, it is 
assumed that the sports hall hosts regional, national, 
or international championships four times a year, once 
every season. The championships are assumed to take 
place on the following dates:

Mar. 3 - Mar. 5
Jul. 7 - Jul. 13
Oct. 26 - Oct. 27
Dec. 19 - Dec. 23

ChAPTER 4: PERFORMANCE ANALYSIS SYSTEM

Fig. 4.1: Quantified performance objectives.

Energy: Cooling energy demand (kWh)
  Heating energy demand (kWh)
  Artificial lighting energy demand (kWh)
  PV panel energy gain (kWh)
  PV panel energy payback time (y)
Lighting: Glare occurance (hrs/y)
  Lighting uniformity (hrs/y)
Thermal: Thermal comfort spectators (hrs/y)
  Thermal comfort sports players (hrs/y)
  Temperature criteria (hrs/y)
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4.1.2  Workflow PAS

The Performance Analysis System (PAS) runs 
multiple simulations on a geometric model of the 
Generative Design System. The Performance Analysis 
System is set up in Grasshopper (version 0.9.0076, 
Robert McNeel & Associates, 2017) and uses 
various plug-ins to facilitate performance analyses. 
Performance information is exported for use in the 
Data Processing System. The Grasshopper definition 
is available upon request from the author or either 
mentor.

A custom Grasshopper node (cluster) contains 
all information of the building model defined in the 
Generative Design System (Fig. 3.4). The outputs of 
this node are distributed to the various simulation 
components of the PAS.

The Data Processing System requires CSV files 
that contain annual performance information of each 
design alternative. The Data Processing System also 
uses hourly performance information to calculate 
seasonal performances. Both annual and hourly 
performance are exported. 

4.2 ENERGY PERFORMANCES

4.2.1  Introduction

This thesis develops a visual analytics tool for 
analysis of climate-related design performances. The 
goal of the tool is to optimize the building’s geometric 
design in its conceptual stage in order to reduce its 
energy demand as much as possible. 

Being a middleware tool for architects and climate 
designers, this thesis limits itself to the operating 
energy of a building. More exactly, the PAS calculates 

heating and cooling demands, electric lighting 
consumption and solar energy generation as the main 
energy-related design objectives, as these are the 
most influential design-driving energy-related factors 
for the design of sports halls; together, space heating 
and electric lighting comprise 68% of a sports hall’s 
energy consumption (Trianti-Stourna et al., 1998). 
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Energy criteria are presented in chapter 4.2.2. 
Simulations of the heating, cooling and energy 
demands are derived from the thermal and visual 
performance analyses and are therefore described 

in chapters 4.3 and 4.4. Simulation of the energy 
potential of the PV panels is described in the following 
subchapter, chapter 4.2.3. Calculation of the energy 
payback time is described in chapter 4.2.4.

4.2.2  Nearly Zero-Energy criteria

The sports hall designed in this thesis is aimed 
to be a (nearly) Zero-Energy Building. Because of 
discrepancies in e.g. climate, building types and 
levels of ambition EU countries are allowed to define 
nearly Zero-Energy Building requirements themselves 
(LEITAT, 2015). The nearly Zero-Energy Building (nZEB) 
requirements of EU countries vary between 25 and 
175 kWh/m2 for new buildings, with an average of 
106 kWh/m2 (LEITAT, 2015). Most countries do not 
discern sports buildings as a separate building type; 
Bulgaria and Slovakia are the only countries to do so. 
Other countries group sports buildings with other 
non-residential buildings. The Netherlands do not 
have a definitive definition for nZEB, but in 2015 the 
Dutch Government made a proposal. This proposal 
prescribes a maximum energy demand of 50 kWh/m2 
for utility buildings. Fossil energy use may be no more 
than 25 kWh/m2, and the share of renewable energies 
should exceed 50% (Ministerie van Binnenlandse 
Zaken en Koninkrijksrelaties, 2015). The design brief 
of the sports hall designed in this thesis assumes these 

values to assess whether the designs classify as nZEBs.
The nZEB methodology used in this thesis only 

takes into account the energy factors that have most 
influence on the building geometry. Consequently, 
the methodology only considers the energy potential 
of PV panels and does not quantify the energy 
potential of wind turbines, aquifers, implementation 
of heat recovery in the HVAC system, or other energy-
generating or -saving options. Furthermore, the 
methodology uses primary (on-site) energy as its 
metric of balance. It is evident that the Computational 
Design System does not dictate whether a design 
meets the energy criteria of a (nearly) Zero-Energy 
building based solely on the quantified energy 
performances, since many more factors should 
be taken into account. It should be emphasized 
that, instead, the Computational Design System is 
developed to facilitate a design process that minimizes 
energy demands and maximizes energy potential by 
means of decision-making based on comparative 
analysis.

4.2.3   PV panel energy potential

The energy generated by PV panels is simulated 
using a Ladybug’s Photovoltaics component. The 
component takes the EnergyPlus weather file and the 
solar panel geometries as an input, as well as a number 
of solar panel properties, which are mentioned below. 
It simulates hourly energy gain values for each of these 
surfaces. Because of the computational expensiveness 
of this large amount of data (which in some cases 

exceeds a million values), the GDS sums these values 
together before writing them to the CSV files. 

The solar panels are assumed to have an efficiency 
of 16% and an effective area of 90%. The average 
annual solar irradiance in Amsterdam is 1070 kWh/m2 
(KNMI, n.d., p.54). Assuming optimal orientation, the 
solar panels have the potential to generate 154 kWh/
m2 annually.

4.2.4   PV panel energy payback time 

The performance of a PV panel depends on its 
orientation; a North-facing panel generates far less 
energy than a solar panel facing upwards. In extreme 
cases, a solar panel that is placed in an inefficient 
location may never generate the amount of energy 
that was required to produce the panel.

To prevent the GDS from placing solar panels in 

inefficient locations the energy payback time (EPBT) 
of the solar panel array is included as an optimization 
objective. Fthenakis (2012, p9440) defines EPBT as 
“the period required for a renewable energy system 
to generate the same amount of energy as that used 
by the system from cradle to grave”. A lower EPBT 
therefore directly correlates to an increase of annual 
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energy gain and, hence, an increase of performance 
of the solar panel. Based on data from the EcoInvent 
(v2.0) database, the cumilative energy demand 
approximates 4250 MJ-eq/m2 for multi c-Si and 
Ribbon Si PV panels (Laleman, Albrecht & DeWulf, 

2011). The cumulative energy demand is the primary 
energy required for the cradle to grave lifecycle of the 
system. The evolutionary algorithm aims to maximize 
the solar panels’ energy gain whilst minimizing their 
average EPBT.

4.3 ThERMAL PERFORMANCES

4.3.1  Introduction

Most sports practiced in sports halls require high 
levels of activity. Conversely, spectators generally 
have low amounts of activity. Sports halls therefore 
have conflicting demands on indoor temperature; 
whereas sports players desire low temperatures 
to counteract their metabolism’s heat generation, 
spectators require higher temperatures to feel 
comfortable. Sports federations’ regulations on 
indoor temperatures vary, further complicating 
the problem. Furthermore, maintaining an optimal 
indoor temperature is energy intensive: typical sport 
facilities use 38% of energy for space heating (Trianti-
Stourna et al., 1998). The heating and cooling design 
of a sports hall is intricate, requiring a well-considered 

balance between spec-tator comfort, sports player 
comfort and energy consumption. Therefore, the PAS 
includes a thermal analysis, which is performed by 
OpenStudio via a component provided by Honeybee. 
The component calculates hourly heating and cooling 
energy demands and hourly operative temperatures. 
Custom Grasshopper components use the operative 
temperatures to determine whether temperature 
criteria are met and to calculate thermal comfort levels 
of both sports players and spectators. The Iterative 
Design System aims to minimize heating and cooling 
energy demands whilst meeting these performance 
objectives.  

4.3.2  Simulation settings

The OpenStudio simulation component is based 
on an ‘HBZone’ and its context geometry. Information 
on the weather in Amsterdam is derived from an 
EnergyPlus weather file. The EnergyPlus weather 
file for Amsterdam is retrieved from the website of 
EnergyPlus (EnergyPlus, n.d.) and is developed by 
ASHRAE (2001).

An HBZone contains all information about a 
building zone relevant to the analysis. Besides 
the building geometry, the HBZone requires wall 
and window constructions, ventilation demands, 
occupancy and activity schedules and heating and 
cooling temperature setpoints and setbacks. The 
following subchapters describe these settings.

4.3.2.1 Construction
The PAS uses the wall and glazing constructions 

listed in Fig. 4.3. The wall construction is a slight 
simplification of reality, where, amongst others, an 
air cavity to prevent condensation might be desirable. 
Since the thermal analysis only requires the thermal 
resistance of the wall construction and since the 
thermal resistance predominantly results from the 
thermal resistance of the insulation material, this 
abstraction gives sufficiently accurate analyis results. 
The glazing values correspond to HR++ glazing (VABI, 
2017; GLASSOLUTIONS Nederland, 2017).

Fig. 4.3: Wall and glazing construction properties.

Wall: 
80 mm concrete, λ-value = 1.0W/m*K
140 mm Rockwool, λ-value = 0.035W/m*K (Rockwool B.V., 2017)
140 mm concrete, λ-value = 1.0W/m*K

Glazing :
U-value = 1.1 W/m*K
Solar Heat Gain Coefficient = 0.58
Visible Transmittance = 0.80
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Infiltration through the building envelope is 
calculated following the calculation method prescribed 
in NEN8088:2012 (2012). Infiltration is calculated 
using the following formula:

Qve;inf = fwind*ftype2*finf*(0.13*qv10,spec)*Aq

Where: 
Qve;inf = infiltration air flow in dm3/s
fwind = building volume-related correction factor of infiltration 
induced by wind pressure.
ftype2 = building type-related correction factor of adjustment of 
induced infiltration
finf = correction factor of the influence of ventilation on induced 
infiltration
qv10,spec = specific air permeability in dm3/s, calculated with a 
uniform pressure difference of 10 Pa.
Aq = floor area in m2

The wind-related correction factor fwind is calculated 
using the following formula:

fwind = max[1;(0.01*(24+0.555*√(L2+B2)+4.5*H)0.65]

Where L,B and H are the length, width and height of the building, 
respectively. 

For a sports venue with dimensions of 
34x27x14.1m3, fwind = 1.07.

Correction factor ftype2 depends on the building 
typology and is derived from a table presented in 
NEN8088:2012 (2012, p.40). The table prescribes a 
correction factor of 1 for buildings with a slanted roof 
and a correction factor of 0.77 for buildings with a 
flat roof. Because the roof typology of the buildings 
generated by the Generative Design System varies, 
this thesis assumes a correction factor of 1, which has 
a greater contribution to the infiltration rate. 

Correction factor finf depends on the ventilation 
type of the building. For buildings with mechanical 
ventilation finf = 1.15 (NEN8088:2012, 2012, p.41).

The air permeability qv10,spec is the product of three 
parameters; ftype, fyear and qv10,spec;calc.. Factors ftype and 
fyear are correction factors for the building type and the 
year in which the building is built, respectively.  The 
third parameter qv10,spec;calc. is the calculation value for 
the specific air permeability, calculated with a uniform 
pressure difference of 10 Pa. The value of these 
parameters are deduced from NEN8088:2012 (2012, 
p.42-43). For the sports hall designed in this thesis, 
ftype = 1.4, fyear = 0.7 and qv10,spec;calc. = 0.7. 

The floor area of the sports hall is 918m2.
Consequently, the infiltration air flow Qve;inf = 

101.0773 dm3/s. This corresponds to an infiltration 
rate of 0.041 ACH, assuming the sports hall’s minimum 
dimensions. The Performance Analysis System uses a 
slightly higher infiltration rate of 0.05 ACH, to account 
for possible errors made during building construction.

4.3.2.2 Activity
Two major influences on indoor temperatures are 

ventilation and heat gain of lighting and equipment. 
The PAS uses the minimum amount of fresh air per 
person to define ventilation demands. Sport England 
(2012, p.32) recommends 8-12 l/s of fresh air per 
person. The lighting energy demand is set according 
to the average lighting energy demand for 500 lux. The 
equipment energy demand is set to 1 W/m2, which 
accounts for the (possible) presence of scoreboards, 
tv-screens and/or a laptop. 

Another influence on the thermal energy demand 
is the heat gain of the building’s occupants. The 
thermal simulation component requires the metabolic 
rate to be defined in W/m2 floor area.  The metabolic 
rate is converted from Met and can be approximated 
by 1 Met = 58 W  (TheEngineeringToolbox, n.d.). Fig. 
4.2 presents the metabolic rates assumed for each 
activity in the sports hall.

4.3.2.3 HVAC system
The Performance Analysis System uses a VAV 

(Variable Air Volume) HVAC system. VAV systems 
enable a constant indoor air temperature, based 
on setpoint temperatures. VAV systems allow for 
demand-controlled ventilation, which is especially 
useful for buildings with varying activities.

Heat recovery is not included in the Performance 
Analysis System; it is deemed more useful for the user 
of the Computational Design System to be aware of 
energy demands that do not include heat recovery, 
as it is only one of the solutions to reduce the energy 
demand of the sports hall.

4.3.2.4 Urban context 
Shading by surrounding buildings and other objects 

influences the solar heat gain and, consequently, 
influences the heating and cooling demand of a 
building. The context model depicted in Fig. 3.2 
contains the context geometry for the simulation. 
The trees’ canopies are abstracted to polygonal 
threedimensional meshes. The trees’ fluctuating 
shading effects caused by leaf fall and growth is 
approximated by varying the transparency of the 
mesh by means of a schedule of monthly tranparancy 
values. The transparancy values range from 0.2 in 
summer to 0.8 in winter.
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4.3.3  Thermal comfort

A commonly used definition of thermal comfort is 
proposed by ASHRAE (2010, p.4): “Thermal comfort 
is that condition of mind that expresses satisfaction 
with the thermal environment”. Multiple models have 
been developed to compute thermal comfort. Among 
the most well-known models is the Predictive Mean 
Vote (PMV) model, developed by Fanger in 1970. 
The PMV is an index that predicts the mean value of 
thermal comfort of a group on a 7-point sensation 
scale. The PMV is determined based on metabolic 
rate, clothing insulation, air temperature, mean 
radiant temperature, air velocity and air humidity (ISO, 
2005). Based on the knowledge that non-comfortable 
people are able to respond to the indoor climate (e.g. 
by changing their clothing), it is established that a 
fluctuation of the PMV is perfectly permissible, albeit 
within limits. These limits are determined by the PPD 
(Predicted Percentage of Dissatisfied). The PPD is an 
index developed by Fanger that the percentage of 
non-comfortable people. The PMV/PPD-model that is 
derived from the two indices can be usefully translated 
to a desired indoor temperature. According to van den 
Linden et al. (2011), this model is preferred over other 
models in practice for its relative simplicity of use and 
its compatibility with the use of computing devices. 

The PMV model, however, is a static model, 
which only assumes that thermo-physical aspects 
are of influence on thermal comfort. Adaptability 
and psychological aspects influence comfort as well, 
in particular the influence a person can exert on his 
surroundings and expectations on climate conditions 
(van den Linden et al., 2011). As a result, comfort 
levels fluctuate more with the outdoor temperature 
than the PMV-model indicates.

ISSO 74 (Boerstra, Hoof & van Weele, 2014) is 
a Dutch adaptive thermal comfort guideline that 
takes these fluctuations into account. The guideline 
combines elements of adaptive and non-adaptive 
standards. The guideline distinguishes between 
spaces that have either possibilities of adaptability 
(e.g. operable windows) or are centrally controlled, 
because of their aforementioned impact on the 
occupants’ comfort. A distinction is also made 
regarding the allowed PPD. For example, buildings 
with diseased persons fall under Class A. Class A 
buildings have a high level of expectation on thermal 

comfort and therefore should comply with a maximum 
PPD of 5%. Class D comprises buildings with a low 
level of expectation (e.g. temporary buildings) and can 
therefore suffice with a maximum PPD of 25%. New 
buildings fall under Class B and should comply with a 
maximum PPD of 10%.

The graph in Fig. 4.4 plots the allowable indoor 
operative temperatures against the running mean 
outdoor temperature for Class B-C. The running mean 
outdoor temperature is a mathematical contraction 
of the outdoor air temperature and the radiation 
temperature. The running mean outdoor temperature 
can be calculated using the following formula (CEN, 
2006, p.9):

Θrm = (1- α)Θed -1 + α * Θrm-1

Where
Θrm = Running mean temperature for today
Θrm-1 = Running mean temperature for the previous day
Θed-1 = Daily mean external temperature for the previous day
α = a constant between 0 and 1. A value of 0.8 is recommended.

 
ISSO 74 and other thermal comfort guidelines are 

developed according to available thermal comfort 
data which are primarily focused on office buildings, 
or buildings with similar occupant metabolisms and 
clothing. Boerstra, Hoof & van Weele (2014) prescribe 
a correction of the temperature limit for ISSO 74 
when dealing with ‘unusual’ metabolism or clothing 
values. This referred method is used for metabolism 
levels below 2.0. Metabolism of sports players is 
significantly higher, however. In order to be able 
to determine thermal comfort of sports players for 
the design objective in this thesis the comfort limits 
throughout the year are slightly adjusted to fit their 
metabolism and clothing characteristics, based on the 
temperature criteria and recommendations set out in 
chapter 4.3.4. The minimum and maximum comfort 
temperatures are set to 18°C and 25°C, respectively. 
The thermal comfort of spectators is determined 
following the ISSO guidelines and range from 20°C 
to 26°C. The paS calculates and optimzes the annual 
amount of hours that thermal comfort levels are not 
met. Fig. 4.5 shows how temperature limit levels of 
spectators and sports players relate to the running 
mean outdoor temperature.
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Fig. 4.4: Thermal comfort limit levels of Class B buildings prescribed by ISSO 74 (based on Boerstra, Hoof & van Weele, 2014, p.28). 
In centrally conditioned ares the horizontal upper limits should be used under summer conditions. In areas with possibilities of 
adaptability, one is allowed to use a higher value as indicated by the shaded triangles.

26

Running mean outdoor temperature (°C)

Upper limit, spectators

Upper limit, sports players

Lower limit, spectators

Lower limit, sports players

In
do

or
 o

pe
ra

tiv
e 

te
m

pe
ra

tu
re

 (°
C)

25 2827 30292019 2221 24231413 1615 181787 109 121121 43 65-4-5

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

-2-3 0-1

Fig. 4.5: Thermal comfort limit levels of spectators (orange) and sports players (green).
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4.3.4  Temperature criteria

Besides thermal comfort levels of sports players 
and spectators, this thesis considers temperature 
criteria prescribed by sports and building regulations. 
Because of the differences in level of activity indoor 
temperature criteria vary by sport and in some cases by 
competition level. A distinction can be made between 
competition games and trainings as well. Generally, 
the former allows for minimum temperatures of 12°C 
to 16°C, but trainings may require temperatures of up 
to 20°C (Sport England, 2012).

Various sports regulations prescribe minimum, 
aimed for and/or maximum temperatures. The 
indoor temperature of volleyball games should 
exceed 10°C (FIVB, 2014). For high-level competitions, 
values between 16°C and 25°C are prescribed. The 
temperature during high-level badminton games 
should be between 18°C and 30°C (BWF, 2017). 
The temperature during basketball games should 
be below 28°C and should aim for 18°C (FIBA, 
2009). Furthermore, the Basketball ACT (2014) has 
introduced a heat policy. When indoor temperatures 
exceed 35°C, game-influencing measures are taken. 
No other criteria are mentioned by these and other 
regulations reviewed for this thesis.

To simplify the calculation model, this thesis does 
not distinguish temperature criteria performances 
for each sport. Instead, the PAS uses benchmark 
temperature thresholds based on ‘weighed average 
values’ of the aforementioned prescribed criteria. 
This thesis assumes minimum and maximum 
indoor operative temperatures of 19°C and 27°C, 
respectively. These values are chosen based on the 
notion that the energy consumption for heating 
and cooling is proportional to the indoor/outdoor 
temperature difference. The extra energy demand 
of sports that have stricter temperature criteria are 
balanced by energy savings during trainings or sports 
with less strict criteria. Hence, the simulated indoor 
operative temperatures may exceed not always fulfil 
the requirements of all sports. Although system 
sizing of the HVAC system is beyond the scope of this 
thesis’s design assignment, it should be noted that 
the simulations that use the benchmark minimum 
and maximum indoor operative temperatures do 
not facilitate the system sizing of the HVAC system; 
the HVAC system should be sized according to 
the maximum ventilation demands based on the 
temperature criteria set out by the sports regulations. 

Thermal performances largely depend on heating 
and cooling setpoints. Initially, setpoints were 
parameters that could be controlled by the Iterative 
Design Process. However, early testing of the Iterative 
Design System indicated that convergence towards 
optimal setpoint temperatures proved inefficient, 

due to the large amount of design variables of the 
parametric models of the Generative Design Systems. 
Therefore the temperature setpoints are fixed, 
arbitrarily chosen to meet thermal performances most 
of the time. Of course, the interrelationship between 
energy demand and thermal comfort performances 
can be adjusted to either reduce the energy demand 
or increase thermal comfort. This internal trade-off is 
not quantified in the Computational Design System, 
although this may be investigated by use of another 
CDS that makes trade-offs between energy demands 
and thermal comfort performances by changing 
setpoint and setback temperatures as temperatures.

Simulations run with the OpenStudio simulation 
component in Grasshopper induce different operative 
temperatures than indicated with the setpoints; with 
a heating setpoint of 19°C, operative temperatures 
commonly are 17°C. A possible explanation is that the 
OpenStudio simulation components regard the air or 
radiant temperatures of a zone, instead of operative 
temperatures. Test simulations have indicated that 
the operative temperatures most commonly meet 
the temperature criteria if the setpoint values are as 
follows: 

Heating setpoint:  21°C
Heating setback:  13°C
Cooling setpoint:  27°C
Cooling setback:  35°C

The sports hall desgined in this thesis is directly 
adjacent to the lobby and other accommodations 
(changing rooms, canteen, warm-up halls, etc.). 
The indoor temperature of these accommodations 
are therefore of influence on the energy demand of 
the sports hall. The temperature thresholds of the 
accomodations are derived from the indoor operative 
requirements determined in ISSO 74 (see chapter 
4.3.3). Assuming a percentage people dissatisfied 
(PPD) of 10%, the threshold is 20-27°C. This is in 
line with recommendations of KNKV and FIBA. KNKV 
(2017) prescribes a minimum indoor temperature of 
18°C and recommends temperatures of 20-22°C. FIBA 
(2009) recommends indoor temperatures of 20-22°C 
in winter and a maximum indoor temperature of 27°C 
in summer. 

Normally, Honeybee’s thermal simulation compo-
nent would require the lobby to be defined as a 
separate ‘HBZone’ in order to simulate this heat 
transfer. This is undesirable, since Honeybee does 
not allow for individual zones to be simulated with 
the influences of adjacent zones taken into account. 
If the influence of the lobby were to be taken into 
account, the thermal simulation component would 
have to simulate both zones, which would double its 
simulation time. Instead, the PAS makes use of the 
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fact that the simulation component facilitates the 
input of a list of monthly ground temperatures. Since 
the sports hall is situated on top of the lobby, entering 
the lobby’s temperature values in this node suffices to 

define the heat transmission through the sports hall 
floor. The temperature values of the lobby range from 
20°C in winter to 27°C in summer, corresponding to 
the aforementioned temperature criteria.

4.3.5  Validation of simulation results

Honeybee is under continuous development and 
new versions are released every few months (McNeel 
Europe, 2017). Consequently, the version of Honeybee 
used in this thesis is not yet peer-reviewed. The validity 
of the Honeybee’s thermal analysis components is 
therefore assessed with a comparison of its simulation 
results to simulations run with DesignBuilder. 
DesignBuilder (v5) is a building energy simulation 
program based on EnergyPlus (DesignBuilder Software 
ltd, 2017). Similar to Honeybee, DesignBuilder 
uses user-defined zones, building constructions 
and schedules and provides a  calculates a range of 
performance data, such as heating, cooling, lighting 
and equipment energy demands and solar and 
occupancy heat gains.

As mentioned in chapter 4.3.2, the PAS does not 
simulate the lobby zone to determine the influence of 
heat transfer between the lobby zone and the sports 
hall on the performance of the sports hall. Instead, the 
PAS uses a list of monthly ground temperatures that 
represent the indoor temperatures. The validation 
method presented in this chapter also determines 
whether this modification provides sufficiently 
accurate results.

The validation method draws comparisons 
between three simulations. The first simulation is run 
in DesignBuilder and includes a second zone below 
the sports hall that represents the lobby. The second 
simulation is run in DesignBuilder and uses monthly 
ground temperatures to represent the lobby. The third 
simulation is run in Honeybee, which also uses the 
monthly ground temperatures. A comparison between 
the second and third simulation verifies whether 
Honeybee’s thermal simulation component provides 
sufficiently accurate results. Comparisons of the first 
simulation to the second and third simulation verify 
whether the abstraction of the lobby is sufficently 
accurate. 

The three simulations use identical weather 
files, building constructions and activity schedules. 
The two programs do not provide identical HVAC 
systems, so the two most similar systems are chosen 
instead. The building geometries are identical and 
are constructed as an orthogonal box with windows 
on the West-, East- and North façade. To reduce the 
chance of causality, the three simulations are also run 
for a different building, that has larger windows on 
the East and West façades and a narrow, window on 
the North façade. An overview of the settings of each 
simulation is presented in Fig. 4.6. Simulation results 
are presented in Fig. 4.7. Simulation files are available 
on request from the author or either mentor.

The first and second simulations provide very 
similar results. It can therefore be safely concluded 
that simplification of the lobby geometry to a list of 
ground temperatures still provides accurate simulation 
results.

The dissimilarity between the Honeybee 
simulations and the DesignBuilder simulations is 
slightly larger. These differences might be caused 
by possible differences in the HVAC system or might 
have been the result of slight discrepancies between 
settings that are not accessible through Honeybee’s 
components. The Honeybee simulations are deemed 
sufficiently accurate compared to the DesignBuilder 
simulations, especially when taking into account the 
fact that the Computational Design System developed 
in this thesis aims to facilitate the early design phase, 
where the level of detail of the designs is limited 
and decision-making is largely based on comparative 
assessment. 



54Performance Analysis System

Fig. 4.6: Simulation settings for comparative analyses in DesignBuilder and Grasshopper.
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Fig. 4.7: Simulation results of comparative analyses run in DesignBuilder and Honeybee.
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4.4 LIGhTING PERFORMANCES

4.4.1  Introduction

Lighting of sports halls has large effects on the 
performance of the players. Because of the speed of 
many sports, players need to quickly perform visual 
tasks. Inadequate lighting design may cause shadows 
or glare, as a result of which the sports players may 
be unable to keep track of rapid movements. Sports 
halls must therefore comply with strict regulations 
regarding lighting. Since different sports use different 
objects and have different common fields of view, 
their regulations vary. 

Most sports buildings therefore rely on artificial 
lighting in order to create a controllable, glare 
free environment. Daylight entering the court is 
not allowed for competition level sports games of 
badminton (BWF, 2017) and strictly advised against 
for table tennis (sportscotland, 2012). Although 
other sport regulations do not explicitly mention 
daylight, it is generally not recommended for high-
level sports games. Electric energy consumption of 
artificial lighting can be considerable, however: 30% 
of the average sports facility’s energy consumption 
is used by lighting (Trianta-Stourna et al., 1998). 
Proper integration of daylight in the design of a sports 
hall can considerably reduce energy consumption. 
Daylight is also a significant factor of the aesthetical 

and atmospheric quality of a building and is widely 
recognised to contribute to the psychological well-
being of a building’s occupants. Commonly, sports 
halls host recreational and club level games most of the 
times, for which natural daylight is generally welcome 
(sportscotland, 2012). A proper integration of daylight 
in the design of a sports hall can therefore definitely 
improve both its architectural and its environmental 
performance.  

The daylight analysis is run using Daysim (Reinhart, 
2017). Daysim is a Radiance-based daylighting analysis 
software. The Daysim simulation casts rays that 
bounce on the geometries and calculates the lighting 
intensity on a series of sensor points. Honeybee 
provides a daylighting simulation component that 
integrates Daysim in the Grasshopper environment. 
However, the version of Honeybee used in this thesis 
did not facilitate more than one ambient bounce. 
As a result, simulations run with the component 
gave inaccurate results, since lighting diffusion was 
incorrectly simulated. Instead, Grasshopper plug-in 
DIVA (version 4.0.2.24, Solemma LLC, 2017) is used to 
perform Daysim lighting simulations. 

4.4.2  Lighting criteria

Sports regulations define lighting performance 
criteria in mean horizontal illumination levels. These 
criteria prescribe the minimum illuminance of the 
playing field, measured 1m above the playing field. 
Minimum illumination criteria depend on the sport 
and on the level of competition. The mean horizontal 
nominal illumination of, for example, a basketball 
training is 200 lux, whereas the mean horizontal 
nominal illumination of a national game is 750 lux. 

The UK implementation of EN 12193:2007 (BSi, 2007) 
prescribes normative illumination levels for a number 
of sports played in various indoor sports venues. In 
this standard sports are categorized by illumination 
criteria. The criteria used by this thesis are visualized 
in figh. These are the strictest lighting criteria set by 
the standard and thus meets the criteria of all sports 
that will be practised in the sports hall designed in this 
thesis. 

Fig. 4.8: Mean horizontal nominal illumination level requirements for various sports at various competition levels (measured 1 m 
above playing field). Values derived from the UK implementation of EN 12193:2007 (BSi, 2007) and affirmed by FIBA (2009) and KNKV 
(2016).
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For television coverage of sports games, horizontal 
light levels should exceed 1000 lux (Trianti-Stourna 
et al., 1998). Fig. 4.8 defines minimum criteria for 
non-broadcasted games, which should be met at all 
circumstances. However, various sports regulations 
recommend higher illuminance values. FIVB (2014) 
prescribes light levels of 1500 lux for competitive 
volleyball games. ITTF (2017) prescribes light levels 
of 1000 lux on the playing surface for World, Olympic 
and Paralympic title competitions and 600 lux for 
other games. BWF (2017) recommends a lighting level 
of 1000 lux for non-broadcasted high-level badminton 
games and 1800-2000 lux for broadcasted games. FIBA 
(2014) prescribes minimum light levels of 2000, 1400 
and 1000 lux for broadcasted level 1,2 and 3 games, 
respectively.  The performance objectives of the CDS 
are based on non-broadcasted games, but additional 
lighting can be installed to achieve higher light levels. 

Besides minimum lighting levels, illuminance 
uniformity should also be aimed for. Uniformity is 
calculated using the following formula:

U = Eh,min / Eh,mean
Where Eh,min and Eh,mean represent the minimum and mean 
illumination levels of the measured plane, respectively. 

For low level ‘large object’ games uniformity 
should exceed 0.5. For any other game, uniformity 
should exceed 0.7 (Fig. 4.8).

When regarding non-broadcasted games, vertical 
illuminance levels are sufficient when horizontal 
illuminance criteria sufficiently are met (FIBA, 2009). 

The lighting performance of a building is assessed 
by grid-based lighting calculations. The size of the 
grid depends on the sports hall’s size. EN 12193:2007 
(BSi, 2007) states that the maximum grid size can be 
estimated using the following formula:

p = 0,2 * 5 log d
Where:
p = grid size 
d = longer dimension of the reference area

This formula results in a grid size of 2.35m for a six-
court sports hall (l = 34m). The PAS uses a larger grid 
size of 5m, however. Increasing the grid size drastically 
reduces the simulation time, and the reduced accuracy 
is still sufficient for this stage of the design process. 

As previously stated, the illuminance level 
requirements in Fig. 4.8 should be met under all 
circumstances. Aging of lighting equipment will 
inevitably result in a loss of light intensity. The design 
of lighting equipment should account for this effect. 
As a rule of thumb, lighting equipment calculations of 
the design should therefore use a maintenance factor 
of 0.8 (KNKV, 2016; FIBA, 2014). Thus, if regulations 
prescribe that the minimum illumination should be 
500 lux, the lighting design is calculated with minimum 
values of 625 lux. Alternatively, the reduction factor 
can be integrated in the lighting emissions of the 
simulated luminaires. For LED lighting, a factor of 0.9 
may be used. 

The PAS simulates lighting levels caused by daylight 
using Grasshopper plug-in DIVA. Contrary to the 
lighting analysis component provided by Honeybee, 
DIVA merely simulates daylight levels and does not 
facilitate artificial lighting in the simulation. Artificial 
lighting is therefore implemented in the PAS using 
custom calculations, using the following method.

Firstly, a daylight simulation is run. Based on these 
values, the necessity of artificial lighting is determined; 
if daylighting does not meet the minimum lighting 
criteria, artificial lighting is required. 

Since various activities require various lighting 
intensities, the luminaires are subdivided in three 
groups for energy reduction purposes. For activities 
with low lighting requirements (200 lux), only one 
group with 24 luminaires is turned on. A second group 
is turned on in addition to the first one for activities 
with lighting requirements of 500 lux, totaling 48 
luminaires. Switching on the third group of luminaires 
meets lighting requirements of 750 lux, with 64 
luminaires in total. The luminaire used in the PAS are 
common in sports halls and are derived from  TRILUX 
GmbH & Co. KG (2017). The luminaire has an energy 
consumption of 105W. The PAS calculates the annual 
energy demand of the luminaire array and attempts to 
minimize it by increasing insolation.

For each sensor point, the illuminance resulting 
from daylight and the illuminance resulting from 
the luminaires are summed. Lighting uniformity is 
calculated based on these values. Since the amount 
of ambient lighting bounces is limited to 4 (in order to 
reduce calculation times), the PAS uses a uniformity 
factor of 0.7 as acceptable lighting uniformity. Lighting 
uniformity is calculated and optimized based on the 
annual amount of hours uniformity is not met.
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4.4.3  Visual comfort

Visual comfort depends on differences in 
brightness. Too large differences cause glare, which 
may affect the sports players’ performance and 
should thus be prevented. Glare in sports halls must 
be evaluated using the Unified Glare Rating (UGR) 
method (BSi, 2007). Glare is calculated using the 
following formula (CIE, 2007, p.7):

 

Where:
Lb is the background luminance (cd/m²);
L is the luminance of the luminous parts of each luminaire in the 
direction of the observer’s eye (cd/m²);
ω is the solid angle of the luminous parts of each luminaire at the 
observer’s eye (steradian). 
p is the Guth position index for each individual luminaire which 
relates to its displacement from the line of sight.

The steradian in this formula is calculated by 
dividing the area of the spherical area of each window 
by the squared distance between the spherical triangle 
and the spectator. The PAS achieves this by projecting 
the windows onto a sphere with the spectator’s 
position as its centerpoint, calculating the area of 
each projected window and dividing it by the squared 
radius of the sphere.

The Guth position index is derived from the chart 
found in Fig. 4.9 and is based on three factors. ‘V’ is the 
vertical distance (Z) between the eye and the source. 
‘L’ is the horizontal lateral distance (XY) between 
the eye and the source. ‘R’ is the distance from the 

spectator’s eye to the vertical plane normal to the line 
of vision in which the source is located. See Fig. 4.10.

For sports halls, glare levels should meet UGR<=22 
(CEN, 2002). For reference, this limit is identical to the 
glare limit of a reception desk (ETAP NV, n.d.). For the 
determination of the UGR limit value the observer’s 
position is specified at the location where the spacing 
to height ratio is 1:1. LED armatures commonly used 
in sport facilities often have integrated shielding to 
meet the UGR requirement for sports halls (Fagerhult 
BV, 2016; ETAP Export Department, n.d.; EVA Optic 
B.V., 2017). Glare in this thesis therefore only concerns 
glare caused by daylight.

The PAS calculates the UGR for two opposite 
sides in the sports hall based on ceiling and window 
illuminance levels in the spectators’ fields of view. The 
Iterative Design System  optimizes the annual amount 
of hours the UGR of 22 is not met for either of the two 
spectators. 

Most sports regulations, do not quantify (additional) 
limitations regarding glare, but state the importance of 
the visual comfort on the quality of sports and suggest 
an even distribution of light sources. Additionally, ITTF 
(2017) suggest the placement of lights outside of the 
playing field and, along with the Badminton World 
Federation (BWF, 2017), prescribe walls of a darker 
color than the playing field, in order to maintain a 
clear visibility of the ball or shuttle. These aspects are 
not implemented in the PAS but are taken into account 
in the design process of the sports hall.

4.5 VALIDATION OF PRELIMINARY DESIGN DECISIONS

4.5.1  Introduction

The performance analyses run in the PAS depend 
on several preliminary design decisions, such as the 
wall insulation, window type, setpoint temperatures, 
setback temperatures and the occupancy activity 
schedule. These design decisions are based on 
assumptions made by the author. The designer may, 
however, decide to change either of these design 
decisions durign the design process, which influence 
the performances of each design alternative. 
Consequently, it is possible that the a data set 
generated by the Iterative Design System becomes 
unusable when design decisions deviate from 
preliminary assumptions. 

It is likely that the simulation results are different 
when either of the design decisions are changed. 
Nevertheless, the data set is still useful if it allows the 
user of the Data Analytics System to deduce relative 
design performances between design alternatives 
or to deduce interrelationships between building 
aspects. Both of these conditions enable the user to 
make informed design decisions without having to 
rerun the complete Iterative Design System, since 
in either case the user would be able to extrapolate 
approximate performances based on a reduced 
number of simulations with the new design decisions.



59 Performance Analysis System

Fig. 4.9: Guth position index chart. The chart is used to determine the position index of sources located at various positions in the 
visual field (Luckiesh & Guth, 1949, p.660).
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Fig. 4.10: Calculation methodologies of the ‘V’-, ‘R’- and ‘L’-factors as calculted in the PAS. 
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This chapter verifies whether the usability of the 
Computational Design System is affected when design 
decisions made during the design process deviate 
from either of the five aforementioned preliminary 
design assumptions. 

The influence of changing the wall insulation, 
window type, setpoint temperatures or setback 
temperatures is tested by running additional 
simulations of five design alternatives that will be 
compared to simulations with the ‘default’ settings. 

Since these four design aspects are common 
aspects of the architectural design aspects, one may 

consider that these four design decisions are largely 
based on the designer’s expertise. The actual activity 
and occupancy of the sports hall, on the other hand, 
is more difficult to predict and is most likely to differ 
from the preliminary assumptions. Furthermore, the 
activity schedule has considerable influence on 8 of 
the 10 performance objectives considered in this 
thesis and has perhaps the largest impact on the total 
energy demand. The influence of the activity schedule 
on the building performances is therefore analyzed 
more elaborately.

4.5.2  Deviation from choice of wall insulation

The Performance Analysis System developed in this 
thesis assumes an insulation layer of 140mm, which it 
is deemed suitable for low-energy designs. However, 
during the design process the designer may decide 
to deviate from this insulation thickness for various 
reasons. Therefore, simulations using an insulation 
layer of 140 mm are compared to simulations using an 
insulation layer of 100 mm. 

A comparison between the simulation results 
are presented in Fig. 4.11. Changing the insulation 
value of the wall to 100 mm reduces the cooling 
energy demands of the sports halls and increases 
their heating energy demands. It also influences the 
thermal performances. 

The relative differences between the two 
analyses indicate slight correlation between the 
insulation value and the heating and cooling energy 
demands, the thermal comfort of spectators and 
the temperature criteria. The deviations between 
design alternatives is large, however. Furthermore, 
the influence of the insulation value on thermal 
comfort levels of sports players is unpredictable. In 
conclusion, when the design process deviates from the 
preliminarily assumed insulation thickness of 140mm, 
the Computational Design System does not effectively 
facilitate making of well-informed design decisions. 
Instead, new performance simulations would have to 
be run.

4.5.3  Deviation from choice of window type

The choice of window influences solar transmission, 
heat gain and building insulation. Correspondingly, 
the choice of window influences energy, lighting and 
thermal performances. The Performance Analysis 
System developed in this thesis makes use of double 
glazing with slightly reduced solar transmission. During 
the design process, the author gained interest in the 
potential of translucent glazing for both architectural 
and climate-related design qualities. Correspondingly, 
this subchapter compares the use of double glazing to 
the use of translucent glazing. The translucent glazing 
has a U-value of 1.25 W/m²K, SHGC of 0.3 and visible 
transmittance of 0.51. These values are derived from 
CPI Daylighting (2014)

Simulation results are presented in Fig. 4.12. The 
results show a decrease of the cooling energy demand 
and an increase of heating and lighting energy demands 
when using translucent glazing as opposed to double 
glazing. Glare is considerably improved, whilst lighting 
uniformity remains unaffected. The glazing type also 

influences indoor operative temperatures, which in 
turn influences thermal performances. 

There is a similarity between the relative 
differences of the glare performances of each design 
alternative, as well as thermal comfort performances. 
The other performances show a slight similarity in 
the relative differences between the performances 
of each design alternative. Consequently, the data set 
generated with the Iterative Design System does not 
facilitate making informed design decisions when the 
designer decides to use translucent glazing instead of 
transparent glazing.

When only considering the performances of the 
three designs that are based on the ‘non-orthogonal 
mass definition’, similarity between relative 
differences is increased, however. When the user of the 
Computational Design System only considers designs 
based on the ‘non-orthogonal mass definition’, they 
are able to estimate cooling, heating, glare, lighting 
uniformity and thermal comfort performances with 
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Fig. 4.11: Comparison of simulation performances of simulations run with different wall insulation thicknesses for a selection of five 
design alternatives.
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relative certainty. Therefore, the user may be able 
to make substantiated design decisions when only 
considering these performance objectives and design 
alternatives. It should be noted that the sample size of 
the design alternatives based on ‘non-orthogonal mass 

definition’ is insufficient to properly substantiate this 
conclusion. Analyses of additional design alternatives 
would be required to verify whether the data of design 
alternatives made with the ‘non-orthogonal mass’ can 
be used to make informed design decisions.

4.5.4  Deviation from choice of setpoint temperatures

The heating and cooling setpoint temperatures of 
the default simulations are 21°C and 27°C, respectively. 
Preliminary simulations have shown that with these 
values thermal performance criteria are met most of 
the year. Choosing different setpoint temperatures 
influence the thermal performances and the heating 
and cooling demands. Therefore, the aforementioned 
temperatures are compared to heating and cooling 
setpoint temperatures of 19°C and 25°C, respectively.

The simulations with default setpoint temperatures 
and adjusted setpoint temperatures are presented 
in Fig. 4.13. As expected, the temperature setpoints 
have great influence on heating and cooling energy 
demands. Changing the setpoint temperatures 
also affects thermal comfort performances, since 
indoor temperatures do not meet thermal comfort 
standards. The amount of hours temperature criteria 
are met is increased, likely because maximum indoor 
temperatures are lower.

There is no clear similarity in the relative differences 
between the performances of each design alternative. 
The relative differences of fourth design alternative 
in particular vary greatly from the relative differences 
of the other designs. Consequently, when the design 
process deviates from the previously assumed setpoint 
temperatures, the data set generated with the Iterative 
Design System does not accurately represent relative 
performances between design alternatives and thus 
cannot be used to make design decisions. 

When only considering the three designs that 
are based on the ‘non-orthogonal mass definition’ 
the influence of the setpoint temperature on cooling 
energy, heating energy, thermal comfort of spectators 
is fairly predictable, however. This suggests that 
the user may still be able to make informed design 
decisions when considering only designs made using 
the ‘non-orthogonal mass definition’. As explained in 
chapter 4.5.3, this sample size is insufficient to draw 
conclusions and additional analyses are required to 
verify this assertion. 

4.5.5  Deviation from choice of setback temperatures

Setback temperatures control indoor temperatures 
during unoccupied hours. Using setback temperatures 
has the potential to reduce the energy demand. 
The heating and cooling temperature setbacks used 
in the Performance Analysis System are 13°C and 
35°C, respectively. This subchapter analyses whether 
changing these setback temperatures to 17°C and 
32°C effects the performances.

Fig. 4.14 shows that changing the setback has a 
small effect on the total energy demand, temperature 
criteria and thermal comfort of spectators. It does 

positively effect the thermal comfort of the sports 
players, however. A possible explanation is that early 
morning heating of the building reaches desirable 
indoor temperatures more quickly. 

Because the relative differences between 
performance values of the default simulations and 
the simulations with adjusted setback temperatures 
are small, it is concluded that the default data set can 
be safely used to make substantiated design decisions 
when deviating from preliminarily assumed setback 
temperatures. 

4.5.6  Deviation from choice of activity schedule

The activity schedule used in this thesis (Fig. 4.2) 
is largely based on assumptions made by the author. 
This subchapter analyzes what the consequences in 

potential deviations from these assumptions are with 
regards to the usability of the Data Analytics System 
for substantiated decision-making. In order to do so, 
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Fig. 4.13: Comparison of simulation performances of simulations run with different setpoint temperatures for a selection of five 
design alternatives.
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Fig. 4.14: Comparison of simulation performances of simulations run with different setback temperatures for a selection of five 
design alternatives.
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the entire data set containing all design alternatives 
generated by the Generative Design System are 
simulated and compared for two different activity 
schedules. With the ‘default’ schedule (which is used 
in the Data Analytics System described in Chapter 
5 and Chapter 6) the sports hall is in use for 17 hrs/
day and with the other activity schedule the sports 
hall is in use for 9 hrs/day. The alternative schedule 
is shown in Fig. 4.15. The activity schedule influences 
the various energy demands of the building, as well as 
the lighting and thermal comfort criteria.

Fig. 4.16 presents the differences between 
performance values of twenty randomly selected 
design alternatives corresponding to analyses run 
with either activity schedule. Unsurprisingly, energy 
demands are lower when the amount of operative 
hours is lower. The percentage of time glare is 
occurring during operative hours is also lower with 
the nondefault activity schedule, most likely because 
the building is not used during the morning and 
thus has relatively more hours without daylighting. 
Performances of the temperature-related objectives 
are also generally improved. Lighting uniformity 
shows no to little improvement with the new activity 
schedule.

The relative differences of glare and lighting energy 
are similar between design alternatives. The relative 
performances of the design alternatives are therefore 
largely similar. Cooling energy, lighting uniformity and 

thermal comfort performances show similarity to a 
lesser extent. Relative differences between heating 
energy demands and temperature criteria vary most 
between design alternatives. Here, there is a clear 
discrepancy between buildings generated using 
different parametric models. When comparing design 
alternatives that use the same parametric model, 
the relative differences of glare, thermal comfort 
performances and cooling, heating and lighting 
energy demands large correspond between design 
alternatives. Consequently, the overall performances 
of the designs relative to other design alternatives 
generated with the same parametric model are largely 
unchanged.

To determine whether a changes in the occupancy 
schedule affects the interrelationship between building 
aspects correlation matrices of the two data sets are 
compared. Correlation matrices show correlation 
coefficients between variables. The correlation 
coefficients range from -1 to 1, where 1 indicates 
strong positive correlation, -1 indicates strong negative 
correlation and 0 indicates no correlation. Chapter 
5.7 provides a detailed explanation of correlation 
matrices.

The correlation matrices are generated in 
ModeFrontier (version 5.3.0; ESTECO SpA, 2017) 
and show correlation between both geometry and 
performance aspects. A comparison between the 
correlation matrices is drawn by calculating the 
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difference between the values of the correlation 
matrices. This gives an indication of relative changes of 
the correlation between building aspects between the 
two data sets. The correlation matrices are presented 
in Appendix E. 

Fig. 4.17 shows the relative differences of each 
cell of the two correlation matrices. Naturally, 
correlation between building aspects and PV-related 
performance aspects is identical, since these values 
are not influenced by building activity. Differences in 
correlation between building aspects and energy and 
lighting performances are also largely neglectable. The 
differences of cooling energy, lighting energy, glare 
and lighting uniformity are mostly smaller than 5%. 
Differences of correlations with heating energy are 
mostly smaller than 10%. 

The correlation matrices indicate that the relative 
differences between design alternatives are small 
when considering energy and lighting performances. 
Consequently, running a few simulations with an 
alternative activity schedule would enable the user 
of the Computational Design System to extrapolate 
corresponding performance values of each design 
alternative with relative certainty. Therefore, for these 
performance objectives, the user of the Computational 
Design System can predict the relative performances 
between design alternatives for changes in the activity 
schedule on these performance objectives with 
relative safety. Furthermore, the average difference 
between the correlations of the correlation matrices 
are small; 3.1%. This suggests that, in general, the 
relative difference between design alternatives is 
small.

To further analyze this assertion, Self-Organizing 
Maps of both data sets are compared. Self-Organizing 
Maps project high-dimensional data on a two-
dimensional field. Self-Organizing Maps are topology 
preserving, meaning that closely related design 
alternatives are plotted closely together. Chapter 5.2 
provides a detailed explanation on Self-Organizing 
Maps. The two Self-Organizing Maps are generated 
using both building information and performance 

values. Consequently, relative differences between 
performance values would entail differences between 
the Self-Organizing Maps. 

The Self-Organizing Maps of the two data sets 
are presented in Fig. 4.18. Bearing in mind that the 
second Self-Organizing Map is rotated approximately 
45° compared to the first Self-Organizing Map, the 
Self-Organizing Maps of the two data sets are largely 
similar. Interrelationship between design alternatives 
is generally maintained; closely related design 
alternatives are plotted in similarly close vicinity and 
the two Self-Organizing Maps present near-identical 
clusters. This indicates that changes of the occupancy 
schedule do not have a great effect on relative 
differences between design alternatives. 

The data sets are also compared using the visual 
analytics tool developed in this thesis. The visual 
analytics tool integrates various data analytics 
methods in a game-like environment, which uses the 
metaphor of a rural landscape to visualize data in an 
intuitive manner. Two landscapes are generated with 
either data set. The landscapes are visualized in Fig. 
4.19. Similar to the aforementioned Self-Organizing 
Map, the landscapes are rotated relative to each other. 
Nevertheless, the landscapes are largely similar.Hills 
and valleys, visualizing designs with relatively better 
and worse overall performances, are largely the same. 
The ground type is also largely similar. Furthermore,  
as shown in Fig. 4.20, the data typology is largely the 
same, with design alternatives distributed in similar 
groupings.

In conclusion, changes of building activity do not 
have a tremendous effect on the decision-making 
process of the designer. The influences on the 
performances of design alternatives are generally 
predictable, and so is the influence of the activity 
schedule on the correlation matrices of building 
aspects. Therefore, the data set generated and 
visualized with the Computational Design System can 
still be used to make substantiated design decisions 
when the activity schedule of the sports hall is different 
from the preliminary assumed schedule. 

4.5.7  Conclusions

The Performance Analysis System developed in 
this thesis uses several preliminary design decisions 
that influence the simulation performances. When 
the design process deviates from any of these design 
decisions, design decisions based on an ‘outdated’ 
data set may cause incorrect trade-offs that affect 
performance of the sports hall. This subchapter 
presents an analysis that indicates whether deviating 

from preliminary decisions on wall insulation, window 
type, setpoint temperatures, setback temperatures or 
building activity would render the data set unusable to 
make informed design decisions.

The influences of changing the wall insulation on 
building performances are unpredictable. Therefore, 
when deciding to change wall insulation, a new data 
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set should be generated. Changes of the window 
construction and of the setpoint temperatures also 
influence building performances. Their influences 
on building performances are more predictable, 
however, and based on comparisons between three 
design alternative it appears that the data set may 
still be of use if the buildings are derived from the 
same parametric model. This assertion needs to 
be verified with additional analyses. Changing the 
setback temperatures has little effect on building 
performances. Therefore, the Computational Design 
System can be used for comparative decision-making 
when deviating from the preliminarily assumed 
setback temperatures.The activity schedule of the 
sports hall influences eight out of ten performance 
objectives. However, relative influence of a change 
in activity on the performances are similar for each 
design alternative if they are generated using the 
same parametric model. Therefore, designers can 
extrapolate design performances with relative 
certainty.

In four out of these five cases, (parts of) the 
Computational Design System can still be used to 
make substantiated design decisions, based on 
comparative assessment of design results or based 
on interrelationships between building aspects. 
Nevertheless, the user of the Computational Design 
System should be aware of the fact that design 
performances may change when a design decision 
made during the architectural design process deviates 
from a preliminary design assumption. Rerunning 
a few simulations with the new design decision 
to determine its influence on relative building 
performances, similar to the method of this chapter, 
informs the user whether (part of) the current data 
set can be used to make substantiated trade-offs or 
whether a new data set should be generated.

4.6 DISCUSSION

The Performance Analysis System determines 
various performances of the design alternatives 
generated with the Generative Design System. The 
performance objectives of the sports hall designed 
in this thesis are energy, visual comfort and thermal 
comfort performances. Building prescriptions and 
sports regulations give insight in performance criteria 
regarded by the PAS. The PAS runs building simulations 
using Grasshopper plug-ins DIVA, Ladybug and 
Honeybee to determine performances of the sports 
hall designs.

The design variables considered in the Iterative 
Design Systems are all related to building geometry. 
Consequently, the PAS uses preliminary design 
decisions to determine climate-related building 
aspects. Comparison of performance simulations 
that use different wall insulation values, glazing 
types, setback temperatures or occupancy schedules 
suggest that in most cases, the data set of the CDS 
can still be used for comparative assessment of design 
alternatives when the architect reconsiders one of 
these preliminary design choices. Rerunning a few 
simulations provides the architect with sufficient 
knowledge to make appropriate design decisions 
using an ‘outdated’ data set of simulated design 
alternatives.
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Fig. 4.16: Comparison of simulation performances of simulations run with different activity schedules for a random selection of 
twenty design alternatives. 
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Fig. 4.17: Table showing the differences between the correlation matrices of two data sets of 150 design simulations run with 
different activity schedules.
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Fig. 4.18: Self-Organizing Maps of data sets of 150 design simulations using a schedule with 17 operative hours a day (t.) and 9 
operative hours a day (b.) (version 5.3.0; ESTECO SpA, 2017). Each design alternative is represented by a six digit ID number and each 
cell of the Self-Organizing Map is represented by a hexagon. The color of the hexagon indicates the average relative distance between 
that hexagon and its six neighbors. Yellow indicates lowest and red indicates highest relative distances. 
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Fig. 4.19: Bird’s eye view of the visual analytics tool showing a data sets of 150 design simulations using a schedule with 17 operative 
hours a day (t.) and 9 operative hours a day (b.). Though the designs are slightly rotated on the landscape, similarity between the 
two data sets is noticable. 

Fig. 4.20: Close up view of the visual analytics tool showing a data sets of 150 design simulations using a schedule with 17 operative 
hours a day (l.) and 9 operative hours a day (r.). Comparison of the two images show that data topology (i.e. interrelationship 
between design alternatives) is similar.
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The Data Analytics System (DAS) processes and visualizes the building information generated with 
the Iterative Design System. The goal of the DAS is to present the building information in an intuitive way 
that facilitates multi-variate, multi-objective design exploration and decision-making of large sets of design 
alternatives for practitioners in the field of archtitecture.

The DAS consists of a Data Processing System and a Visual Analytics System. The Data Processing System 
imports ‘raw data’ of the Iterative Design System and uses various algorithms to process the data for use in 
the Visual Analytics System. The Visual Analytics System is a high-interactive data environment that visualizes 
these algorithms. 

The DAS is described in the next two chapters. Chapter 5 describes the various algorithms used to process 
the design information. Chapter 6 describes the Visual Analytics System and shows visualizations derived from 
the visual analytics tool developed in this thesis.

DATA ANALYTICS SYSTEM
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This chapter describes the Data Processing System 
(DPS). The DPS uses various algorithms to process the 
data generated with the Iterative Design System (IDS) 
for visualization in the Visual Analytics System (VAS).

Chapter 5.1 introduces the DPS and describes the 
workflow of the DPS.

Chapters 5.2 to 5.7 describe the algorithms that 
comprise the DPS.

Discussion on the DPS is presented in chapter 5.8.

5.1 INTRODUCTION

5.1.1  Purposes

The goal of the Data Analytics System is to 
substantiate multi-variate, multi-objective decision-
making in the early design phase by visualizing 
performances of a large set of design alternatives and 
by enabling comparative assessment of designs. In 
order to do so the DAS fulfills various functions:

• Navigation through large data sets.
• Visualization of interrelationships between 

data items in high-dimensional data
• Visualization of performances of high-

dimensional data
• Determination of interrelationships between 

design aspects and performances

Various data analytics methods are integrated in 
the DPS to fulfill distinctive functions. The following 
subchapters describe the data analytics methods 
used in this thesis. The subchapters are arranged 
corresponding to the functions described above.

This chapter repeatedly uses the term ‘normalizing’. 
Normalizing data concerns extrapolating values from 
one range to another. In this chapter, all values are 
normalized to a range of 0-1, according to the formula 
in Fig. 5.1. To avoid redundancy, each instance of 
‘normalizing to a range of 0-1’ is abbreviated to 
‘normalizing’ in this chapter, unless stated otherwise.

5.1.2  Workflow DPS

The DPS makes use of the Unreal Engine (version 
4.17.1; Epic Games Inc., 2017a) and modeFRONTIER 
(version 5.3.0; ESTECO SpA, 2017) for its various 
algorithms. The DPS uses the design information 
generated by the IDS and processes it for use in the 
VAS.

The IDS generates multiple CSV files. The CSV files 
can be directly imported by the algorithms of the DPS.

Although most of the DPS and the VAS make use of 

the same software environment (the Unreal Engine)
data transfer between the systems mainly uses CSV 
files. This method has two advantages. Firstly, it allows 
access to the processed data without need of the VAS, 
which is especially useful during the development 
phase of the CDS. Secondly, it improves the run-time 
performance of the visual analytics tool, especially 
during boot.

ChAPTER 5: DATA PROCESSING SYSTEM

For an item with attribute A in a data set with respective attributes ranging from A
min 

to A
max
:

A
norm

 = (A - A
max
)/(A

min
 - A

max
)

Fig. 5.1: Formula to normalize data. This formula considers A,min as the best-performing attribute. This is in line with the 
performance objectives of the Performance Analysis System, which are all minimzed (to correspond to other performance objectives, 
PV energy gain is expressed as a negative number).
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5.2 DIMENSIONALITY REDUCTION - SOM

5.2.1  Introduction

Interrelationships between data items are 
difficult to visualize for data sets with more than 
three dimensions. Dimensionality reduction 
methods are used to project high-dimensional data 
on a low-dimensional field in order to facilitate the 
interpretation of high-dimensional data. Principle 
component analysis and the Hyperspace Pareto 
Frontier are examples of algorithms that facilitate 
dimensionality reduction.

Principle component analysis (PCA) achieves 
dimensionality reduction by using only the two most 
linearly uncorrelated data variables. In other words, 
variables that meet a certain degree of correlation (e.g. 
total window area and glare occurance) are ‘merged’. 
Though widely used in many scientific disciplines, PCA 
is not suitable for the VAS, most importantly because 
PCA limits the amount of data variables that are used 
to determine correlations, whereas CDSs used in the 
field of architecture may analyze many performance 
objectives that do not necessarily correlate (e.g. 
when using an IDS that optimizes glare, acoustics, 
the loadbearing structure and building costs amongst 
other factors). 

The Hyperspace Pareto Frontier is a projection 
of multivariate data onto a two-dimensional 
scatter plot. This is achieved by summing multiple 

dimensions on a single axis by means of the Hyper-
Space Digital Counting method. The Hyper-Space 
Digital Counting method rests on the idea that points 
on a (two-dimensional) plane can be projects one a 
(one-dimensional) line without losing the topology 
of the data (Agrawal, Lewis & Bloebaum, 2006). The 
Hyperspace Pareto Frontier requires the right selection 
of objective grouping; to achieve an even distribution 
of design points, the grouped objectives should 
have a high positive correlation. If the objectives 
have a negative correlation, the design points are 
clustered, and if there is no correlation, the design 
points are scattered. The Hyperspace Pareto Frontier 
thus requires sufficient correlation between data 
attributes. Additionally, both PCA and the Hyperspace 
Pareto Frontier may cause cluttering of data items.

Elastic map methodologies are able to prevent 
cluttering. Elastic maps use a low-dimensional manifold 
that approximates the data set. Self-Organizing Maps 
use a similar methodology to project high-dimensional 
data onto a two-dimensional field. The VAS uses a Self-
Organizing Map with a slightly adapted algorithm that 
prevents cluttering. An added benefit of the use of a 
Self-Organizing Map is that it is able to approximate 
non-simulated areas of the design space, comparable 
to response surface methodology.

5.2.2  Theory 

A Self-Organizing Map (SOM) is an unsupervised 
neural network used for high dimensional data 
organization and visualization invented by Tuevo 
Kohonen. SOMs are inspired by the occurrence of 
topology-preserving characteristics of the brain 
(Kohonen, 1995) and to explain the functioning of 
SOMs, it is beneficial to explain these characteristics. 

In many areas in the brain, neurons are arranged 
in the same order as their respective sensory organs. 
An example is the somatotopic map (Fig. 5.2), 
which comprise the organization of the motor area 
of the brain. In the arrangement of neurons the 
physical arrangement of the members of the body 
can be distinguished. However, instead of a three-
dimensional typology, neurons are arranged in a linear 
array. Similar phenomena occur in the retinotopic 
and tonotopic areas of the brain (the organization of 
the visual and tonal system, respectively). Kohonen 
(1995) believes that the brain is able to form reduced 
representations of the most relevant facts without 
loss of knowledge about their interrelationships by 

using the same principle, which has been the main 
inspiration for the invention of SOMs. Similar to how 
the arrangement of neurons is a one-dimensional 
projection of three-dimensional information, SOMs are 
a low-dimensional topology preserving representation 
of high-dimensional data (Kohonen, 1995). In other 
words, SOMs are commonly a 2-dimensional array 
on which high-dimensional data items are mapped, 
projecting similar data items to nearby locations (Fig. 
5.3).

 
In order to do so, a SOM uses a sheet-like nodal 

network, in which each node corresponds to a 
coordinate on the 2-dimensional map. Each node 
is associated with a weight vector. The items of the 
data set are considered as an n-dimensional vector 
of weights (Pediroda & Poloni, 2008). Using a looping 
process, the nodal network is adjusted corresponding 
to a random data item. This is done in two stages; a 
competitive stage and a cooperative stage. In the 
competitive stage, a Voronoi tessellation is created of 
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the nodal network. The randomly selected data item 
lies within the Voronoi region of one nodal point. 
This nodal point’s position is adjusted according to 
the data item’s weights vector, to meet its weight 
even closer. To preserve the topology of the data the 
neighboring nodal points are also adjusted during the 
cooperative stage. Their adjustment factor depends 
on the distance from the center nodal point and on 
the learning rate. The learning rate determines the 
level of convergence of the process. Low  convergence 
requires long computation time. High convergence 
decreases computation time, but may result in errors. 
In functionality, the nodal network can be compared 
to a fish net that is cast to catch a school of fish. The 

fish net wraps around the school and each fish is 
caught in one of the net’s holes. Naturally, fish that 
swam closely together when they were caught will be 
close together in the fishnet.

With the net wrapped around the data set, one can 
imagine that the centerpoint of each cell in the nodal 
network has their own values (i.e. coordinates) in the 
data cloud (Fig. 5.4). These values are assigned to their 
corresponding cells. When the looping process of the 
nodal network is completed and the ‘net’ is optimally 
wrapped around the data set, the net is unfolded to a 
two-dimensional map. As a final step, each data item 
is then assigned to the cell that it’s most similar to.

SOMs are commonly visualized as an orthogonal or 
a hexagonal lattice grid. The nodal network’s size and 
the amount of data determine whether multiple data 
items do or do not contain multiple data items. Nodes 
may not be assigned any data items if their vector 
weight is not similar enough to the vector weights of 
the data sets. The SOM is often visualized in a U-matrix, 
where the cells are shaded to show their distances to 
neighboring cells. Bright areas correspond to closely 
related vectors and dark areas correspond to jumps 
in the data set vectors (Kohonen, 1995). Alternatively, 
the cells can be shaded or colored to show the value 
of an input parameter (Fig. 5.5).

5.2.3  Application

The Self-Organizing Map in the DAS has two main 
purposes: multi-dimensional scaling with topology 
preservation and the approximation of non-simulated 
areas of the design space (similar to response surface 
methodology). Its clustering ability is purposely 
avoided: since the aim of the VAS is to be able to show 
all simulated designs, the (non-interactive) clustering 
of designs is not beneficial. 

To avoid clustering, the amount of grid cells should 
therefore be equal to or bigger than the amount 
of data items. The extent to which the amount of 
grid cells exceeds the amount of data items may be 
decided by the user, as it depends on the intended 
use of the CDS. Increasing the ratio between the 
amount grid cells and data items improves topology 
preservation between designs. Furthermore, since the 
aspect values are calculated for the empty cells, they 
can be used to extrapolate areas of the design space 
that are not covered by the simulations. This may be 
desirable if the design space is broad and the user 
expects that areas of the design space are not covered 
by the simulations. If the simulated designs do cover 

the desired design space and the SOM is not needed to 
interpolate values in between design alternatives, the 
ratio can be decreased. This consequently decreases 
the size of the landscape in the visual analytics system. 
In this thesis, a ratio of approximately 5:1 is used.

The Self-Organizing Map is generated in mode-
FRONTIER, an ‘integration platform for multi-objective 
and multi-disciplinary optimization’ (Primavera, 2014). 
Both geometric and performance aspects are used to 
determine similarity between items. ModeFRONTIER 
generates a table with each cell’s aspect values, which 
is exported as a CSV file for use in the VAS. 

ModeFRONTIER does not facilitate the export 
of a table with each cell’s corresponding design 
alternative. This is therefore reinstated in the Unreal 
Engine. The calculation methodology used to assign 
the design alternatives to their cells is different from 
the methodology used in modeFRONTIER to assure 
that no clusters are formed.

The calculation methodology relies on the fact that 
each design alternative is assigned to the cell that it is 

Fig. 5.2: The somatotopic map (Kohonen, 1995, p.72).



76Data Processing System

Fig. 5.3: Self Organizing Map (Kohonen, 1995, p.116).

x

y

z

Fig. 5.4: Nodal network wrapped around a set of bivariate data items.

Fig. 5.5: SOM component plots. The colors correspond to values for various parameters (Jha et al. 2017, p.5).
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Fig. 5.6: A method to assign the designs to their corresponding cells without clustering (l.) and with clustering (r.). 
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closest to. In other words, for each design alternative 
its corresponding grid cell is the one with the lowest 
Euclidean distance to the design alternative. Consider 
a table in which the Euclidean distance between each 
design alternative and each cell is calculated. To exactly 
recreate the Self-Organizing Map that is generated in 
modeFRONTIER (i.e. with cluttering), the following 
steps need to be repeated until all design alternatives 
are assigned to their corresponding cells (Fig. 5.6,l.): 
(1) find the match with the lowest Euclidean distance, 
(2) assign the design alternative to the cell, (3) remove 
design alternative from table. The DPS of this thesis, 
performed in the Unreal Engine, adds an additional 
step that prevents cluttering (Fig. 5.6,r.): (1) find the 
match with the lowest Euclidean distance, (2) assign 
the design alternative to the cell, (3) remove design 
alternative from table, (4) remove cell from table. This 
way, when a cell already is assigned a design, it cannot 
be assigned an additional design. Furthermore, this 
method assures that for a cell that would ordinarily 
contain multiple design alternatives, the design 
alternative that is most similar is assigned to it. The 
difference between the two methods is shown in Fig. 
5.7. Scenario analysis, presented in Appendix D, shows 
that the loss of topology and the chance of loss of 
topology is minimal when ratios between SOM’s grid 
cells and data items exceed 3:1.

The algorithm that generates the SOM in this thesis 
requires two data sets: one with the geometric and 
performance values of the design alternatives and one 
with the geometric and performance values of the SOM 
cells. The first is exported from the IDS in Grasshopper 
and the latter is exported from modeFRONTIER. 
After loading the data sets in the Unreal Engine, the 
Engine firstly normalizes the values. Then, the design 
alternatives are assigned to their corresponding cells 
following the pseudocode depicted in Fig. 5.8. A 
dictionary of the cells’ corresponding design variations 
is exported as a CSV file. Thus, the matching process, 
which is fairly computationally expensive, only needs 
to be run at first boot. After that, the visual analytics 
system can retrieve the information directly from the 
CSV file. 

Another alteration the DPS makes to the 
‘traditional’ Self-Organizing Map is that the values of 
the design alternatives ‘override’ the values of their 
corresponding cells (Fig. 5.9). The reason for this is 
that the user of the visual analytics system generally is 
more interested in the (simulated) performance of the 
design alternative itself, rather than the (extrapolated) 
performance of the area of the design space that the 
cell covers. Since the performance values of the cells 

are overridden, their area of the design space is not 
accessible anymore. They are, however, approximated 
by the performance values of the design alternatives. 
The difference between the ‘new’ and ‘original’ values 
depends on the ratio of empty cells to cells with a 
matching design alternatives and can therefore be 
influenced by the user, who determines this ratio. 
Selecting a very high ratio, e.g. a ratio of 20 cells for 
each design alternative means that the differences 
between the cells are smaller and, consequently, the 
differences between the design alternatives and their 
corresponding cells are small. If the user selects a very 
low ratio, the designs have fewer cells to match to and 
are therefore more likely to have greater differences 
between their corresponding cells. The user might 
prefer the former ratio if he is interested in the design 
alternatives in the non-simulated design space and the 
latter if he is only interested in the design alternatives 
that are simulated.

The DAS also incorporates a U-matrix. The 
U-matrix is a visualization of each cell’s average 
distance to its neighboring cells. It is therefore a useful 
tool in identifying data clusters, whose distinctiveness 
may have gotten lost in the dimensional scaling. 
ModeFRONTIER does not have a function to export 
information of the U-matrix. Instead, this is reinstated 
in the Unreal Engine.

In order to do so, a cube coordinate system is first 
defined. A cube coordinate system uses three axes. 
For hexagonal grids, each of these axes are offset 
by 120° and are the normal vectors of the sides of 
the hexagon. A cube coordinate system is useful in 
identifying neighboring cells, since the neighbors’ 
values for one of the three axes is identical and the 
other axes increment and decrement by 1. See also Fig. 
5.10. Another characteristic of the cube coordinate 
system is that the sum of the coordinates always 
equals zero. Therefore, a coordinate can be derived 
from the other two coordinates. The cube coordinate 
system can be calculated from the array indices and 
grid size, according to the formulas presented in Fig. 
5.11. In order to calculate the U-matrix values, the 
Unreal Engine finds the neighboring cells of each cell 
based on the cube coordinate system, calculates their 
normalized distance to the cell and then averages it. 
See Fig. 5.12.
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Fig. 5.7: Part of the S.O.M. with corresponding designs, retrieved from ModeFrontier (l.) and from the Visual Analytics System (r.).

With data set of design alternatives D with attributes A and data set with SOM grid cells 
C with attributes A:

make empty map (dictionary) of eucl.distances M
E

make empty map (dictionary) of designs assigned to cells M
C

length L = amount of rows in D
While M

C
.length < L:

 For each design alternative I
D
 in D:

  For each cell I
C
 in C:

   Eucl.distance E = sqrt((A
1,R
 - A

1,Ro
)2 + (A

2,R
 - A

2,Ro
)2 + ... + (A

n,R
 - A

n,Ro
)2)

   M
E
.append I

D
|I

c
:E

 for I
D
 and I

C
 with E

min
 in M

E
:

  M
C
.append I

C
:I

D

  D.remove I
D

  C.remove I
C

for each I
C
 in C:

	 find	I
C
 in M

C

  if null:
   M

C
.append I

C
:”empty”

Fig. 5.8: Pseudocode SOM.
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Fig. 5.10:  Example of a cube coordinate system in a hexagonal grid.
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Fig. 5.9: The (simulated) performance values of the design alternatives (top left) override the (extrapolated) performance values of 
the cells of the Self-Organizing Map (top right). This example also shows how the prevention of clustering influences the visualization 
of the design space. Ordinarily, both the orange and green design alternative would be assigned to cell 8. Since the visual analytics 
system prevents this, the (less similar) orange design alternative is instead assigned to cell 7. 
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make empty dictionary of hexagonal coordinates M
C

for each grid cell I
C
 in C:

 I
x
 = rounddown(I

C
.index / S)

 I
Y
 = I

C
.index % S - rounddown(0.5 * I

C
.index/S )

 I
Z
 = 0 - (I

y
 + I

x
)

 M
C
.append I

C
:(I

x
,I

Y
,I

Z
)

Fig. 5.11:  Pseudocode cube coordinate system.

With normalized data set of design variables and performance values:
With cube coordinate system M

C
:

make empty dictionary of U-matrix distances M
U

for each grid cell I
C
 in M

C
:

 Amount of neighbors N = 0
	 find	key	C

o
 of (I

x
+1,I

Y
,I

Z
-1):

  for C
o
 in C:

   Eucl.dist. E = sqrt((I
C,1
 - I

C,o,1
)2 + (I

C,2
 - I

C,o,2
)2 + ... + (I

C,n
 - I

C,o,n
)2)

   I
C
.value in M

U
 += E

   N += 1
	 find	key	C

o
 of (I

x
+1,I

Y
,I

Z
-1):

  for C
o
 in C:

   Eucl.dist. E = sqrt((I
C,1
 - I

C,o,1
)2 + (I

C,2
 - I

C,o,2
)2 + ... + (I

C,n
 - I

C,o,n
)2)

   I
C
.value in M

U
 += E

   N += 1
	 find	key	C

o
 of (I

x
-1,I

Y
+1,I

Z
):

  for C
o
 in C:

   Eucl.dist. E = sqrt((I
C,1
 - I

C,o,1
)2 + (I

C,2
 - I

C,o,2
)2 + ... + (I

C,n
 - I

C,o,n
)2)

   I
C
.value in M

U
 += E

   N += 1
	 find	key	C

o
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x
,I

Y
+1,I

Z
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  for C
o
 in C:

   Eucl.dist. E = sqrt((I
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C,o,1
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   I
C
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	 find	key	C

o
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Y
,I
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  for C
o
 in C:

   Eucl.dist. E = sqrt((I
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C,o,1
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 - I
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   I
C
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U
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	 find	key	C

o
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x
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-1,I
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  for C
o
 in C:

   Eucl.dist. E = sqrt((I
C,1
 - I

C,o,1
)2 + (I

C,2
 - I

C,o,2
)2 + ... + (I

C,n
 - I

C,o,n
)2)

   I
C
.value in M

U
 += E

   N += 1
 I

C
 in M

U
 /= N

Fig. 5.12: Pseudocode SOM U-Matrix.
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5.3 ANNUAL PERFORMANCE DATA - SBG & AhP

5.3.1  Introduction

The Self-Organizing Map is an effective method 
of organizing  high-dimensional data on a two-
dimensional field and thus effectively makes high-
dimensional data insightful. It does not, however, 
provide an easy-to-read overview of the cells’ 
performances.

When considering a large data set of design 
alternatives an overview of the overall performances 
of the designs is desired, in order to quickly find the 
design alternatives of interest. 

5.3.2  Theory

The Computational Design System takes both 
quantified and non-quantified performances into 
account. Consequently, since the overall performance 
of design alternatives depends on both types of 
performances, the DAS is able to visualize the overall 
performance of both quantified and non-quantified 
performances.

5.3.2.1 Quantified performances

For multi-objective optimization of data sets, 
multiple optimal design solutions can be defined. 
Multi-objective optimization finds the best possible 
tradeoffs between objectives by determining Pareto 
efficiency. Pareto efficiency is the state in which it 
is not possible to improve one objective without 
worsening another objective. The set of solutions that 
are Pareto optimal comprise the Pareto front.

Various data visualization methods facilitate the 
deduction of the Pareto front. Scatterplots are an 
effective method to deduce Pareto front of bi- or tri-
variate data, but fail to show Pareto fronts of high-
dimensional data sets. 

The Hyperspace Pareto Frontier aims to visualize 
the Pareto Front of high-dimensional data by 
projecting multivariate data onto a two-dimensional 
scatterplot. This is achieved by summing multiple 
dimensions on a single axis by means of the Hyper-
Space Digital Counting method. The Hyper-Space 
Digital Counting method rests on the idea that points 
on a (two-dimensional) plane can be projects one a 
(one-dimensional) line without losing the topology of 
the data (Agrawal, Lewis & Bloebaum, 2006). This is 
achieved by creating a path through the data points 
on the plane, which is subsequently projected on 
the line. The Hyperspace Pareto Frontier depends on 
a correct selection of objective grouping: to achieve 
an even distribution of design points, the grouped 
objectives should have a high positive correlation. If 
the objectives have a negative correlation, the design 

points are clustered, and if there is no correlation, the 
design points are scattered. 

This thesis uses a stacked bar graph to visualize 
overall performance. Like histograms, stacked bar 
graphs consist of columns to visualize data values. The 
height of the column corresponds to the data value. 
Stacked bar graphs stack multiple values of each data 
item. Contrary to common use, the DPS normalizes the 
performance data to facilitate the stacking of various 
types of performance aspects. The total height of the 
stacked columns of a design alternative corresponds 
to the design’s overall performance. 

5.3.2.2 Non-quantified 
performances

Non-quantified performances of design 
alternatives can be quantified using a methodology 
comparable to the analytic hierarchal process. The 
analytic hierarchal process (AHP) is a multi-criteria 
decision-making method, with particular use in 
group decision making in the fields of business and 
politics. The AHP uses ratio scales derived from paired 
comparisons to determine the best-fitting alternative 
to achieve a goal. The comparisons can be taken from 
measurements or can be based on relative preferences 
or feelings (Saaty, 1987).

The following four steps give a simplified 
explanation of the AHP.

(1) Firstly, a goal is discerned. That goal is 
decomposed into criteria and alternatives (possible 
solutions) are determined.

(2) Then, for each criteria, alternatives are 
compared in pairs. The user of the AHP determines the 
level of preference of one alternative over the other 
for that criteria, using a range from ‘equal importance’ 
to ‘extreme importance’. After preference levels are 
set for all pairs for each criteria, the total preference 
level of each alternative is calculated by summing 
their importance levels and normalizing the values by 
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dividing it by the sum of all importance levels.
(3) Then, the preference levels of the criteria for 

the goal are set. For each pair of criteria, the user 
determines the relative importance of one criterion 
over the other to reach the goal. Similar to step 2, total 
performance values are calculated and normalized.

(4) Finally, based on the aforementioned values 
assigned to the criteria and to the alternatives, the 
overall performance of each alternative is calculated, 
using the following formula:

P = ∑(Fc * Pc)
Where:
P = Overall performance
Fc = Weight factor of the criterion
Pc = Alternative’s normalized performance of a criterion

The alternative with the highest value for P is the 
most suitable solution to reach the goal.

Although the AHP is an effective decision-making 
process and tool for structured discussion for small 
data sets, the process is inefficient for large data sets; 
a data set of 200 alternatives requires 19.900 pairwise 
comparisons for each criterion. Instead, the VAS has 
a simplified method of determining preferences 
between criteria and between alternatives. 

5.3.3  Application

The designs’ overall performance is visualized 
using a method best described as a combination of a 
stacked bar graph and an analytic hierarchal process.

Each design’s overall performance is determined 
by summing the relative performance of each 
performance objective. The relative performance 
is determined by normalizing the data. Each 
performance aspect is normalized to a range of 0-1, 
in which performances of 0 and 1 correspond to that 
aspect’s worst and best performance in the data set, 
respectively. 

Comparable to setting criteria priorities in the 
analytic hierarchy process, the user can alter the 
range of each performance aspect in the VAS in order 
to match the influence of each performance aspect to 
their criteria priorities. If the user considers adequate 
thermal comfort levels of sports players to be twice as 
important as the thermal comfort levels of spectators, 
for example, the user can multiply the former by a 
factor of two.

Performance values are normalized based on their 
corresponding performance aspect only. In other 
words, cooling energy values are only normalized 
based on other cooling energy values and heating 
energy values are only normalized based on other 
heating energy values. This has multiple reasons. 
Firstly, it allows the user of the VAS to quickly retrieve 
the worst and best design for a specific performance 
criteria. Secondly, it allows the user to set priorities 
based on each aspect individually. Hence, the total 
performances in the annual performance visualization 
are not based on the numerical values of each 
performance aspect, but are based on relative 
performances and priorities set by the user. Users can 
set threshold values between which performances are 
normalized (Fig. 5.13).

A consequence of the aforementioned method of 
normalizing values is that the stacked bar graph does 
not sum performances with identical performances. 
For example, if the annual cooling demands of a set 
of design alternatives range from 0 to 12,000 kWh 
and annual heating demands range from 0 to 36,000 
kWh, the stacked bar of a design with a cooling and 
heating energy demand of 8,000 kWh and 12,000 
kWh respectively is equally big to a design with 
respective demands of 4,000 and 24,000 kWh (Fig. 
5.14). Although the former design requires 8,000 
kWh/y less energy than the latter, the stacked bar 
graph shows equal total performance. This is a 
deliberate feature of the VAS, since it encourages the 
user to reflect on the relevancy of each performance 
objective. The DAS contains a decision tree to indicate 
total energy demand (chapter 5.4). If the user would 
nevertheless rather express total energy performance 
in the stacked bar graph, the energy performances 
could be summed and represented as a single bar in 
the stacked bar graph. The user could switch between 
both visualizations using a simple toggle provided by 
the Visual Analytics System. 

Additional performance objectives can be manually 
appended to the stacked bar graph within the VAS. 
For any non-quantified performance objective, users 
of the VAS can rate design alternatives with a score 
between 0 and 1 (worst and best performance of the 
design alternatives in the data set, respectively), as 
shown in Fig. 5.15. An advantage of this method is that 
it can be used as a structured and rational technique 
to determine trade-offs between design alternatives 
based on both quantified and non-quantified 
performance objectives. This enhances the use of 
the CDS as a discussion tool in the decision-making 
process.
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Fig. 5.13: The UGR in a sports hall may not exceed 22. However, because of the normalizing, by default the stacked bar graph (l.) 
does assign a performance value bigger than zero to the values with a UGR>22. By setting the threshold for glare to 22 (r.), all values 
bigger than 22 are  assigned a performance of 0%, and are thus considered equally bad.
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Fig. 5.14: Normalizing of the values in a stacked bar graph may result in unequal equilibrium between performance aspects (l.). To 
overcome this, the performance aspects can be scaled to accurately represent the equilibrium between aspects (r.).
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Fig. 5.15: Use of the analytic hierarchal process to add non-quantified performances to the stacked bar graph. In the graph above, 
users defined relative quality of design alternatives’ integration in the urban context for cells 0, 2, 4, 5 and 6.
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Fig. 5.16: Decision tree for data classification (l.). Data items presented in the scatterplot (r.) are colored correspondingly.
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5.4 DATA CLASSIFICATION - DECISION TREE

5.4.1  Introduction

The Computational Design System makes use of 
large data sets that may contain hundreds of design 
alternatives. Since thoroughly reviewing each of 
these design alternatives is time-consuming, the 
VAS provides tools that aid the user in finding design 
spaces of interest. 

One such tool implemented in the VAS is a 
classification method that classifies design alternatives 
based on user-defined criteria. The VAS uses a decision 
tree to create subsets of a data set.

5.4.2  Theory

A decision tree uses a tree structure of conditional 
statements to subdivide a data set into classes (Fig. 
5.16). A decision tree consists of nodes that analyze 
attributes of data items and correspondingly assign 
data items to subsets. The nodes are hierarchically 
structured. The root node creates two or more subsets 
of the entire data set and should therefore have the 
most important conditional statement. Branch nodes 
further subdivide the subsets. Leaf nodes correspond 
to each final subset’s class labels. 

Various algorithms, such as the ID3 algorithm 
(Quinlan, 1986), are able to build decision trees 
based on machine learning, but because of their ease 
of use and ease of understanding decision trees are 
also commonly built manually. This  thesis also uses 
a manual approach of defining a decision tree, to 
encourage consideration of design variables and to 
enhance user flexibility.

5.4.3  Application

Classification of design alternatives in the Data 
Analytics System is best described as a process of 
giving each design alternative a ‘label’ that represents 
the corresponding subset. This label is visualized in the 
Visual Analytics System as a landscape feature (see 
chapter 6.2.3). 

Classification of design alternatives is performed 
in the Unreal Engine. The Data Analytics System 
uses a binary decision tree based on a series of 
‘Branch’ flow control gates provided by the Unreal 
Engine. The ‘Branch’ gate reads a Boolean value and 
outputs an execution flow corresponding to that 
value (i.e. if Condition = true, Execute A, if Condition 
= false, Execute B) (Epic Games Inc., 2017b). The final 
execution flow determines which ‘label’ is assigned to 
each design alternative. 

It should be noted that the use of a binary decision 
tree instead of a non-binary decision tree does not 
impose limitations on the classification process; as 
depicted in Fig. 5.17, identical subsets can be defined 
through slightly different processes. The choice to use 
a binary decision tree is based on the use of a ‘Branch’  
gate.

Although there are algorithms that provide 
methods of machine learning to determine relevant 
subsets, the Data Analytics System developed in 
this thesis uses user-defined classification criteria. 
This gives the user the opportunity to classify design 
alternatives based on their preferences. This thesis 
classifies design alternatives based on total annual 
energy consumption, expressed in kWh/m2. The total 
energy consumption is defined the sum of the annual 
performance objectives considered in this thesis; 
heating, cooling, lighting energy demands and PV 
panel energy gain. This supplements the algorithm of 
the stacked bar graph (chapter 5.3), which deliberately 
does not sum energy demands and energy gain.
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5.5 DATA CLUSTERING - AhC

5.5.1  Introduction

The purpose of clustering in the Visual Analytics 
System is to rapidly find design spaces of interest by 
reviewing a reduced amount of design alternatives. 

The VAS uses hierarchal clustering to reduce the 
amount of design alternatives that are visualized. 
Hierarchal clustering, in contrast to other clustering 
techniques, such as K-means clustering (Fig. 5.18), 
does not require an initialization step to determine 
the amount of clusters. Instead, it uses an iterating 
process in which the amount of clusters is determined 

by the amount of iterations. Hierarchal clustering 
provides the possibility to vary the amount of clusters. 
Furthermore, hierarchal clustering are widely used 
(Tan, 2006). Grasshopper’s method of data processing 
makes use of ‘data trees’, which closely resemble 
visualization techniques for hierarchal clustering. 
This is a relevant consideration factor for the choice 
of clustering methods for the Visual Analytics System, 
since users are already familiar with the clustering 
technique.

5.5.2  Theory

Methods for hierarchical clustering are either 
agglomerative or divisive. Agglomerative techniques 
consider data items as single-item clusters. Then, 
successively, the two closest clusters are merged 
until an all-encompassing cluster is defined. Divisive 
techniques inverse this process, splitting an all-
encompassing cluster until single-item clusters are 
reached. The distance between clusters can be 
defined using various methods (Fig. 5.19). The choice 
of linkage method depends on various criteria, a.o. 
data structure (Ferreira & Hitchcock, 2009; Almeida, 
Barbosa, Pais & Formosinho, 2007). Correspondingly, 
no method is uniformly the best.

 Hierarchical clusters can be visualized as a 
dendrogram or as a nested cluster diagram (Fig. 5.20). 

The application of hierarchical clustering has 
been researched as a way to explore architectural 
design alternatives (Sileryte, D’Aquilio, Di Stefano, 
Yang & Turrin, 2016). The research applied two 
clustering types: one based on performance values 
and one based on design parameters. In the research’s 
case study, both types were suitable to determine 
relationships between design parameters and 
performance objectives. 

5.5.3  Application

Clustering is done based on the design variables of 
the IDS, thus clustering design alternatives with similar 
geometries. To account for the versatility of the range 
of aspects’ values, the data set is normalized in Excel. 

The algorithm used in this thesis is agglomerative 
centroid clustering. With centroid clustering, 
clustering is performed based on the cluster averages. 
This linkage method is chosen because it most closely 
resembles the visualization of a dendrogram and the 
visualization of the agglomerative clustering in the 
VAS. Hence, it is the most ‘intuitive’ linkage method 
for the users of the VAS.

Clustering is performed in the Unreal Engine. With 
each design alternative assigned to a unique cluster, 
the Engine calculates the Euclidean distance between 

each two clusters. The cluster combination with the 
lowest Euclidian distance are set as a new cluster, for 
which its centroid between the two children’s aspects 
are set as the new aspects. The children clusters are 
removed from the list and the algorithm recalculates 
the Euclidean distances until one, all-encompassing 
cluster remains. See also Fig. 5.21. The information on 
clustering required by the DAS is exported to CSV files 
so that it can be retrieved after the first boot.
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Fig. 5.18: Example of K-means clustering.

Single linkage Complete linkage Average linkage Centroid linkage Median linkage Ward’s method linkage

Fig. 5.19: Hierarchal clustering linkage methods.
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Fig. 5.20: Hierarchical clustering visualized as a nested cluster diagram (l.) and a dendrogram (r.).
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5.6 DESIGN LABELS - PICTOGRAM ChART

5.6.1  Introduction

Although the stacked bar graph implemented in 
the Data Analytics System (chapter 5.3) is an effective 
tool to find relative performances between design 
alternatives, tests with an early version of the Visual 
Analytics System (see also chapter 7.2) indicated that 

finding the designs with best- and worst-performing 
performance objectives could be further facilitated. 
The Visual Analytics System therefore makes use of 
pictograms to indicate the designs with best or worst 
performances.

5.6.2  Theory

Pictograms are images that represent a data value. 
The image commonly corresponds to the data attribute 
(e.g. an icon of a person to represent population). 

Pictogram charts contain a collection of icons and 
visualize data similar to a bar graph. Pictogram charts 
can be used to visualize both numerical and categorical 

data. A threat of the use of pictogram charts is that 
they lose effectiveness when visualizing large amounts 
of data, since large amounts of pictograms are hard to 
interpret. The DAS developed in this thesis therefore 
uses means of interaction to provide a highly 
adjustable pictogram chart.

5.6.3  Application

The Data Analytics System uses a binary alternative 
of the pictogram chart, in which pictograms represent 
Boolean values that correspond to best and worst 
performances. Each performance objective is 
represented by two icons, one representing the 
worst performance and one representing the best 
performance. 

For each cell of the Self-Organizing Map, the 
performance values are compared to their respective 
threshold values. If the cell’s performance exceeds 
either value, a corresponding pictogram is spawned 
on the tile. By default, the threshold values are the 

minimum and maximum value of the performance 
objective, but this is adjustable by the user (see also 
chapter 5.3.3).

The latter feature offers the possibility of using the 
pictogram chart in its traditional sense; the amount of 
icons may indicate to what extent a threshold value 
is exceeded. See also Fig. 5.22. This, however, is not 
implemented in the visual analytics tool developed in 
this thesis. Because of the author’s limited experience 
with the Unreal Engine, this feature would be 
computationally expensive. 

With normalized data set D with aspects A:

length L = amount of rows in D
clusters C = data set D
while amount of new clusters n

C,n
 < L-1:

 make empty array A
E

 for each design alternative I in C:
  for each other design alternative I

o
 in C:

   if index.I < index.I
o
:

    Eucl.dist. E = sqrt((A
1,I
 - A

1,I,o
)2 + ... + ((A

n,I
 - A

n,I,o
)2)

    Append E to A
E
 

 for I and I
o
 with E,min in A

E
:

  Set new cluster Cn to I
emin

-I
o,emin

  for each A in C
n
:

   A = (A
I
 + A

I,o
)/2

  C.remove I
  C.remove I

o

 C.append C
n

 

Fig. 5.21: Pseudocode agglomerative hierarchal clustering.
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Fig. 5.22: Traditional pictogram chart (top) and binary pictogram chart (bottom) in the Data Analytics System.
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5.7 INTERRELATIONShIPS BETWEEN DESIGN ASPECTS - CORRELATION MATRIX

5.7.1  Introduction

Using the aforementioned data analytics 
methodologies the user is able to make trade-offs 
between design alternatives by means of comparative 
assessment. These methodologies also enable the user 
to predict influences of design variables by comparing 
design alternatives. However, some influences of 
design variables on performances may be ambiguous, 
especially when the building aspects are numerous, 

or when a design variable is not visual in the design 
geometry (e.g. setpoint temperatures). 

The Data Analytics System therefore makes 
use of a correlation matrix, which determines 
interrelationships between building aspects. Analysis 
of the interrelationships between design aspects 
further informs the designer on the effects of design 
decisions.

5.7.2  Theory

A correlation matrix is a matrix of Pearson’s 
correlation coefficients. Correlation is a calculation 
methodology of the interrelationship between two 
continuous variables. Pearson’s correlation coefficient 
is a measure of the strength of a linear association 
between two variables. Pearson’s correlation 
coefficients are calculated using the following formula:

rx,y = (n(Σxy)-(Σx)(Σy)) / √[nΣx2-(Σx)2][nΣy2-(Σy)2]

Where:
rx,y = Pearson’s correlation coefficient
x = variables x
y = variables y

The Pearson’s correlation coefficient ranges 
from -1 to +1, where r = -1 indicates strong negative 
correlation, r = +1 indicates strong positive correlation 
and r = 0 indicates no correlation (Fig. 5.23). 

The correlation matrix is commonly visualized 
with the use of colors that correspond to Pearson’s 
correlation coefficients, so that highly correlated and 
uncorrelated variables can be retrieved quickly and 
intuitively.

5.7.3  Application

The correlation matrix used in the Data Analytics 
System is a square matrix that contains correlation 
coefficients of both design variables and annual 
performances. Design variables are the building’s 
orientation, floor area, volume, PV panel area, window 
areas of four façades and the roof and the annual 
hours of direct daylighting through the windows of 
each façade. 

Various researches have introduced guidelines 
that qualify correlation based on Pearson’s correlation 
coefficients. However, as Cohen (1988) points out, 
for various reasons correlation coefficients may be 
fallible. Consequently, guidelines may be considered 
somewhat arbitrary, as correlation depends on 
context.  Hence, the Data Analytics System does 
not use such guidelines. Instead, the Data Analytics 
System calls for the designer’s expertise to interpret 
correlation between design variables.

The correlation matrix is generated in mode-
FRONTIER (version 5.3.0; ESTECO SpA, 2017) and 
exported to an Excel (.XLS) file. This file may then be 
exported as a CSV file for implementation in the Visual 
Analytics System.
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5.8 DISCUSSION

The Data Processing System uses various 
algorithms to process building information generated 
with the Iterative Design System. In the introduction 
of this chapter the following functions of the Data 
Analytics System are set out: 

• Visualization of interrelationships between 
data items in high-dimensional data

• Visualization of data attributes
• Navigation in large data sets.
• Determination of interrelationships between 

design aspects and performances

A Self-Organizing Map is used to project high-
dimensional data on a two-dimensional plane. The 
algorithm of the Self-Organizing Map is adjusted so 
that only one design alternative generated by the 
Iterative Design System is assigned to a cell; other 
design alternatives are assigned to neighboring cells 
and override their data. The algorithm presented in 
this thesis functions well when the amount of SOM 
cells exceeds the amount of design alternatives by a 
ratio of 3:1. A minimum ratio of 5:1 is recommended 
in order to improve visualization of interrelationships 
between design alternatives.

Normalizing data makes it possible to stack and 
visualize all quantified performances using a stacked 
bar graph. This is an easily interpreted visualization of 
design alternatives’ overall performances. Integration 
of the analytic hierarchal process in the stacked bar 
graph enables quantification of qualitative and non-
quantified performances. In conjunction with a 
decision tree and pictogram charts the stacked bar 
graph facilitates quick derivation of the areas of the 
design space that are of interest to the user of the 
Computational Design System. 

Agglomerative hierarchal clustering, data 
classification and the SOM’s U-matrix facilitate 
navigation of large data sets, based on varying design 
aspects. Agglomerative hierarchal clustering is based 
on design geometry. Use of agglomerative hierarchal 
clustering enables users to find areas of the design 
space that correspond to specific geometries. Data 
classification labels SOM cells using a user-defined 
decision tree. SOM’s U-matrix shows distances 
between cells of the SOM, thus showing data 
structures in high-dimensional data.

A correlation matrix is used to determine 
interrelationships between design aspects. This can 
be used to extract information with regards to design 
improvements. 

Together, the data analytics methods presented in 
this chapter fulfil each function of the Data Analytics 
System. Correspondingly, integration of these data 
analytics methods substantiates multi-variate, multi-
objective decision-making of large sets of design 
alternatives.

Fig. 5.23: Graphs showing positive correlation (l.), no correlation (m.) and negative correlation (r.).
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This chapter describes the Visual Analytics System 
(VAS). The VAS provides multi-variate, multi-objective 
design exploration and decision-making of a large set 
of design alternatives for practitioners in the field of 
architecture. The VAS integrates and visualizes the 
algorithms of the Data Processing System (DPS). 

Chapter 6.1 introduces the VAS and describes the 
workflow of the VAS. 

Chapter 6.2 explains how the various algorithms 
are implemented and explain how the user can 
interact with the VAS. 

Chapter 6.3 presents the discussion on the VAS.

6.1 INTRODUCTION

6.1.1  Concept

Difficulties of visualizing large multi-variate and 
multi-dimensional data sets were already mentioned 
in Chapter 1. Most importantly, current visualization 
techniques fail to show relationships between data 
items in high-dimensional data sets and cluttering 
of data items in large data sets is an issue with most 
visualization technologies. 

This thesis introduces a Visual Analytics System 
(VAS); a high-interactive data environment with the 
goal of making multi-variate, multi-objective design 
exploration and decision-making of generative design 
systems accessible to architects and climate designers. 
Since an important characteristic of the architectural 
design process is design by comparative decision-
making the Visual Analytics System visualizes all design 
alternatives simultaneously and facilitates exploration 
of the design space by various methods of data 
visualization. Issues of cluttering are prevented by high 
levels of interactivity and by the use of an overarching 
theme to integrate the various visualization methods. 

Issues of cluttering are prevented by high levels 
of interactivity. Furthermore, the VAS uses visual 
metaphors to present data analytics methods, which 
are integrated using an overarching theme.

The use of an overarching theme is inspired by 
Chernoff’s faces (Fig. 6.1). Chernoff’s faces generate 
a face for each data item. Data values of each item 
are assigned to facial features that can vary in shape, 
size and location. The faces are mapped on a sheet, 
enabling comparison between data items. This 
visualization method allows readers to intuitively 
deduce similarities and difference of high-dimensional 
data items.

Similar to how Chernoff’s faces uses facial features 
to visualize data properties, the VAS uses a rural 
landscape, in which characteristics of the landscape 
are used as metaphorical representations of data 
visualization methods (Fig. 6.2). Each design geometry 
is positioned in the landscape. Interpreting the 
landscape’s features around a design alternative will 
lead to the understanding of performances of and 
interrelationships between design variations. The user 
controls a flying camera with which he can fly through 
the landscape, using the WASD-buttons and the 
mouse. The user is thus encouraged to ‘zoom in and 
out’ on areas of the design space; analyzing individual 
buildings  or analyzing the design space as a whole, 
respectively.

6.1.2  Workflow VAS

A prototype of the VAS is scripted using the Unreal 
Engine, a game engine developed by Epic Games Inc. 
(version 4.17.1, 2017a).  Game engines are integrated 
development environments that provides reusable 
software components that together define user actions, 

visualizations, animations, sounds, physics, and more. 
Game engines are optimized for computer games and 
are thus effective tools to develop an environment for 
user interaction and object visualization. 

ChAPTER 6: VISUAL ANALYTICS SYSTEM
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Fig. 6.1: Climate data of some cities presented using Chernoff’s faces (derived from Mazza, 2009, p.58). 
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Fig. 6.2: Data analytics methods visualized using the metaphor of a landscape.
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Fig. 6.3: Excerpt of the Unreal Engine script of the VAS. This segment loads two CSV files that contain the design alternatives’ data 
and the SOM’s cells’ data, writes the data to their respective dictionary (‘map’) and creates a list of design alternatives and of SOM 
cells.

The Unreal Engine uses a node-based visual 
scripting editor similar to Grasshopper (Fig. 6.3). 
Objects in the world each have their own script 
attached to it, which handles that object’s data 
processing and gameplay logic. The script executes 
changes based on events, which can be time-related 
or can be based on user interactivity. Alternatively, 
events can be instantiated by other objects. Various 
nodes facilitate data transfer between objects.

By default, the Unreal Engine is not optimized 
for spreadsheet-based data workflows such as the 

workflow developed in this thesis. The VAS therefore 
uses Rama’s Victory plug-in (2014) to facilitate the 
import of CSV files. This plug-in provides an additional 
set of components to the component library of the 
Unreal Engine. One such component enables the 
import of rows of text as an array of strings.

The next chapter presents the features of the 
Visual Analytics System. High resolution images of the 
figures used in this chapter can be found in Appendix 
F.

6.2 VISUALIZATION AND INTERACTION

6.2.1  Dimensionality reduction

The Self-Organizing Map forms the grid of the 
landscape (Fig. 6.4). The meshes of the designs 
are placed on the landscape according to their 
corresponding cells (Fig. 6.5). Because of the func-
tionality of the Self-Organizing Map similar designs are 
plotted in close vicinity of each other. 

The VAS implements a U-matrix filter similar to 
the filter provided in ModeFrontier, which filters 
out empty cells based on their average distance to 
neighboring cells. Increasing the filter’s slider value 
removes cells with a large average distance. The filter 
can therefore be used to identify data clusters and 
their remoteness from other data items. The filter 
deletes cells that exceed the filter’s distance. Visually, 
this creates a series of canyons (Fig. 6.6).

Since the distance between cells is inversely 
proportional to the density of data items, the filter has 
a secondary benefit. The generative design process 
makes use of an evolutionary algorithm, which 
converges to the optimal areas of the design spaces 
and therefore generates a larger amount of similar 
designs that are in the optimal areas of the design 
space. The filter can therefore be used to inspect 
elitism of the IDS. Additionally, the filter may be used 
to identify mutations. Mutations are often outliers in 
the data set and, as a result, are likely  to have the 
greatest distance to other design alternatives. In 
conclusion, the U-matrix filter therefore implicitely 
facilitates the determination of the optimal design 
space and provides a method to find unexplored (non-
simulated) areas of the design space.
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6.2.2  Annual performance data

Each performance aspect that is part of the stacked 
bar graph is visualized as a soil layer of the landscape 
(Fig. 6.7). Since the thicknesses of the soil layers 
depend on the corresponding cell’s performances, the 
landscape’s heights give an indication of each cell’s 
overall importance. Hills indicate better performing 
areas of the design space, whereas valleys indicate a 
lower performance. 

Hovering over the tiles in the landscape shows 
their performances (Fig. 6.8). Selecting a cell shows 
the other cells’ relative performances to that cell, 
expressed in percentages. Design alternatives can thus 
be compared.

On boot, each aspect of the stacked bar graph 
in the VAS is normalized to a range of 0-1. Because 
performance values are normalized based on their 
relative performance, each aspect is considered 
equally important and for each aspect there is a 
design with zero performance and one with maximum 
performance. The VAS introduces two methods of 
interaction to influence normalization of performance 
aspects (Fig. 6.9). 

The first method allows a user to scale the range 
of an aspect in order to increase the thickness of its 
soil layer. Users can thus specify which performance 
aspects are considered to be more important. If, 
for example, a user considers glare to be twice as 
important as all other aspects, the glare can be scaled 
by a factor two. If a user considers the energy payback 
time of a PV panel not important at all, he can scale 
its soil layer to 0, effectively removing the aspect’s 
influence on the determination of the designs’ overall 
performance. The landscape is instantly regenerated 
and may form new hills and valleys. See also Fig. 5.14.

The second method allows users to set the domain 
for which the values are normalized. Users can set 
thresholds with this method. The aspects of the design 
alternatives that fall outside the domain are either set 
to 0 (when their performance is equally undesirable 
to the minimum threshold value) or to 1 (when their 
performance is equally desirable to the maximum 
threshold value). See also Fig. 5.13. The landscape is 
adjusted accordingly. An additional advantage of this 
feature is that it successfully removes the effects of 
outliers in the data set.

A filter facilitates quick filtering of lesser-performing 
results. The filter ranges from 0% (no filtering) to 100% 
(all but one designs are filtered out) and is visualized 
as a water level that can be raised up until all but one 
hexagons are submerged (Fig. 6.10).

Fig. 6.4: Visual Analytics System visualizing a set of 150 
design alternatives.

Fig. 6.5: Building meshes are spawned on the tiles of the 
Self-Organizing Map. 

Fig. 6.6: Canyons are used as a visual metaphor to 
visualize the SOM U-matrix.

Fig. 6.7: Annual performance data is visualized by soil 
layers. The total thickness of the soil (and thus the height 
of the landscape) corresponds to overall performance.
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6.2.3  Data classification

The ground type of the landscape cells visualizes 
the class of that cell, as discerned by the decision 
tree. A custom node editor implemented in the Visual 
Analytics System provides the user with a tool to build 
the decision tree with various logic gates and flow 
control gates. Consequently, the user is free to choose 
the classes they want to discern. 

The decision tree of the Data Analytics System 
of this thesis is based on total energy performance 
and the classes are visualized accordingly; high 
energy performances are represented by (green) 
grass-like surfaces and low energy performances are 
represented by (brown) dirt-like surfaces. The design 
alternatives with lowest energy performances are 
further subdivided based on the season in which 
they have the highest energy demand. The cells that 
correspond to these designs have a similarly dirt-like 
surface, but have additional features that represent 
the season with lowest performance (patches of snow, 
shrubs, wheat and leaf fall to represent winter, spring, 
summer and fall, respectively). Seasonal performances 
are determined in Excel using hourly simulation values 
generated by the IDS.

6.2.4  Data clustering

The visualization of agglomerative hierarchal 
clustering most closely resembles a dendrogram. A 
slider allows the user to extract the cells with buildings 
by raising them from the ground, resulting in floating 
islands with the buildings on top (Fig. 6.11). When 
the clustering is initiated, the floating islands move 
and merge together as they are being clustered. The 
user can specify the amount of clusters that should 
be formed, after which clusters are generated one by 
one. 

Each cluster is represented by its best-performing 
child. ‘Best-performing’, in this case, is defined by the 
annual performance data scaled by the user. In other 
words, each cluster is represented by the child that 
has the highest elevation in the landscape.

With the use of the aforementioned method the 
connection between the design alternatives and other 
features of the landscape may get lost. Therefore, 
agglomerative hierarchal clustering is also visualized 
using a second, passive visualization. The method 
visualizes a dendrogram as a series of roads that 
connect each building. The roads typologies may give 
insight into the distance between clusters; highways 
would indicate large distances and dirt roads would 
suggest close distances (Fig. 6.12).

Fig. 6.8: Menu showing annual performance values. Tile 
#145 with design alternative 222271 is selected. For the 
cells that are hovered over (currently cell #583), relative 
performances to that cell are calculated.

Fig. 6.9: A menu allows user of the Visual Analytics System 
to scale soil layers and to set performance thresholds 
values. This menu also allows the user to toggle the 
visualization of the icons of the pictogram chart.

Fig. 6.10: A menu allows user of the Visual Analytics System 
to scale soil layers and to set performance thresholds 
values. This menu also allows the user to toggle the 
visualization of the icons of the pictogram chart.

Fig. 6.11: Visualization of agglomerative hierarchal 
clustering as floating islands.
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6.2.5  Design labels

The pictogram chart is visualized by means of 
‘icons’ that populate the landscape in the form of 
trees, rocks and flowers. Icons are placed when a 
tile exceeds a minimum or maximum performance 
value, determined by threshold values. Drawing loose 
metaphorical references, maximum performances of 
energy-related performance objectives are visualized 
as trees, lighting-related performance objectives 
are visualized as flowers and temperature-related 
performance objectives are visualized as rocks. 
Minimum performances are visualized as dead 
trees and flowers and as shattered rocks (Fig. 6.13). 
These icons are chosen as a loose reference to 
their performance objectives to promote intuitive 
interpretation of data. Naturally, when using the 
Computational Design System in another design 
assignment, e.g. for structural optimization of a 
high-rise building, icons can be changed to suit its 
performance objectives.

By default, the threshold values are the minimum 
and maximum values of each performance objective 
of the data set. A menu allows the user to manually 
input these threshold values. As mentioned in 
chapter 6.2.2, this provides the user with a method to 
manually define threshold values that correspond to 
the user’s criteria and is a way to remove the influence 
of outliers of the data set on the configuration of the 
landscape. A third advantage is that it can be used 
to quickly find all design alternatives that exceed a 
certain performance value. If the user sets a threshold 
value so that 15% of the tiles exceed its value, for 
example, the Visual Analytics System spawns icons 
on all of these tiles. Using this method, the user can 
efficiently and intuitively determine clusters based on 
performance values. 

Icons may be hard to find if they are placed in 
valleys in the landscape or if the landscape consists of 
a large amount of tiles. Therefore, pressing a button 
spawns colored beacons matching each icon (Fig. 
6.14). The user may use this feature to quickly find 
design alternatives with best or worst performances.

6.2.6  Interrelationships between 

building aspects

Whereas the data analytics methodologies 
described in the previous chapters compare design 
alternatives, the correlation matrix compares 
building aspects. The correlation matrix is therefore 
not implemented in the landscape that is described 

Fig. 6.12: Visualization of agglomerative hierarchal 
clustering as a road network.

Fig. 6.13: The pictogram chart is implemented in the 
Visual Analytics System by placing corresponding objects 
on the tiles.

Fig. 6.14: Beacons visualize design alternatives with best 
or worst performances.

Fig. 6.15: Sketch showing how the correlation matrix 
may be the basis of a second landscape that is used to 
determine interrelationships between building aspects.
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Fig. 6.16: Menu showing 6 design alternatives bookmarked 
by the user. Relative performances compared to the tile 
the user hovers over (currently tile #607) are automatically 
calculated.

Fig. 6.17: Users may control a character to walk through 
the landscape.

Fig. 6.18: Pressing a button spawns context geometry 
around a design alternative. Please note that the author 
envisions that the context geometry would have textures 
in a more developed version of the visual analytics tool.

Fig. 6.19: Pressing a button spawns context geometry 
around a design alternative. Please note that the author 
envisions that the context geometry would have textures 
in a more developed version of the visual analytics tool.

thusfar. Instead, it is envisioned to be the starting 
point of a new landscape that is focused on comparing 
design aspects instead of design alternatives (Fig. 
6.15). The two landscapes complement each other 
and are to be used side by side.

The correlation matrix forms the grid of a 
rectangular landscape. Each tile of the landscape 
corresponds to one cell of the matrix. The height of 
the landscape is based on the correlation coefficients, 
where the minimum height corresponds to the lowest 
correlation coefficient and the maximum height 
corresponds to the highest (positive or negative) 
correlation coefficient. Thus, hills of the landscape 
indicate strong correlation between building aspects 
and valleys indicate little to no correlation. A filter 
similar to the one described in chapter 6.2.2 facilitates 
quick determination of the most influential design 
aspects.

This landscape allows for implementation of 
additional data visualization methodologies that 
further facilitate analysis of design aspects. This, 
however, falls outside the scope of this research. 
Future research may investigate data analytics 
methodologies that further facilitate analysis of 
interrelationships between design aspects.

6.2.7  Additional gameplay features

Conjointly to data analytics methods various 
gameplay features are implemented to further 
accommodate substantiated decision-making. These 
features concern both quantified and non-quantified 
(architectural) performances.

A feature that further facilitates comparison 
between design alternatives is a bookmarks menu 
(Fig. 6.16). The user can add a number of design 
alternatives to the bookmarks. Relative performances 
between bookmarks and the tiles the user hovers 
over while flying around are automatically calculated. 
Bookmarks allow the user to document relevant 
design information extracted from the Visual Analytics 
System. Bookmarks in the Visual Analytics System are 
added with a single click of a button, encouraging a 
highly-interactive method of using bookmarks. 

The main menu shows a mini-map of the landscape. 
Depending on user preferences this mini-map may be 
a photorealistic top-down view of the landscape or 
may visualize various data-related aspects in a stylized 
manner. An additional menu presents a larger version 
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of the mini-map. On each side of the mini-map a 
section of the landscape is presented. These sections 
show the soil layers of the landscape and thus give 
further indication of the relative performances of the 
landscape.

Various gameplay features accommodate analysis 
of architectural qualities. One such feature is the 
ability to walk around designs (Fig. 6.17). By default, 
the user of the Visual Analytics System flies around 
the landscape. Pressing a button changes the user’s 
character from a flying camera to a human character, 
with which the user can walk through the landscape.

Another feature facilitates analysis of the designs’ 
performance with regards to urban context (Fig. 
6.18 & Fig. 6.19). Pressing a button spawns context 
geometry around the tile the user hovers over. 
Combined with the ability to walk around the designs 
as a human character, this gives greater sense of the 
scale of designs and of lines of sight and consequently 
provides a means to substantiate decision-making 
based on urban context.

6.3 DISCUSSION

The Visual Analytics System visualizes large data 
sets of multi-dimensional building information for 
design exploration and substantiation of the design 
process. 

The Visual Analytics System is a highly 
interactive, game-like data environment. The Visual 
Analytics System uses the overarching concept of 
a ‘rural landscape’ to make use of data analytics 
technologies accessible to architects. Characteristics 
of the landscape correspond to various data analytics 
methods. Visualizations of the data analytic methods 
correspond to their functionality and loosely refer to 
performance objectives of the design assignment of 
this thesis. By ‘terraforming’ the landscape, users can 
influence visualization of data analytics method and 
can use this to reveal building information of interest. 
Additional gameplay features further accommodate 
data mining. Gameplay feature include a bookmarks 
folder for comparison of selected design alternatives, 
the possibility to spawn context geometry for analysis 
of urban context and the possibility to walk through 
design alternatives in first person view.

Not implemented in the visual analytics tool 
is visualization of design aspects of each design 
alternative; current menus only show design 
performances. Visualization of design aspects in 
these menus - accompanying the VAS’s visualizations 
of design geometries - may facilitate manual compa-
rison between design alternatives to deduce 
interrelationships between design variables.

In summary, the VAS realizes simultaneous 
visualization of all data analytics methodologies of the 
Data Processing System. Together, these visualization 
techniques enable deduction of both quantified and 
non-quantified performances in a single environment. 
Exploration of the design space is encouraged because 
of high levels of interactivity. Easily understood 
metaphors for high-dimensional data enable intuitive 
analysis of building information.







105 Validation

This chapter validates whether the Computational 
Design System effectively facilitates performance-
driven decision-making in the architectural design 
phase. The Computational Design System (CDS) 
is tested by various people to gain insight in the 
functionality of the various aspects of the CDS. It should 
be noted that, because of the author’s limited coding 
experience, the agglomerative hierarchal clustering 
and analytic hierarchal process are not integrated in 
the visual analytics tool developed in this thesis. The 
visual analytics tool integrates all other data analytics 
methods as described in Chapter 6.

Chapter 7.1 elaborates on the author’s use of the 
Computational Design System. This chapter sets out 
the full workflow of the CDS used to design a nearly 

Zero-Energy sports Hall, describes how the author 
uses the Visual Analytics System to explore design 
alternatives and presents the author’s notes based on 
his experience  with the Visual Analytics System.

Chapter 7.2 presents a peer review performed by 
an MsC Architecture student. This peer review verifies 
the performance of the Visual Analytics System and 
the Computational Design System as a whole.

Chapter 7.3 describes the results of a questionnaire 
held among students in the field of architecture, 
climate design and computational design. This 
questionnaire gives insight in the functionality of 
the data analytics methods of the Visual Analytics 
System and quantifies whether the Computational 
Design System contributes to improvements in design 
performances.

7.1 USE OF ThE CDS TO SUBSTANTIATE ThE DESIGN PROCESS

The CDS is developed through several iterations. 
This chapter describes the final iteration of the CDS 
and describes the author’s use of the CDS to facilitate 
his design process of the sports hall.

 
Chapter 7.1.1 elaborates on the data workflow of 

the CDS.
Chapter 7.1.2 describes the author’s use of the 

Visual Analytics System. This chapter illustrates how 

the author envisions the use of the various data 
analytics methods implemented in the Visual Analytics 
System. Hence, this chapter, conjointly to the peer 
review and questionnaire (presented in chapter 7.2 
and 7.3 respectively), verifies whether the intended 
means of interaction with and interpretation of the 
data analytics methods are suitable. 

Chapter 7.1.3 presents the author’s notes based on 
his experience with the Computational Design System.

7.1.1  Data workflow

7.1.1.1 Iterative Design System
Traditional architectural design processes often 

explore multiple design concepts. Similarly, the 
data set of the CDS consists of design alternatives 
generated with all five parametric models described 
in chapter 3.3.

The Iterative Design System (IDS) is used to 
generate >100 design alternatives of the ‘orthogonal 
mass’ parametric model, >100 design alternatives of 
the ‘zigzag’ geometry and 60 design alternatives of 
the ‘non-orthogonal mass’ geometry. Since the author 
has limited coding experience and is inexperienced 
with performance optimization in the Unreal Engine, 

performance of the visual analytics tool developed 
in this thesis decreases when the size of the data set 
exceeds 200 design alternatives. Therefore, only 50 
design alternatives of the ‘orthogonal mass’ geometry 
and of the ‘zigzag’ geometry are presented in the 
Visual Analytics System. Using Excel, the best 50 design 
alternatives of both typologies are found (based on 
the sum of normalized performances). 

Of the ‘non-orthogonal mass’ geometry 60 design 
alternatives are generated and presented in the Visual 
Analytics System.

Since the Voronoi and Delaunay geometries had 
substantial influence on the design process, they 

ChAPTER 7: VALIDATION
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are represented in the landscape by a selection of 5 
design alternatives of both models that are included 
in the data set. 

Finally, three ‘manually constructed’ designs 
are included (courtesy of L. Pol) (Fig. 7.1). These 
designs are made in Rhino. Geometries are loaded in 
Grasshopper and simulations are run as usual using 
the Performance Analysis System. In summary, the 
data set consists of the following design alternatives:

• 60 ‘Non-orthogonal mass’ geometry 
• 50 ‘Orthogonal mass’ geometry 
• 50 ‘Zigzag’ geometry
• 5  Voronoi geometry
• 5  Delaunay geometry 
• 3  Manually constructed designs

For the IDSs of the first three building definitions, 
the non-destructive evolutionary algorithm uses a 
population size of 15. With a total amount of 100> 
design alternatives, Octopus generated at least 7 
generations for each parametric model, which is 
estimated to be sufficient to be able to slightly converge 
towards optimal design solutions. A population size of 
15 is fairly modest and chances are that areas of the 
design space are not covered by the initial population. 
The IDS therefore uses a high mutation rate of 0.8, 
so that mutated design variations are considerably 
different from their predecessors and therefore are 
able to cover the previously missed areas of the design 
space. The settings used in Octopus are summarized 
below:

Elitism: 0.500
Mutation probability: 0.750
Mutation rate: 0.800
Crossover rate: 0.800
Population size: 15-20

The ten performance objectives described in 
Chapter 4 and listed in Fig. 7.2 are used by the Octopus 
to determine fitness of each design alternative. 
Building information and design geometries are 
exported to CSV and FBX files using the methods 
described in chapter 3.2.2.

7.1.1.2 Data Analytics System
The data set generated with the IDS is used to 

generate the Self-Organizing Map. The Self-Organizing 
Map (SOM) is generated in ModeFrontier and 
exported as a CSV file. The SOM used in this thesis 
makes use of a hexagonal grid of 28*28 cells for a total 
amount of 784 cells. This corresponds to a ratio of 4.6 
cells to each design alternative. Both geometric and 
performance aspects are used to determine topology 
preservation between design variables. The aspects 
used by the SOM are listed in Fig. 7.2.

ModeFrontier is also used to generate correlation 
matrices. One correlation matrix uses the data set 
consisting of the design alternatives generated using 
the ‘non-orthogonal mass geometry’, ‘orthogonal 
mass geometry’ and ‘zigzag geometry’ parametric 
models. Three other correlation matrices use the 
building data of only one of each of these types. The 
correlation matrices are presented in Appendix H.

Using Excel, seasonal performances of the design 
alternatives are calculated from hourly performance 
values. This is used to classify tiles that contain design 
alternatives with the decision tree.

CSV files of the design variables and performance 
values of the design alternatives and of the cells of 
the SOM are copied to a designated folder that is 
read by the Unreal Engine. At first boot the Unreal 
Engine imports these CSV files and uses them to assign 
each design alternative to the cells of the SOM. This 
information is also exported to a CSV file for later use.

 

Fig. 7.1: Three manually constructed designs (courtesy of 
Pol, L.) and one ‘orthogonal mass’ geometry in the VAS.

Floor area (m2)
Volume (m3) 
Total façade area (m2)
Orientation (°)
PV Panel area (m2)
Total north-oriented window area (m2)
Total east-oriented window area (m2)
Total south-oriented window area (m2)
Total west-oriented window area (m2)
Total sky-oriented window area (m2)
Insolation north-oriented windows (hrs/yr)
Insolation east-oriented windows (hrs/yr)
Insolation south-oriented windows (hrs/yr)
Insolation west-oriented windows (hrs/yr)
Insolation sky-oriented windows (hrs/yr)

Cooling energy demand (kWh/yr)
Heating energy demand (kWh/yr)
Lighting energy demand (kWh/yr)
PV energy gain (kWh/yr)
PV EPBT (yrs)
Glare (%/year not met)
Lighting uniformity (%/year not met)
Thermal comfort spectators (%/year not met)
Thermal comfort sports players (%/year not met)
Temperature criteria (%/year not met)

Fig. 7.2: Building aspects used to generate the Self-
Organizing Map.
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7.1.2  Design exploration in the visual analytics tool

This chapter describes the author’s use of the 
Visual Analytics System to draw design conclusions. 
This chapter follows the author’s process of using the 
visual analytics tool.

Starting the visual analytics tool generates the 
landscape and positions the player character above 
the landscape, providing a bird’s eye view of the 
entire design space. The author firstly flies around the 
landscape to inspect the data set. A few erroneous 
design alternatives are immediately noticeable; 
incorrect building geometries and jumps in the 
landscape’s heights suggest defects in the generation 
or simulation of these design alternatives (this is 
known by the author; because of the complexity and 
computational expensiveness of the Grasshopper 
definition, lag spikes caused a few design alternatives 
to fail. Most are manually removed through data 
mining in Excel). Aside from these erroneous design 
alternatives, the large majority of the design space 
shows predictable and accurate results. Naturally, 
erroneous design alternatives are ignored in the 
design exploration process.

Groupings of design alternatives with similar 
performances are firstly derived, using various 
methods. Data classification, visualized by the grass 
type in the landscape, gives an immediate overview of 
the total energy demands within the design space. The 
tool shows that a large amount of design alternatives 
are Zero-Energy or nearly Zero-Energy buildings.  
Use of the stacked bar graph in conjunction with the 
water filter quickly reveals areas of the design space 
with best and worst performances. Setting the scale 
factor of all but one performance objective to zero 
reveals areas of the design space with best and worst 
performances for that performance objective. The 
U-matrix shows clusters of similar design alternatives. 
The three main parametric models quite clearly form 
three distinctive clusters. Varying threshold values and 
the icons that are spawned correspondingly further 
visualizes groupings of design alternatives with similar 
performances.

The U-matrix shows that the parametric models 
quite clearly form distinctive clusters (Fig. 7.3). 
The stacked bar graph and the U-matrix show that 
designs generated with the ‘orthogonal mass’ model 
are generally similar, whereas differences between 
designs generated with the ‘non-orthogonal mass’ 
model are largest. The aforementioned methods 
of exploration show that design alternatives 
generated with the ‘zigzag’ parametric model have 
best overall performance. These design alternatives 
generally have high energy and lighting uniformity 
performances. Most of the designs generated with 

the ‘zigzag’ parametric model are Zero-Energy 
buildings. Nearly half of the designs generated using 
the ‘orthogonal mass’ form a clearly distinguishable 
cluster of similar design alternatives (Fig. 7.4). These 
designs all have worst lighting uniformity and lighting 
energy performances of the data set. On the other 
hand, designs generated with the ‘orthogonal mass’ 
model have generally high PV energy gain and EPBT 
performances. Design alternatives generated with the 
‘non-orthogonal mass’ model show greatest variation 
in performances. 

Quick analysis of clusters provides a general idea 
of the range of performances of the design space. 
Performances of areas of the design space are now 
analyzed more in-depth, by using the stacked bar 
graph and pictogram charts to visualize design’s 
performances and by using the correlation matrix to 
find interrelationships between design variables and 
performances. Because the three main parametric 
models form distinctive clusters, these groups are 
analyzed independently. 

The design alternatives that are generated from 
the ‘zigzag’ parametric model are generally well-
performing in terms of glare, lighting uniformity 
and energy demands (Fig. 7.5). A likely cause of 
the relatively low energy demands of these design 
alternatives is that the parametric model generally 
generates designs with low volume and low wall area; 
the correlation matrix indicates that there is a strong 
interrelationship between the heating energy and 
building volume (+0.83) and total façade area (+0.88). 
Remarkably, the correlation matrix also shows strong 
correlation between the heating energy and floor area 
(-0.92). It should be noted that these factors may be 
influenced by causation. Correlation between heating 
energy and floor area, for example, may be caused 
by the fact that the ‘non-orthogonal mass’ design 
alternatives have consistently low floor areas and high 
building volumes. It is expected that the designer’s 
expertise is used to validate these correlations. 

The ‘orthogonal mass’ design alternatives are 
the designs with best thermal performances. The 
correlation matrix shows that thermal performances 
have high correlation with cooling energy. The area 
of sky-oriented windows also has large influence 
on the thermal performances; increasing the 
window area decreases thermal performances. Both 
interrelationships suggest overheating in summer. 
Inspection of hourly simulation values show that this 
is indeed the case.

The ‘non-orthogonal mass’ designs generally have 
the lowest cooling energy demands and have above-
average thermal comfort performances and lighting 
uniformity. Furthermore, they have the highest 
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Fig. 7.3: The U-matrix, decision tree, stacked bar graph and water filters show clearly distinguisable clusters corresponding to the 
parametric model used in the Iterative Design System.

Fig. 7.4: Cluster of similar design alternatives made with the ‘orthogonal mass’ parametric model.

Fig. 7.5: The stacked bar graph shows that designs made with the ‘zigzag’ parametric model have best lighting performances.
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Fig. 7.6: The stacked bar graph and water filter shows peaks of well-performing design alternatives made with the ‘non-orthogonal 
mass’ parametric model.
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Fig. 7.7: A few selected design alternatives using the ‘non-orthogonal mass’ model with above-average performances. Performances 
of the four presented designs are shown in the table below, in order of appearance
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architectural qualities, according to the author. 
Conversely, these designs have generally high heating 
energy demands, likely due to high building volumes 
and exterior wall areas, and have below-average glare 
and lighting performances. A correlation matrix of the 
design data of the ‘non-orthogonal mass’ (Appendix 
H) suggests that glare and lighting performances can 
be improved by increasing the area of the sky-oriented 
windows. Heating energy demand can be reduced by 
reducing the building volume. As described above, 
variance between ‘non-orthogonal mass’ designs is 
relatively high. Correspondingly, difference in design 
performances is high. A few designs generated using 
the ‘non-orthogonal mass’ model have generally high 
performances, though their overall performances 
are slightly lower than some other designs in the 
simulated design space (Fig. 7.6 & Fig. 7.7).   

Quantified performances are of varying influence 
on the exploration process. Heating, cooling and 
lighting energy demands as well as glare and lighting 
uniformity are very relevant and influential factors 
of performance-driven decision-making. These 
performance objectives largely depend on the 
building geometry and can therefore be optimized 
in conjunction with architectural design. The energy 
gain and energy payback time of the PV panels 
has less influence on the decision-making process. 
These performances have relatively low influence on 
building geometry and that in most design alternatives 
the energy potential of the PV panels satisfies the 
requirements and EPBT is acceptable (<4 years). 
Furthermore, their behaviour is very predictable. 
In the very early design phase, a general idea of the 
required area of the PV panels is therefore sufficient to 

inform the decision-making process. Thermal comfort 
performances provide the least information for the 
decision-making process. The decision-making process 
is least influenced by thermal comfort performances. 
Due to lack of causation between building geometry 
and thermal comfort performances, thermal comfort 
performances provide little relevant information of 
trade-offs in building geometry.

The CDS is not used to select a single best 
design. Instead, the author uses the CDS to discover 
building information that can be used to inform the 
architectural design process. The following steps in 
the design process describe how the CDS informs 
the decision-making process and how it would be a 
continuously integrated aspect of the design process: 

Despite the fact that they generally have less 
overall performance, the ‘non-orthogonal mass’ 
designs are chosen as the starting point of the new 
design alternatives for its architectural qualities. 
However, the building volume is significantly reduced 
to reduce energy demands and sky-oriented windows 
are introduced for more equal light distribution. Based 
on the generally high lighting performances of the 
‘zigzag’ model, windows are distributed more evenly. 
The parametric model can be changed accordingly. 
Rerunning the Iterative Design System provides a new 
set of design alternatives that are more similar and 
have generally higher performances. Alternatively, 
design alternatives can be manually constructed 
in Rhino, simulated with the Performance Analysis 
System and appended to the Visual Analytics System. 
These new designs can be assigned to (empty) tiles 
that do not present relevant information. 

7.1.3  Discussion

This chapter summarizes the author’s experience 
with the Computational Design System to facilitate 
the design process of a sports hall. The author’s 
experience with the visual analytics tool shows 
that the data analytics methods that comprise the 
landscape function well and facilitate quick extraction 
of design results. The Visual Analytics System is useful 
in showing areas of the design space with similar 
performances. Therefore, the Visual Analytics System 
can be used effectively to compare design concepts. 
Furthermore, the Visual Analytics System can be used 
to quickly retrieve design alternatives with optimal 
performances, thus facilitating selection of the ‘best’ 
design alternative.

Discerning interrelationships between design 
aspects and building performances is difficult, both 
when manually comparing design alternatives and 

using the correlation matrices. Difficulties of manually 
comparing design alternatives stem from the large 
amount of design variables. This makes it difficult 
to attribute influences on building performances to 
design aspects. The primary difficulty in use of the 
correlation coefficient matrices is that correlation 
matrices do not show clear and predictable correlations 
between design aspects. Most correlation coefficients 
in the correlation matrices are smaller than 0.5 (and 
bigger than -0.5). In other words, aside from a few 
exceptions, correlation between building aspects 
is small. Therefore, it is hard to determine design 
improvements. Improving the selection of building 
aspects used in the correlation matrix might increase 
its functioning and suitability to facilitate the design 
process. Decreasing the amount of design variables 
or increasing the amount of simulations run for each 
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parametric model will lead to a greater similarity 
between design alternatives and may therefore 
improve deduction of performance-influencing design 
aspects.

This chapter gives a preview of the potential of use 
of the Computational Design System integral to the 
design process in a back-and-forth process of design 
and reflection. The data workflow described in chapter 
7.1.2 illustrates that the data flow between subsystems 

is simple and flexible. Use of CSV files makes appending 
design alternatives to the data sets used by the Visual 
Analytics System easy. An added benefit of using the 
Computational Design System integral to the design 
process is that the Visual Analytics System grows into 
a documentation of the design process. This enables 
users to keep track of design improvements and to 
use their data set of design alternatives as a frame of 
reference for their most recent design.

7.2 PEER REVIEW OF VISUAL ANALYTICS SYSTEM

7.2.1  Introduction

User experience is an important criterion in the 
functionality of the Visual Analytics System; the 
Visual Analytics System should be an efficient and 
effective tool for goal-oriented design exploration 
and designers should feel encouraged to use it during 
their design process. Therefore, an early version 
of the visual analytics tool is reviewed by Lucas 
Pol, an MsC Architecture student at TU Delft. Use 
of the visual analytics tool by Pol verifies whether 
the Computational Design System suits the early 
architectural design process and whether the visual 
analytics tool and its data analytics methodologies 
effectively facilitate substantiating design decisions. 
Furthermore, this peer review tests whether the 
means of deriving performance information are 
effective and intuitive.

7.2.2  Methodology

Prior to testing the visual analytics tool, Pol made 
a sketch design of the sports hall, largely based on 
urban context- and architecture-related performance 
criteria. The main argumentation and design decisions 
of the sketch design are presented in Appendix G. Pol 
aims to use the visual analytics tool as a means to guide 
his design process to improve design performances. 

Simulated building performances of the sketch 
design are presented in Fig. 7.8. A comparison between 
performance analyses of the sketch design and of a 
design made after the use of the visual analytics tool 
indicates whether the design’s performances are 
improved. The design alternatives generated by the 
Iterative Design System thus are used as a means to 
derive performance-influencing building aspects in 
order to improve the initial sketch design. A short 
explanation of the principles, application, visualization 
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Fig. 7.8: Simulated performances of Lucas’s sketch 
design developed before use of the visual analytics tool. 
Performance values are derived with an early version of 
the PAS and may therefore show inaccurate results. The 
performance values shown on the right are simulated with 
the final version of the PAS.
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and means of interaction of the data analytics 
methodologies used in the visual analytics tool is 
presented to Pol before testing. This information is 
meant to have a similar level of detail to user manuals 
of commercial computer programs.

This peer review is performed with an early version 
of the visual analytics tool. The tool visualizes a data 
set that consists of 125 design alternatives generated 
using the parametric model described in chapter 3.3.2 
and 25 designs generated using Voronoi tessellation 
(chapter 3.3.1). The data set is generated using an 

early version of the Performance Analysis System. 
Because of errors in the thermal analysis component 
of this version of the Performance Analysis System, 
heating and cooling energy performances and thermal 
performances differ slightly from actual values. This 
was not known at the time of testing. 

Data analytics methods implemented in the 
version of the visual analytics tool used in this peer 
review are the Self-Organizing Map and the Stacked 
Bar Graph. The visual analytics tool did not facilitate 
setting thresholds of performance aspects. The Self-
Organizing Map consists of (28*28=) 728 cells.

7.2.3  Results

This subchapter firstly describes Pol’s use of 
the visual analytics tool. Then, the design decisions 
made following the use of the tool are listed. Finally, 
simulations of the two designs are compared.

Pol firstly flew around the landscape to get a feel 
of the means of interaction with the visual analytics 
tool, comparing performances between design 
alternatives. Observation of buildings on hills and in 
valleys of the landscape gave a preliminary indication 
of performance-influencing design variables. The 
‘water’ filter facilitates quick determination of best- 
and worst-performing designs.

Pol used a manual approach to investigate 
interrelationships between design variables and 
performance aspects using the following method. 
First, he scaled every performance of the stacked 
bar graph to zero, resulting in a completely flat 
landscape. Then, one by one, the scale factor of 
each performance objective is set to one while the 
scale factors of other performance objectives remain 
zero. As a result, the height of the landscape shows 
the relative performances between design alter-
natives of that performance objectives. Performance-

influencing design variables were derived by analyzing 
the (~20-30) buildings on the hills and in the valleys 
of the landscape. This educated Pol about building 
performances and corresponding design variables. Pol 
documented his conclusions on the design variables 
that has most influence on each performance 
objective. Notes on changes of the sketch design are 
listed in Fig. 7.9.

These conclusions are considered in the subsequent 
design process and are used to improve the sketch 
design.  The subsequent design process resulted in 
two slightly different design alternatives; one without 
windows on the east façade and one with small 
windows on the east façade. Building performances 
of these designs are presented in Fig. 7.10. The 
simulations show considerable improvements of 
thermal performances. Cooling energy demand is also 
improved, which is in line with Pol’s goal of reducing 
overheating. On the other hand, the design changes 
increase heating energy demand. Furthermore, 
despite the fact that Pol’s design decisions were 
aimed to improve glare and solar uniformity, lighting 
performances are largely unaffected. 

• “The design is changed based on design variables that influence each or 
most of the performance objectives.

• Fins are introduced on the west façade. The east façade has an opaque 
character because spectator stands are on this side of the sports hall.

• The previously ascending roof geometry is changed to create ‘hills’, so 
that parts of the roof are oriented towards the north. The roof height 
is lowest on the south-west corner and highest on the north-east corner.

• The geometry of the south side is designed to cover the windows of the 
south façade to prevent glare and overheating.

• Since they amount little to daylight, the sizes of the windows in the east, 
south and west façades are decreased to account for issues like glare and 
overheating.”

Fig. 7.9: Notes on changes of the sketch design after use of the visual analytics tool (L. Pol, personal communication, October 21, 2017)
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7.2.4  Discussion

This chapter presents Pol’s conclusions on his 
experience with the visual analytics tool. Firstly, his 
conclusions related to the Iterative Design System 
are presented in chapter 7.2.4.1. These substantiate 
whether the Iterative Design System suits the design 
process followed by Pol. Conclusions with regards to 
the Data Analytics System are presented in chapter 
7.2.4.2. The final subchapter presents Pol’s suggestions 
to improve the visual analytics tool.

7.2.4.1 Suitability of the Iterative 
Design System to facilitate the 
design process 

“I have not discovered any notable discrepancies 
between design assumptions made for the 
sketch design and the buildings generated by the 
Computational Design System. An explanation might 
be that I already took certain designs aspects into 
account, like building orientation, sloping of the roof 
towards the south and the placing of windows in a 
specific place or not.

Going through all the different aspects and noting 
the most influential design variables, in terms of both 
the visual impact and the performance values, seemed 
to steer the design in the right direction, climate wise.

During use of the visual analytics tool it became 
apparent that the differences between design 
alternatives are small. Though some performances 
differed a lot, design alternatives did not show 
interesting and useful results with regards to 
architectural qualities. 

Since there was not a lot of contrast between 
different design alternatives, they don’t have a lot 
of impact on the design in this stage of the design 
process. Greater differences between design 
alternatives would increase the contrast between 
the designs’ performances. This would improve the 
ability to find interrelationships between design 
variables and performances. In the early conceptual 
design stage this could help define the main building 
shape in combination with considerations regarding 
architectural design-related performances, such as 
urban context. In later design stages the variation 
between designs could be smaller to analyze 
whether certain small differences influence building 
performances.” (L. Pol, personal communication, 
October 21, 2017).
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Fig. 7.10: Simulated performances of Lucas’s improved 
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7.2.4.2 Suitability of the Data 
Analytics System to facilitate 
performance-driven decision-making 

“The visual analytics tool generally worked quite 
well. The hill landscape makes it easy to read the data 
set as a whole and facilitates finding clusters of design 
alternatives that have similar performances. Related 
to this, the soil layers make it easy to find the most 
influential design variables for each performance 
objective. Flooding of the island by using the water 
filter helped me to focus on best and worst designs.

Features that could improve the tool in terms of 
operability, according to my findings, are the following. 
Firstly, the use of bookmarks could help compare 
different results. This option would show more than 
two results. Secondly, the colors of the visual analytics 
tool appeared a bit dim. Increasing the lightness or 
contrast could improve reading it a lot. Lastly, the 
visual analytics tool would benefit from the possibility 
to set maximum and a minimum values as a filter. 
This way, relative performances will be shown more 
clearly according to the user’s desired performance 
criteria and design considerations.” (L. Pol, personal 
communication, October 21, 2017).

7.2.4.3 Suggestions for future 
improvements

“The following features could be implemented to 
improve operability of the software, though they may 
not necessarily fall within the scope of this graduation 
research. 

Highlighting selected buildings could further 
benefit visualization of design alternatives. The user 
would click on a tile of the visual analytics tool and the 
tile would be extruded from the ground, similar to the 
visualization of agglomerative hierarchal clustering in 
the Visual Analytics System. Performance values can 
be projected on their respective soil layers, so that they 
are visualized in the display port. Computer games 
have similar features. An example is Rome II: Total 
War, where selected units are highlighted (Fig. 7.11). 
The use of highlights could also be used to export data 
visualizations for presentations or discussions with 
clients.

Another feature could be to visualize the size of, 
for example, the HVAC system in or besides a building, 
in order to accurately define the space required within 
the design.” (L. Pol, personal communication, October 
21, 2017).

7.3 QUESTIONNAIRE

7.3.1  Introduction

The Visual Analytics largely depends on intuition 
to facilitate extraction of building information. 
However, people have different means of inter-
preting information, so ‘intuition’ is subjective. 
The questionnaire presented in this chapter 
provides further validation of the functioning of the 
Computational Design System and the Visual Analytics 
System. The questionnaire substantiates (1) whether a 
design process supported by a Computational Design 

System leads to better-performing designs than 
designs made using traditional design processes and 
(2) whether the Visual Analytics System as a whole 
and whether its individual features support the design 
process of architects. 

7.3.2  Methodology

The questionnaire consists of two main parts. 
In the first part the participant is asked to optimize 
a sports hall design using a parametric model of 
the sports hall design. By changing the design’s 
orientation, volume, window sizes and other factors 
the participant attempts to optimize the design based 

on their expertise in the field of performance-driven 
architectural design. This method aims to approximate 
traditional design processes, where optimization in 
the early design stages depends on non-quantified 
trade-offs. In the second part the participant is asked 
to use the visual analytics tool to find an ‘optimal’ 

Fig. 7.11: Units highlighted in Rome II: Total War (Valve 
Corporation, n.d.).
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design solution in a data set of design alternatives. 
Both parts of the questionnaire use the ‘zigzag’ 
parametric model, since it uses the least amount of 
design variables and is therefore easiest to control 
in the manual optimization process. Quantified 
performances of the first design are not known to the 
participant during either part of the questionnaire.

Building performance simulations of both 
designs are compared to indicate whether the visual 
analytics tool effectively leads to better-performing 
design alternatives. Questions about the decision-
making process during both optimization processes 

indicate whether the participants are more confident 
in their decision-making processes when using 
the visual analytics tool. The questionnaire also 
includes questions about the data analytics methods 
implemented in the Visual Analytics System. These 
questions give an indication whether the data analytics 
methods contribute to performance-driven decision-
making with the Visual Analytics System. Finally, 
questions are asked about whether the participant 
thinks that the visual analytics tool is an effective tool 
to facilitate performance-driven decision-making. The 
questionnaire is presented in Appendix I.

7.3.3  Results

The questionnaire is held among 5 MSc 
Architecture and MSc Building Technology students 
and 3 participants with no experience in the fields 
of architectural design and data analytics. The latter 
group gives further insight in whether the features of 
the Data Analytics System facilitate intuitive decision-
making. Participants’ individual ratings and written 
responses are presented in Appendix J.

Fig. 7.12 shows simulation results of the 
participants’ designs selected in either part of the 
questionnaire. Comparison of performance values of 
the two designs shows that overall design performance 
of the design selected in the visual analytics tool 
is generally slightly higher than the one manually 
optimized. Each participant was able to improve at 
least half of the quantified performance objectives. 
The figure suggests that participants are generally 
able to select designs of which performances that they 
consider most important are improved. 

An interesting observation is that participants 
made use of the visual analytics tool in different ways. 
Some participants focused highly on climate-related 
performances, whereas others focused on comparison 
of architectural designs. Participants used different 
features of the visual analytics tool to assist their 
decision-making process. One Architecture student 
argued that the architectural concept (design vision) 
developed during the manual optimization process 
would be lost when selecting any other design of the 
visual analytics tool. Instead, this participant used the 
visual analytics tool to verify the design made during 
the first part of the questionnaire. For this participant 
the visual analytics tool functioned as a frame of 
reference in the design process.

Fig. 7.13 shows the average level of confidence of 
aspects of the design processes rated by participants 
with experience in the field of architecture. 
Qualitative answers are quantified, where a rating of 
1 corresponds to ‘Strongly disagree’ and a rating of 5 
corresponds to ‘Strongly agree’. The figure shows that 
participants with experience in the field of architecture 
are slightly more confident about their design process 
when using the CDS, compared to traditional design 
processes. Confidence in determining priorities among 
performance objectives is higher when using the CDS, 
compared to traditional design processes. They are 
also more confident that the optimal design solution 
is found with the use of the CDS than in traditional 
design process. Conversely, substantiation of design 
decisions is deemed better when using traditional 
design processes. Participants with experience in 
the field of architecture are most confident that they 
found the optimal design solution when they are 
using the manual optimization process. A possible 
explanation is that participants have full control over 
design geometry using this method.

Fig. 7.14 shows confidence ratings of all parti-
cipants. Ratings are largely similar to ratings presented 
in Fig. 7.13, with two exceptions. Fig. 7.14 shows 
that participants are more confident that use of 
the CDS involves well-determined priorities among 
performance objectives compared to traditional 
design processes. Furthermore, participants are more 
confident that use of the CDS leads to optimal design 
solutions. Evidently, participants with no experience 
in the field of architecture are significantly more 
confident in their decision-making when using the 
CDS. 
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Fig. 7.12: Performances of designs selected by 8 questionnaire participants using a manual optimization approach (l.) and using the 
visual analytics tool (r.). Orange dots indicate the three performance objectives that are ranked most important in the decision-
making process.
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Fig. 7.15 shows how participants rated individual 
features of the visual analytics tool. Features are 
generally rated high, indicating that all data analytics 
methods implemented in the visual analytics tool are 
suitable for the purposes of the CDS. Implementation 
of the stacked bar graph is especially rated well; 
all participants strongly agree that visualizing 
individual performance objectives contributes to 
the decision-making process of the participants and 
that visualization of and interaction with the stacked 
bar graph achieves this purpose. Fig. 7.16 displays 
normalized ratings for each question to show relative 
performances. Both figures show that the SOM’s 
D-matrix and the decision tree contributed least to 
their decision-making process. Multiple participants 
stated that the main cause is that the time set out 
for the use of the visual analytics tool was too short 
to explore the level of detail of these data analytics 
techniques.

Fig. 7.17 shows average ratings of general 
questions of the VAS and the CDS. Participants are 
generally very positive about the visual analytics tool. 
All participants agree that the visual analytics tool is 

effective in visualizing performances of a data set of 
design alternatives and that the tool has the potential 
to facilitate design exploration and to improve sub-
stantiation of decision-making in the design process. 
A point of attention is that not all participants agree 
whether use of the VAS encourages the user to 
create more sustainable or better-performing design 
alternatives. A possible explanation mentioned by one 
participant is that some performance objectives are 
‘irrelevant’, alluding to thermal comfort performances. 
Noteworthy is that final comments of two participants 
made explicit that the visual analytics tool is ‘fun’ to 
use.

Most participants, both with and without expe-
rience in the field of architecture, communicated 
that use of the CDS gives them great insight in 
design performances and makes them more aware 
of performance-related criteria. The majority would 
consider using the CDS and the VAS in a design project. 
Some participants communicated that they are more 
likely to use the CDS for design optimization in later 
design stages.

7.3.4  Conclusions

This questionnaire is set up to answer two ques-
tions:

(1) Does a design process supported by a Compu-
tational Design System lead to better-performing 
designs than designs made using traditional design 
processes?

(2) Does the Visual Analytics System as a whole and 
do its individual features support the design process 
of architects?

Comparison of designs selected by either a manual 
optimization process or the Visual Analytics System 
shows that quantified performances are generally 
slightly improved. Furthermore, participants, espe-
cially participants with no experience in the field of 
architecture, feel more confident about their design 
process when using the CDS. However, multiple 
participants state that some performance objectives 
are not relevant for the decision-making process. 
Furthermore, some participant mentioned that they 
are more included to use an Iterative Design System 
for design optimization, as opposed to exploration. 
In conclusion, integration of the Computational 
Design System in the design process leads to better-
performing designs, though use of the Iterative Design 

System can be optimized to suit either comparative 
assessment of design concepts or optimization of a 
specific design.

Participants are generally very positive about the 
Visual Analytics System. The Visual Analytics System 
and its features are generally perceived intuitive and 
participants are positive that the VAS has the potential 
to contribute to the design process of architects. 
Use of the SOM for multi-dimensional scaling and 
integration of the stacked bar graph for visualization 
of design performances are the most successful 
features of the visual analytics tool. The decision tree 
and D-matrix have found less use, though this can be 
contributed to the limited amount of time set out 
for the use of the visual analytics tool. Participants 
mentioned that the visual analytics tool is ‘fun’ to use, 
which further indicates that the VAS is intuitive in use 
and that it encourages performance-driven design. In 
short, the Visual Analytics System and its features are 
intuitive in use and participants are confident that it 
leads to better-performing architecture. Therefore, 
the Visual Analytics System and its features succeed in 
supporting the design process of practitioners in the 
field of architecture.
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Fig. 7.13: Stacked bar graph showing confidence in design processes of Architecture and Building Technology students. Ratings 
correspond to degree to which participants agree to the statement (1 - Strongly disagree, 5 - Strongly agree). Individual ratings are 
presented in Appendix J, Fig. A.15.
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in Appendix J, Fig. A.16.
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7.4 DISCUSSION

Functioning of the Computational Design System 
and the Visual Analytics System is assessed based on 
their ability to facilitate a performance-driven design 
process. The CDS and the VAS are tested by the author, 
an MSc student and participants of a questionnaire. 
The author’s experience of development and use of 
the CDS, peer review of an MSc architecture student 
and a questionnaire held among participants with and 
without experience in the field of architecture reveal 
the following strengths and weaknesses of the CDS 
and the VAS: 

EXPLORATION
The CDS enables exploration of large, high-

dimensional data sets, facilitating comparative 
assessment of design concepts and of design 
alternatives. The data analytics methods implemented 
in the VAS are suitable for design exploration and 
optimization and visualization and interaction are 
perceived intuitive. Organization of design alternatives 
using Self-Organizing Maps and visualization of 
performances using the stacked bar graph are the 
most effective features of the Visual Analytics System 
to derive building information in a limited time frame.  
Other features can be used in conjunction to these 
methods to get more in-depth knowledge of data 
structure, design performances and interrelationships 
between design variables.

Use of the VAS by the author shows the benefits 
of integrating data analytics methods in a single 
viewport. Using multiple data analytics methods in 
conjunction enables deduction of groupings of similar 
design alternatives in the design space. The VAS 
shows overall performances of these groupings in an 
intuitive manner. Because the VAS is highly interactive, 
information can be quickly retrieved. Another 
noteworthy benefit of high interactivity is that the tool 
is very forgiving. Changes in the landscape provide 
instantaneous visual feedback of multiple data 
analytics methods and, as a result, making mistakes 
in setting filters, thresholds, etc. are immediately 
noticeable. For similar reasons, errors in the data set 
(such as a failed performance simulation) are also very 
noticeable. 

OPTIMIZATION
Comparison of design alternatives developed 

using ‘traditional design processes’ and using the CDS 
shows that design performances are generally slightly 
improved when using the CDS. Participants of the 
questionnaire and the peer reviewer see potential 
in use of the Visual Analytics System for design 
optimization in later design phases. 

The current Iterative Design System can be 
further improved to facilitate design optimization, 
however. Due to the large amount of design variables 
of most parametric models convergence towards 
optimal design solutions is hardly achieved. Another 
consequence of the large amount of design variables 
is that similarity between design alternatives is small 
and correlation between design variables is limited. 
Hence, discerning interrelationships between design 
variables and building performances is difficult. 
Further reducing the amount of design variables may 
improve optimization of the Iterative Design System.

PV and thermal comfort performances contribute 
little to the decision-making process, since they 
have little influence on building geometry. Lighting 
performances are also of lesser importance 
compared to energy performances. Reconsidering 
the implementation of these performance objectives 
may further improve the suitability of the Iterative 
Design System to substantiate the architectural design 
process.

DOCUMENTATION
The Computational Design System enables 

users to append design alternatives to the data set. 
This enables use of the Visual Analytics System as a 
documentation of the design process. Designs made 
throughout the design process - either designed 
manually or through parametric models - can be used 
as a frame of reference for new designs.

VISUALIZATION
The previous paragraphs explain that the VAS is 

effective in visualizing high-dimensional data of large 
data sets. Another quality of the VAS is that visual 
representations of the designs are relatively high 
quality. The ability to walk through design alternatives 
and through the urban context faciliitates users to 
get a sense of scale and of architectural qualities. 
This shows potential in use for interactive design 
visualization.

COMMUNICATION AND EDUCATION
A noteworthy strength of the CDS is that users 

are more aware of climate-related performances. 
Questionnaire participants – both with and without 
experience in the field of architecture - feel more 
confident in their decision-making when using the CDS. 
Furthermore, multiple participants communicated 
that the questionnaire is ‘fun’ to use. 

The questionnaire indicates potential of the VAS 
for communication with clients, facilitating easily-
understandable comparison between design options. 
The questionnaire also shows potential of further 
development of the VAS for educative purposes. 
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To meet the European Union’s directive to build 
nearly Zero Energy Buildings in 2020 an emphasis 
on quantifiable performance objectives in the early 
design process is required. The application of building 
performance simulations to support decision-making 
in the design process supports assessment of building 
performances, but because these methodologies 
typically do not capacitate the rapid generation of 
design alternatives they are rarely used for design 
exploration in the early design phase. Computational 
design systems aim to facilitate design exploration by 
the production of large quantities of data. Current 
visual analytics techniques, however, do not facilitate 
simultaneous exploration of quantitative and 
qualitative design performance of multi-variate, multi-
dimensional data sets. 

This thesis introduces a visual analytics tool that 
is able to simultaneously visualize quantified and 
non-quantified design performances of large data 
sets of design alternatives. The visual analytics tool is 
part of a computational design system that involves 
generating a data set of a large number of design 
alternatives and making their design performance 
data insightful by means of integrating multiple 
data visualization and interaction methods. The tool 
integrates various data analytics methods, using a 
landscape as a visual metaphor to visualize features 
and encourages exploration of the design space by 
high levels of interaction. The Computational Design 
System is tested using a case study, which involves 
the performance-driven design process of a nearly 
Zero-Energy sports hall in Overhoeks, Amsterdam. 
Following a research-by-design process methods 
of facilitating the design process are explored. The 
author’s experience of development and use of the 
CDS, peer review of an MSc architecture student and 
a questionnaire held among participants with and 
without experience in the field of architecture give 
insight in the suitability of the Computational Design 
System to facilitate performance-driven decision-
making. 

This chapter presents the main research 
conclusions of this thesis. Firstly, each of the four sub-
questions introduced in chapter asdf is answered. 
Then, this chapter provides an answer to the main 
research question: “How can visual analytics be 
integrated in a computational design system to make 
multi-variate, multi-objective decision-making in the 
early design phase accessible to architects and climate 
designers?”

hOW CAN GENERATION OF LARGE QUANTITIES 
OF DESIGN ALTERNATIVES CONTRIBUTE TO 
EXTRACTION OF BUILDING INFORMATION FOR 
PERFORMANCE-DRIVEN DESIGN PROCESS BY 
ARChITECTS AND CLIMATE DESIGNERS?

This thesis shows that the best way to contribute 
to the architectural design process through design 
exploration is by enabling comparison between 
multiple design concepts. The data workflow set 
up in this thesis enables generation of a data set 
that consists of design alternatives generated by 
multiple parametric models, as well as manually 
constructed design alternatives. Tests of the use of 
the Computational Design System indicate that the 
Computational Design System facilitates comparative 
assessment of design alternatives. Furthermore, the 
Computational Design System enables the user to 
efficiently append design alternatives to the data set, 
thus supporting the continuous design process. The 
Computational Design System can therefore be used 
as a documentation of the design process.

Flaws of the Computational Design System 
are long simulation times and low convergence 
towards optimal design results. Both are caused by 
a high amount of design parameters. Regardless, the 
Computational Design System gives great insight in 
the general performance of each design concept. The 
Computational Design System is therefore suitable for  
exploration in the very early conceptual design phase. 
When a more specific design direction is taken in later 
design stages, parametric models can be set up to 
focus on design optimization. New design alternatives 
can either be added to the existing data set or can be 
visualized in a new data environment. 

hOW DO QUANTIFIED AND NON-QUANTIFIED 
DESIGN PERFORMANCES INFLUENCE MULTI-
OBJECTIVE DECISION-MAKING OF ARChITECTS 
AND CLIMATE DESIGNERS?

The Computational Design System runs multiple 
building performance simulations to determine 
various performance objectives. Quantified perfor-
mance objectives consist of energy-, lighting- and 
thermal-related performances. Users are generally 
able to improve overall performance of their design 
alternative by using the Computational Design 
System. Use of the Computational Design System 
indicates that design aesthetics and energy-related 
performances are the most influential factors on the 

ChAPTER 8: CONCLUSIONS



123 Conclusions

architectural design. Building volume and window size 
and positioning, in particular, have large effects on 
these performances. Thermal and lighting-comfort-
related performances have less influence on the 
building’s geometry. Thermal comfort performances  
are largely dependent on heating and cooling 
setpoint temperatures and can thus be optimized by 
extra heating and cooling. The influence of PV panel 
performances on the architectural design process is 
marginal, since energy demands are commonly met 
and design alternatives commonly meet (nearly) Zero-
Energy design standards. 

Trade-offs between performance objectives 
vary from person to person; some users of the 
Computational Design System favor comparison of 
design geometries over performances, whilst others 
use the Computational Design System to find design 
alternatives with best climate-related performances. 
Nevertheless, the Computational Design System 
encourages users to take both types of performance 
objectives into consideration. Thus, although the 
influence of quantified and non-quantified design 
performances on multi-objective decision-making 
vary, a trade-off between the two is generally achieved. 

WhAT DATA ANALYTICS METhODS ARE SUITABLE 
FOR INTERPRETATION OF hIGh-DIMENSIONAL 
BUILDING PERFORMANCE SIMULATION DATA SETS 
BY ARChITECTS AND CLIMATE DESIGNERS?

Data analytics integrated in the Computational 
Design System fulfil four purposes: 

• Visualization of interrelationships between 
data items in high-dimensional data

• Visualization of data attributes
• Navigation in large data sets.
• Determination of interrelationships between 

design aspects and performances

The Computational Design System uses the 
following data analytics methods to fulfil these 
purposes:

• Self-Organizing Map
• Stacked bar graph (in conjunction with analytic 

hierarchal process)
• Decision tree
• Pictogram charts
• Agglomerative hierarchal clustering

Each of these methods is suitable for interpretation 
of high-dimensional data, according to users of the 
Computational Design System. An adapted version 
of the Self-Organizing Map is an effective tool to 
project  design alternatives with high-dimensional 
performance data onto a two-dimensional plane 
while avoiding cluttering. A stacked bar graph, a 
decision tree and pictogram charts process annual 
performance data for visualization of performances. 
The Self-Organizing Map, stacked bar graph, decision 
tree, pictogram charts and hierarchal clustering all 
enable navigation of the design space through quick 
derivation of areas of the design space with similar 
characteristics. Interrelationships between design 
aspects can be derived from correlation matrices and 
by manually comparing design geometries. 

hOW CAN DATA ANALYTICS METhODS BE 
INTEGRATED AND VISUALIZED IN A MANNER 
ThAT ENABLES INTUITIVE, GOAL-ORIENTED 
EXPLORATION OF BUILDING PERFORMANCE DATA 
FOR ARChITECTS AND CLIMATE DESIGNERS IN 
ORDER TO FACILITATE PERFORMANCE-DRIVEN 
DESIGN PROCESSES?

The aforementioned data analytics methods are 
integrated in a highly interactive, game-like data 
environment developed using the Unreal Engine. 
The environment uses the visual metaphor of a 
landscape to visualize data analytics methods. Design 
geometries are spawned on tiles of the landscape and 
characteristics of the landscape gives insight in the 
performances of design alternatives and the design 
space. Users can ‘terraform’ the landscape to deduct 
relevant building information. Users can fly around the 
landscape and walk through design alternatives in first 
person view. Additional gameplay features further 
facilitate deduction of building information.

Users perceive the use of the data environment 
as very intuitive. They are able to use data analytics 
methods with little explanation of their functionality 
and are able find design alternatives or design spaces 
of interest very effectively. This suggests potential of 
use of the Computational Design System for educative 
purposes and use for communication between 
architects and clients.
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hOW CAN VISUAL ANALYTICS BE INTEGRATED IN A COMPUTATIONAL DESIGN SYSTEM TO MAKE MULTI-
VARIATE, MULTI-OBJECTIVE DECISION-MAKING IN ThE EARLY DESIGN PhASE ACCESSIBLE TO ARChITECTS 
AND CLIMATE DESIGNERS?

The architectural design process is characterized by trade-offs between both quantified and non-quantified 
performances. This thesis explores integration of computational design and visual analytics in the design process 
to substantiate decision-making of architects and climate designers.

The architectural design process often explores multiple design processes throughout the design process. 
The computational design system developed in this thesis therefore enables the use of multiple parametric and 
non-parametric models to generate a data set of design alternatives corresponding to multiple design concepts. 
The use of non-destructive evolutionary algorithms to iterate through design alternatives enables optimization 
of a design concept. 

This thesis visualizes this data using an intuitive, highly interactive and game-like data environment. The 
environment integrates multiple data analytics methods to visualize building performances. Quantified building 
performances are visualized conjointly to design geometries, enabling architects to make trade-offs between 
both quantified and non-quantified performances. Users are quickly able to find relevant building information 
through means of interaction. This thesis verifies that use of this visual analytics environment improves overall 
design performance.

The use of CSV files as an intermediary between subsystems of the computational design system enhances 
flexibility and versatility of the computational design system. The ability to append design alternatives to the 
data set enables use of the computational design system throughout the design process, providing a means of 
documenting the design process through the data environment.

Peer review and the author’s experience verify that a highly-interactive, game-like environment is a very 
effective tool to visualize high-dimensional data. Use of easily understood visual metaphors facilitate intuitive 
use of data analytics methods to analyze building information, enabling users with limited knowledge on these 
data analytics methods to find optimal design solutions. This shows potential in use of the data environment for 
communication and discussion purposes, facilitating multi-objective decision-making in multi-disciplinary design 
processes. 

In conclusion, integration of an intuitive, highly interactive, game-like data environment in a computational 
design system makes multi-variate, multi-objective decision-making in the early design phase accessible to 
architects and climate designers, by providing means of exploration, optimization, visualization, documentation 
and communication.
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• The data analytics methods in the Visual 
Analytics System are currently mostly 
based annual performance data. Future 
development of the Visual Analytics System 
could introduce means to visualize hourly or 
daily performances to enable the designer to 
further substantiate their decision-making 
process.  An example is the introduction of a 
toggle that switches between hourly, daily and 
annual performances, visualizing the landscape 
accordingly. Using a slider, the user can iterate 
through the hours or days of the year, which 
provides immediate visual feedback of the 
Visual Analytics System. 

• The parametric models that comprise the 
Generative Design Systems in this thesis use 
large amounts of design variables in order to 
create design alternatives with high level of 
variation. Along with long simulation times of 
the Performance Analysis System this affects 
convergence of the evolutionary algorithm 
towards optimal design solutions. The influence 
of PV panels on the design process in this thesis 
already indicated that some design aspects can 
be individually optimized. Research could be 
conducted on the potential of decentralized, 
computationally inexpensive simulation and 
optimization of distinctive design aspects 
to increase convergence towards design 
solutions (Fig. 9.1). Alternatively, research 
could investigate the use of surrogate 
modelling techniques may provide a means to 
approximate optima of the design space. 

• Currently, the subsystems of the Computational 
Design System are linearly arranged, with 
few ways to feedback data to preceding 
subsystems. The Computational Design System 
could integrate machine learning techniques 
to determine user preference patterns in the 
Visual Analytics System. This can be fed back to 
the Generative Design System, influencing the 
optimization process (Fig. 9.2).

• Continued development of the Visual Analytics 
System could explore further potential of the 
VAS in multiple facets of design regarding 
exploration, optimization, design visualization, 
education and documentation. Examples 
include integration of means of machine 
learning, development of a commercially avail-
able toolbox, integration of VR and further 
implementation of gameplay elements.

ChAPTER 9: RECOMMENDATIONS
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Fig. 9.1: Current CDS is used for global optimization (t.). Future research may consider decentralized optimization process for local 
optimization of performances (m.). It would be interesting to investigate the potential of using local optimization process to steer 
global optimization processes towards optimal design solutions (b.)
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Fig. 9.2: Current feedback loops (t.) and recommendations for additional feedback loops (b.).
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ChAPTER 10: REFLECTION

This chapter presents the author’s reflection on 
the graduation process. This chapter first reflects 
on the Iteractive Design System. Then, the Data 
Analytics System is discussed. Finally, the reflection on 
thegraduation process as a whole is presented. 

10.1 ITERATIVE DESIGN SYSTEM

The Iterative Design System (IDS) has been 
developed mainly using a research by design approach, 
where various tests throughout the research process 
give insight in the functioning of the IDS. Exploration 
of various means of facilitating the design process 
gives insight in how the Iterative Design System can 
best facilitate decision-making in performance-driven 
design processes.

The design brief, describing the design variables 
and performance objectives, was determined at an 
early stage of the research process. The design brief 
was chosen to closely resemble an architectural design 
process, since the suitability of the Computational 
Design System to contribute to ‘realistic’ design 
processes is an important aspect of its relevancy. At 

the time, however, complexity of this large amount 
of aspects was not recognized. Reducing the amount 
of design variables and performance objectives may 
have provided the opportunity to improve processing 
of analysis results. Focusing on fewer design aspects 
interrelationships between design aspects and 
performances may have been clearer, which may have 
benefitted research conclusions.

Nevertheless, five out of ten objectives have had 
great influence on the design processes of the author 
and the peer reviewer. Consequently, the IDS is in line 
with the main research question of this thesis, which 
concerns multi-variate, multi-objective decision-
making. 

10.2 DATA PROCESSING SYSTEM & VISUAL ANALYTICS SYSTEM

Development of the Data Analytics System (DAS) 
uses both a research by design and a design by research 
approach. Literature study indicates flaws of current 
visual analytics tools and provides an understanding 
of suitable data analytics methods. Development and 
testing of a prototype of the Visual Analytics System 
provides an understanding of its functionality.  

Designing the DAS alongside continuous testing was 
an effective way to determine suitable data analytics 
methods. It also gave insight in the importance 

of various aspects that literature research did not 
provide, such as means of interaction, operability and 
user experience. 

The prototype of the visual analytics tool is 
elaborate. An advantage is that results of personal 
testing and peer review have been very insightful to 
determine the level of intuitivity of the use of the DAS. 
A drawback is that development of the prototype 
was time-intensive, which took away from further 
optimization of the data analytics methods and of the 
functionality of the IDS. 



128Reflection

10.3 GRADUATION PROCESS

10.3.1  Graduation topic

The research question is, in my opinion, a very 
relevant topic; I see great potential in the use of 
computational design in the various stages of the 
architectural design process, but have experienced 
the difficulties in interpreting information in 
various simulation tools. Furthermore, various Msc 
Architecture students have expressed a certain 
reluctance to use computational design in their design 
process. Various researchers in the field of design 
exploration and optimization have indicated the 
necessity of further research in data visualization in 
the field of architecture.

A curious phenomenon is that data analytics 

methods used in other engineering industries do 
not meet the demands of practitioners in the field of 
architecture. Experience in the field of architecture 
and research throughout this graduation process 
suggest that there is a large difference in design 
approaches between these disciplines; most 
engineering disciplines focus on optimization of one 
or a few quantifiable performance criteria, whereas 
the architectural design approach is characterized 
by exploration and high-dimensional trade-offs. This 
graduation research acknowledges this difference 
in design approaches, which may be a relevant 
contribution to current research.

10.3.2  Relevancy of graduation results

Various MsC Architecture students have observed 
that the design flexibility is limited by the use of 
generative design in the architecture process. This 
indicates that the use of a computational design 
system may not be applicable in design processes 
comparable to theirs. This thesis explores various 
parametric models with the aim to maintain high 
design flexibility. In the end, the use of multiple 
parametric models that follow architectural design 
concepts are seen as a suitable computational design 
approach for traditional design processes. 

Research conclusions indicate that the 
computational design system does not optimally 
facilitate performance-driven design processes. Most 
notably, the system shows flaws in the analysis of 
interrelationships between design aspects. Hence, 
this graduation research does not contribute much to 
the assessment of data analytics methods. 

However, development of the computational 
design system involved a considerable focus on user 
experience. Peer review and the author’s experience 
indicate that the use of a game-like environment 
that is highly interactive encourages performance-
driven decision-making. High level of interactivity and 
features inspired by computer games provide novel 
ways of extracting building information.

A noteworthy observation concerning relevancy 
is that computational design systems may not be 
relevant for small design projects, since the absolute 
improvements in (e.g.) energy-related performances 
do not weigh against the effort of setting up the 
computational design systems. Computational design 
systems are applicable in bigger projects, though, 
when performances are of greater consequence 
(whether that is related to sustainable aspects, 
financial aspects, or to social-cultural impact). The VAS 
provides ways to visualize and quantify performances 
that can invoke and substantiate discussion among a 
multi-disciplinary design team, further contributing to 
its suitability in large design projects.

I am convinced that the computational design 
system in this thesis has the potential contribute to 
sustainable development. The computational design 
system facilitates a new approach on sustainable 
design in which both architectural qualities and 
sustainable performances can be considered in the 
design process. Use of the system may prevent clashes 
between the two aspects and thus may benefit both 
energetic performance and architectural quality. 
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The Iterative Design System exports 16 design 
aspects, listed below: 

Floor area (m2)
Volume (m3)
Total façade area (m2)
Orientation (°)
PV Panel area (m2)
Total north-oriented window area (m2)
Total east-oriented window area (m2)
Total south-oriented window area (m2)
Total west-oriented window area (m2)
Total sky-oriented window area (m2)
Insolation north-oriented windows (hrs/yr)
Insolation east-oriented windows (hrs/yr)
Insolation south-oriented windows (hrs/yr)
Insolation west-oriented windows (hrs/yr)
Insolation sky-oriented windows (hrs/yr)

Floor area, volume, total façade area, orientation 
and PV panel area are logically derived from the 
parametric model’s B-reps.

Windows are grouped based on their orientation, 
using the method described below. The orientation is 
determined using the Face Normal component, which 
returns a vector with a length of 1.

Normal vector Vnorm is deconstructed in its 
component parts. Considering Pythagorean theorem 
and the fact that the vector length of Vnorm always 
equals one,  the windows are sky-oriented if they 
meet one of the following criteria:

0<Vnorm;z<45
135<Vnorm;z<180

If the window is not sky-oriented, it is grouped 
under one of the wind directions-oriented classes. 
In order to do so, the angle between each wind 
direction and a vector with components X=Vnorm;x, 
Y=Vnorm;y , and Z=0 is calculated. If the angle is smaller 
than 45 degrees, the window is oriented towards that 
orientation.

Insolation is calculated using a list of 8760 
vectors that represent hourly solar rays. Intersection 
commands determine whether vectors intersect with  
the building or context mesh or whether they intersect 
with the windows. The total amount of unobstructed 
solar hours is averaged for each group of windows.

APPENDIX A: ELABORATION ON BUILDING INFORMATION 
EXPORT
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B.1 DELAUNAY GEOMETRY DEFINITION

The Delaunay geometry is defined using Delaunay 
triangulation of a three-dimensional array of points. 
This method is computationally inexpensive and allows 
for non-orthogonal surfaces and works with planar 
surfaces, the latter being a requirement imposed by 
the simulation software. Delaunay Triangulation is 
defined as following: for a triangulation of three points 
in a set of points, the triangulation is a Delaunay 
triangle if no point is within the circumscribed circle 
of the three points. 

The following method is used to define Delaunay 
geometry (Fig. A.10):

A point cloud is parametrically defined using 
Gene Pools for the X-, Y-, and Z-values of the point 
coordinates. Since Delaunay triangulation of a three-
dimensional array of points does not guarantee a 
closed geometry, the point cloud is projected on a 
spherical plane that uses the building’s center as its 
center point. The sphere points can be used to define 
Delaunay triangulation. To do so, a Voronoi diagram is 
generated using the Facet Dome component.

A Voronoi diagram can be derived from the 
Delaunay triangulation by connecting the center 
points of the circumscribed circles. Conversely, 
Delaunay triangulation can be derived from the 

Voronoi diagram and its corresponding set of points 
(P) using the following logic:

For each Voronoi corner point, if 
there are three points in set P with 
equal distance from the Voronoi corner 
point and there is no point in set P 
with smaller distance from the Voronoi 
corner point, the triangulation of the 
three points in set P is a Delaunay 
triangle.

Using this method the Delaunay triangulation is 
derived from the spherical Voronoi diagram of the 
projected set of points. For each Voronoi cornerpoint, 
its distance to each Delaunay control point (sphere 
point) is calculated. The lists of distances and their 
corresponding points are then sorted by size. If the 
first three list items of the sorted list are equal, the 
three points are equally far apart and there are no 
points that are closer to the Voronoi corner point. If 
this is the case, the triangulation of the three points 
is a Delaunay triangle. The list of the building’s control 
points and the list of their corresponding sphere points 
are in the same order. Hence, Delaunay triangulation 
of the sphere points can be extrapolated back to the 
original control points using synchronous sorting (Sort 
List command).

B.2 VORONOI GEOMETRY DEFINITION

 The Voronoi-based geometry is defined by 
creating a Voronoi surfaces for each wall and for the 
ceiling and by trimming each wall with the other walls. 
The methodology is largly based on suggestions given 
by D. Jonkers (personal communication, , 2017).

For each wall, a list of points is distributed on a 
rectangular surface. The surfaces is offset to either 
side, and a bounding box is defined between these 
two surfaces. The points are projected onto both 
surfaces with parametrically defined vectors. Then, 
Grasshopper’s Voronoi3D-component is used, taking 
projected points and the bounding box as an input. 
The component draws closed B-reps based on a three-
dimensional Voronoi diagram. Using this method, 
culling each surface that does not intersect with the 
offset surfaces returns the Voronoi wall geometry 

(Fig. A.2). Duplicate surfaces are removed by testing 
the similarity of their centerpoints. Finally, the wall 
surfaces are joined to create one polysurface. Each 
wall is trimmed by its neighboring walls. The walls 
are joined and capped to create a floor. The result is a 
closed B-rep that represents the building mass. 

The positions of the windows are determined by 
projecting points onto the wall and ceiling segments, 
using parametrically defined vectors. The wall 
segments are scaled to define the window geometries. 
The scale factors of each window are individually 
defined and are parametric. PV panels are defined 
in a similar manner. Contrary to the windows, the PV 
panels are not scaled and instead cover the entire wall 
segment. 

APPENDIX B: ELABORATION ON GRASShOPPER DEFINI-
TIONS
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1.

3.

5.

2.

4.

6.

Fig. A.1: Delaunay triangulation derived from a set of control points.
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a. b.

c. d.

e. f.

Fig. A.2: Façade geometry derived from 3D Voronoi partitionng



143

B.3 CUBISTIC GEOMETRY DEFINITION

The geometry definition is based on three B-reps. 
A bigger and a smaller B-rep represent the outer 
and inner volume of the geometry. Some sections of 
the outer volume are carved out to reveal the inner 
geometry. In order to determine which sections are 
carved out, the B-reps are split into segments of which 
some are removed. The geometries are split so that 
the

Splitting of the B-reps and the carving of the outer 
geometry are controlled by the third ‘reference’ B-rep 
that encompasses the outer and the inner B-rep. The 
reference B-rep is sliced on the X-, Y- and Z-axes, in 
parallel. Thus, three lists are created; one containing 
horizontal slices of the B-rep, one containing vertical 
slices parallel to the X-axis and one containing vertical 
slices parallel to the Y-axes (Fig. A.3). 

Selecting one slice of each list and performing Solid 
Intersection operations returns one segment of the 
B-rep. Using this method, each segment in the array 
of box segments can be found by intersecting a slice of 
each list. Fig. A.4 gives an example of how individual 
segments can be retrieved. This method resembles 
a three-dimensional coordinate system, in which the 
coordinate values are the indices of each list of slices. 

The coordinates are parametrically defined and 
are controlled by the evolutionary algorithm. The 
coordinates retrieve segments that will comprise 
the exposed areas of the inner cube. Unfortunately, 
Grasshopper does not allow for diagonally adjacent 
exposed areas, since this results in non-manifold 
edges and, hence, does not result in a closed B-rep. 
This is only the case when the outer mass is diagonally 
intersecting with itself, so when the two exposed areas 
do share a neighboring exposed area, the building 
mass does not have non-manifold edges (Fig. A.5). 

Therefore, if two coordinates would result in 
diagonally adjacent exposed areas, the coordinates 
are removed. In order to do so, a script is run parallel 
to the B-rep segmentation. For each combination 
of two coordinates, the script determines whether 
they are diagonally adjacent. This is the case when 
their Euclidean distance = √2. If they are, the script 
determines whether the points share a common 
neighbor (Euclidean distance = 1). If they do not have 
a common neighbor, the coordinates would return a 
geometry that has non-manifold edges. Therefore, 
they are removed from the list.

The remaining points return the segments of 
the inner cube that will be exposed. Intersections 
with the outer geometry determine which of the 
outer geometry segments should be removed. A 
Solid Union operation of the outer geometries and 
inner geometries returns the building mass and 
automatically removes interior faces. The solid 
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Fig. A.3: Slicing of the B-rep over the X-, Y- and Z- axis and 
over all axes, respectively.
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Fig. A.4: Coordinate system to retrieve building segments.

Fig. A.5: Non-manifold edge (l.) is prevented by removing 
additional building segments (r.).
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B-rep is then exploded again, after which the inner 
faces, outer faces and floor are separated. The inner 
faces are sliced into equal segments of approximately 
2.0 m wide. A window is defined on each of these 
segments by offsetting the segments’ B-rep edges by 
a parametrically defined distance and using an Edge 
Surface operation. The locations of the small windows 

of the outer geometry are defined by projecting points 
on the outer geometry using parametrically defined 
vectors. Using these points, the corresponding outer 
wall segments are found. The centerpoints of these 
segments are used as the centerpoints of the windows. 
The windows have a fixed height and a variable width.

B.4 POLYGONAL GEOMETRY DEFINITION

This definition is comparable to the definition 
described in chapter B.3, but is adapted in various ways 
in order to reduce computation time. The definition 
makes use of an outer and an inner B-rep. The inner 
B-rep is a box and the outer B-rep is a polygonal mass. 

The polygonal mass is defined using a series 
of points. The four lower corner points are fixed. 
Moving these points with four parametrically defined 
movement vectors determines the upper corner 
points. Planarity of each wall is ensured, since the 
vectors have identical inclination over the wall’s 
tilting axis. A plane is drawn through the four points 
and on that plane a fifth point is drawn. A polyline is 
drawn through the five points and is used to define 
a Boundary Surface. The upper corner points are 
triangulated define the roof segments.

The outer B-rep is segmented using a similar 
approach to the approach described in chapter 
B.3. However, since this geometry only carves slices 
over the X-axis, a different approach to remove non-
manifold edges is used.

A list of Boolean values controls a Cull Pattern 
component that determines which segments are 
removed. The list is hierarchically organized; it uses a 

branch for each slice of the geometry and the values 
in each branch relate to each building segment in the 
corresponding slice. 

Hence, non-manifold edges can be easily found by 
looking for adjacency and diagonal adjacency of ‘false’ 
Booleans. A non-manifold edge occurs when two 
segments are diagonally adjacent without a common 
neighboring segment. Conversely, a non-manifold 
edge occurs when two neighboring segments are 
removed without removing either or both of their 
common neighboring segments. The neighboring 
items of the list of Booleans can be found using Flip 
Matrix and Shift List components in the following 
orders:

Neighbor over Y-axis: flip matrix -> shift list -> flip matrix
Neighbor over X-axis, right: shift list
Neighbor over X-axis, left: shift list (neg.)
Diagonal neighbor, right: flip matrix -> shift list -> flip 
matrix -> shift list
Diagonal neighbor, left: flip matrix -> shift list -> flip 
matrix -> shift list (neg.)

Then, a series of ‘Nor’, ‘And’ and ‘Or’ gates 
determine whether non-manifold edges occur. If that 
is the case, the definition prevents one of the building 
segments from being removed.

B.5 ANNUAL SOLAR OBSTRUCTION DEFINITION

Firstly, windows are grouped based on their 
orientation; North, East, South, West, or upwards. 
Each window’s facing direction is found using the 
Face Normal component. Upwards-facing windows 
are found by deconstructing the normal vectors and 
using the height of the vector to calculate the angle 
between the normal vector and the Z-axis vector. Since 
the normal vector’s length is 1, the angle can be found 
using the formula below. If 0 < α  < 45° the window is 
considered to face upwards.

α = cos-1 ( Vl,z / 1)
Where:
Vl,z = the length of the window’s normal vector’s in the Z-direction
α = angle between the window’s normal vector and the Z-axis

The remaining windows are subdivided based on 
the four wind directions. To calculate the angle of the 
vectors on the XY-plane, the window’s normal vectors 
are deconstructed and reconstructed using only their 
X- and Y- values. Each wind direction is expressed as a 
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vector (Y, X, -Y and -X for N.,E.,S. and W., respectively). 
Then, for each window the angle between its normal 
vector and each wind direction is calculated. If 0 < α  
< 90° the window is considered to face towards that 
direction.

After grouping the windows based on their 
orientation, the cumulative window areas of each 
orientation are calculated. Then, the average annual 
hours of direct sunlight is calculated for each window. 
For each hour of the year a line is drawn through each 
window’s centerpoint following the solar radiation 

vector. The context geometry and the building’s wall 
geometry are converted to a mesh. A Mesh|Line 
Intersection component determine at what hours of 
the year the mesh obstructs the solar radiation for 
each window; if there is no intersection between 
the mesh and a line, the sun is not obstructed for 
that hour of the year and the window is exposed to 
direct sunlight. The amount of unobstructed daylight 
hours are summed for each window. Then, they are 
averaged for each group of windows.

B.6 DATA EXPORT

The building information is exported using custom 
Python components. An ID number (‘Iteration 
Number’) is assigned to each design iteration and 
is included with all exported information. When 
using the non-destructive evolutionary algorithm in 
the Iterative Design System the Iteration Number 
increments by one for each design loop. The Iteration 
Number is defined by a custom Python component. 

The iteration number is stored as a single integer 
in a designated CSV file. A custom Python component 
reads the iteration number, increments it by one and 
overwrites the file with the new iteration number 
each time the component receives an update (‘buzz’) 
(Fig. A.6).

Building information is exported using the Python 
component presented in Fig. A.7. The component 
reads the designated CSV file and appends the building 
information as a new line in the CSV file. The building 
information should be inputted as a single string that 
includes all values, concatenated with commas. In this 
thesis, the string is defined in Grasshopper using Text 
Join and Concatenate components.
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fileAddressIN: file address containing the iteration number
defaultSartingIterationNumber = a number indicating the first number in the series of iteration numbers
buzz = any kind of input that assures an update when the Python component needs to be run. The Iterative Design System in this thesis uses the 
building geometry
increment = Boolean that disables the script if false
reset = Boolean that resets the iteration number to the defaultStartingIterationNumber if true

with	open(fileAddressIN,	‘r’)	as	f:
    currentIterationNumber = f.read()
if currentIterationNumber == “” or reset == True:
    increment=False
    currentIterationNumber = defaultStartingIterationNumber 
				with	open(fileAddressIN,	‘w’)	as	wr:
								wr.write(str(currentIterationNumber).zfill(5))
if increment==True:
				with	open(fileAddressIN,	‘w’)	as	wr:
								newIterationNumber	=	int(currentIterationNumber.strip(‘”’))	+1
								wr.write(str(newIterationNumber).zfill(5))
IN	=	str(int(currentIterationNumber.strip(‘”’))	+1).zfill(5)

Fig. A.6: Python component script used to define the Iteration Number.

fileAddressIN: a file address that contains a single number that increments each iteration
fileAddress: file address of the CSV file
simulationValues: a single string containing the information to be written to the file
write: Boolean that writes the file if true

with	open(fileAddressIN,	‘r+’)	as	INfile:
				currentIterationNumber	=	INfile.read()

with	open(fileAddress,	‘a’)	as	file:
    if write == True:
								IDNumber	=	str(currentIterationNumber).zfill(5)
								file.write(“\n”	+	str(IDNumber)	+	‘,’	+	str(simulationValues))

Fig. A.7: Python component script used to write building information to a CSV file.
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APPENDIX C: PERFORMANCE VALUES OF ALTERNATIVE 
SIMULATIONS
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This thesis uses a custom algorithm to attribute 
data items to SOM cells. Because of the author’s 
limited experience in programming, the algorithm 
implemented in the visual analytics tool is slow; it 
requires approximately two hours to match 150 design 
alternatives to 984 grid cells. Functionality of the 
algorithm is therefore tested using a scenario analysis, 
presented in this appendix. 

A data set of 156 items is used to generate SOMs 
of various sizes in modeFRONTIER. Each size equals 
or approximates a specific ratio. Visualizations of the 
SOMs, derived from ModeFRONTIER, are shown in 
Fig. A.8. ModeFRONTIER shows the amount of design 
alternatives attributed to a cell by drawing squares in 
the cells. The size of a square relates to the amount of 
data items of the corresponding cell.

These visualizations are used to analyze potential 
areas where loss of topology may occur. The 
methodology used approximates a ‘what-if’ analysis; 
In a repeating process, the author picks a cell where 
data items exceed one data item and redistributes its 
items to neighbouring cells. This effectively mimics 
the behaviour of the algorithm proposed in this thesis. 
The author uses a ‘worst case scenario’ approach to 
redistribute data items. Loss of topology occurs when 
data items cannot be redistributed to neighboring 
cells, but instead are forced to cells that are further 
away from the original cell.

The scenario analysis indicates that loss of topology 
occurs when ratios between grid cells and data items 
are 1:1 or 2:1. Therefore, the algorithm proposed in 
this thesis is not suitable when the amount of grid cells 
of the SOM is similar to the amount of data items. Loss 
of topology is small when the ratio is 3:1. For larger 
ratios no loss of topology occurs. Hence, the algorithm 
functions suitably well when the ratio exceeds 3:1. 
Regardless, it should be noted that use of the Visual 
Analytics System without topology preservation is 
not likely to have great effect on the decision-making 
process of the user.

APPENDIX D: ANALYSIS OF LOSS OF TOPOLOGY USING 
ADAPTED SOM ALGORIThM FOR VARYING GRID SIZES
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156 cells (1:1 ratio)
max. amount of design alternatives in cell: 6

The dataset consists of 156 design alternatives (in all cases)

322 cells (2:1 ratio)
max. amount of design alternatives in cell: 4

482 cells (3:1 ratio)
max. amount of design alternatives in cell: 4

156 cells (4:1 ratio)
max. amount of design alternatives in cell: 4

984 cells (5:1 ratio) - Current landscape
max. amount of design alternatives in cell: 3

1225 cells (8:1 ratio)
max. amount of design alternatives in cell: 2

Estimated chance of loss of topology preservation:  VERY HIGH
Estimated extent of loss of topology preservation: EXTENSIVE
Estimated amount of loss of topology preservation:  VERY HIGH

Estimated chance of loss of topology preservation:  VERY HIGH
Estimated extent of loss of topology preservation: AREA AROUND A COUPLE OF CELLS
Estimated amount of loss of topology preservation:  HIGH

Estimated chance of loss of topology preservation:  MODERATE/LOW
Estimated extent of loss of topology preservation: AREA AROUND VERY FEW CELLS
Estimated amount of loss of topology preservation:  LOW

Estimated chance of loss of topology preservation:  MODERATE
Estimated extent of loss of topology preservation: AREA AROUND A COUPLE OF CELLS
Estimated amount of loss of topology preservation:  MODERATE

Estimated chance of loss of topology preservation:  VERY LOW
Estimated extent of loss of topology preservation: AREA AROUND ONE OR TWO CELLS
Estimated amount of loss of topology preservation:  LOW

Areas of conflict: Areas of conflict:

Areas of conflict: Areas of conflict:

Areas of conflict: Areas of conflict:

Estimated chance of loss of topology preservation:  EXTREMELY LOW
Estimated extent of loss of topology preservation: AREA AROUND ONE OR TWO CELLS
Estimated amount of loss of topology preservation:  VERY LOW

Fig. A.8: SOMs generated in modeFRONTIER (v.5.3.0; ESTECO SpA, 2017).
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156 cells (1:1 ratio)
max. amount of design alternatives in cell: 6

The dataset consists of 156 design alternatives (in all cases)

322 cells (2:1 ratio)
max. amount of design alternatives in cell: 4

482 cells (3:1 ratio)
max. amount of design alternatives in cell: 4

156 cells (4:1 ratio)
max. amount of design alternatives in cell: 4

984 cells (5:1 ratio) - Current landscape
max. amount of design alternatives in cell: 3

1225 cells (8:1 ratio)
max. amount of design alternatives in cell: 2

Estimated chance of loss of topology preservation:  VERY HIGH
Estimated extent of loss of topology preservation: EXTENSIVE
Estimated amount of loss of topology preservation:  VERY HIGH

Estimated chance of loss of topology preservation:  VERY HIGH
Estimated extent of loss of topology preservation: AREA AROUND A COUPLE OF CELLS
Estimated amount of loss of topology preservation:  HIGH

Estimated chance of loss of topology preservation:  MODERATE/LOW
Estimated extent of loss of topology preservation: AREA AROUND VERY FEW CELLS
Estimated amount of loss of topology preservation:  LOW

Estimated chance of loss of topology preservation:  MODERATE
Estimated extent of loss of topology preservation: AREA AROUND A COUPLE OF CELLS
Estimated amount of loss of topology preservation:  MODERATE

Estimated chance of loss of topology preservation:  VERY LOW
Estimated extent of loss of topology preservation: AREA AROUND ONE OR TWO CELLS
Estimated amount of loss of topology preservation:  LOW

Areas of conflict: Areas of conflict:

Areas of conflict: Areas of conflict:

Areas of conflict: Areas of conflict:

Estimated chance of loss of topology preservation:  EXTREMELY LOW
Estimated extent of loss of topology preservation: AREA AROUND ONE OR TWO CELLS
Estimated amount of loss of topology preservation:  VERY LOW

Fig. A.9: Scenario analysis. Clusters of potential conflict are identified and circled. Design alternatives in cells that contain more than 
one data item are manuall redistributed to identify potential loss of topology.
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APPENDIX E: CORRELATION MATRICES OF DATA SETS 
WITh VARYING OCCUPANCY SChEDULES
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Fig. A.10: Correlation matrices of data sets of 150 design alternatives simulated with occupancy schedules of 17 hrs/day (l.) and 9 
hrs/day (r.)
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APPENDIX F: hIGh RESOLUTION IMAGES OF ThE VISUAL 
ANALYTICS TOOL
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Design:
• The building fills a gap in terms of sport 

functions.
• The roof will be used for sporting, aesthetic and 

energy purposes. It is a solar park meant for 
sporting, walking and provides an interesting 
view for the inhabitants of the surrounding 
residential structures.

• It contains the possibility for usage of other 
functions like a small cinema, theatre and 
lecture spaces.

• The sporting hall itself is connected to the park 
through a double colonnade and is supposed 
to draw people through and into the building.

• The sports hall itself has a very open northern 
façade directed towards the square. It should 
be able to open up completely so the it can 
be combined with the square for a market 
or convention. These are connected through 
stairs.

• A parking garage in the basement, the ground 
is already dug away this makes it easier.

• The appearance should approach the 
something in the direction of the Eye. This to 
balance the Eye-building.

Basic principles:
• The roof is sloped towards the south to provide 

covering and the placement of solar panels.
• The roof lights provide, together with the main 

façade on the north side daylight.
• There are one or two windows aimed towards 

the west made of translucent glass to provide 
interesting views for the houses on the other 
side of the road.

• The east side is mainly closed.
• The south side is provided with a open façade 

as well to so a passer-by can see inside the 
building. This is supposed to make the building 
more inviting for the user.

APPENDIX G: DESIGN DECISIONS OF PRELIMINARY 
SKETCh DESIGN USED IN PEER REVIEW
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APPENDIX h: CORRELATION MATRICES OF DATA PER 
PARAMETRIC MODEL
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B01_FloorArea 1.00 0.25 0.51 0.10 0.38 -0.04 - 0.38 -0.01 -0.24 0.20 - 0.12 0.03 0.02 -0.11 -0.58 0.27 -0.40 -0.26 - 0.32 -0.31 -0.07 -0.19
B02_Volume 0.25 1.00 0.70 -0.14 0.02 0.22 - -0.13 0.24 -0.14 0.19 - 0.05 0.09 -0.35 -0.11 0.42 0.04 -0.03 -0.25 - -0.05 -0.04 -0.17 -0.09

B03_ExposedWallArea 0.51 0.70 1.00 -0.31 0.15 -0.09 - 0.04 -0.04 -0.48 0.33 - -0.11 -0.06 -0.35 -0.61 0.03 0.55 -0.14 -0.33 - 0.46 -0.55 -0.65 -0.61
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B06_WiAreaNorth -0.04 0.22 -0.09 0.08 -0.10 1.00 - -0.13 0.51 -0.23 0.19 - -0.10 0.08 -0.44 0.19 0.44 -0.32 0.04 -0.19 - -0.28 0.38 0.14 0.20
B07_WiAreaEast - - - - - - 1.00 - - - - - - - - - - - - 1.00 - - - - -

B08_WiAreaSouth 0.38 -0.13 0.04 0.11 0.07 -0.13 - 1.00 -0.22 0.00 -0.01 - 0.07 0.41 0.16 0.13 -0.31 0.05 -0.06 0.12 - 0.15 0.03 0.17 0.06
B09_WiAreaWest -0.01 0.24 -0.04 0.31 -0.19 0.51 - -0.22 1.00 -0.42 0.10 - -0.17 0.09 -0.41 0.05 0.16 -0.02 0.17 -0.19 - 0.03 0.16 0.05 0.07

B10_WiAreaSky -0.24 -0.14 -0.48 0.29 0.11 -0.23 - 0.00 -0.42 1.00 -0.40 - 0.42 0.15 0.57 0.81 0.25 -0.80 -0.13 0.34 - -0.80 0.71 0.78 0.82
B11_WiShadingNorth 0.20 0.19 0.33 -0.09 -0.19 0.19 - -0.01 0.10 -0.40 1.00 - 0.01 -0.22 -0.63 -0.36 -0.03 0.34 0.16 -0.06 - 0.36 -0.32 -0.37 -0.39
B12_WiShadingEast - - - - - - - - - - - 1.00 - - - - - - - 1.00 - - - - -

B13_WiShadingSouth 0.12 0.05 -0.11 0.27 0.27 -0.10 - 0.07 -0.17 0.42 0.01 - 1.00 0.05 0.23 0.40 -0.01 -0.32 -0.29 -0.03 - -0.32 0.28 0.41 0.40
B14_WiShadingWest 0.03 0.09 -0.06 0.38 -0.01 0.08 - 0.41 0.09 0.15 -0.22 - 0.05 1.00 0.13 0.35 0.01 -0.28 -0.01 -0.04 - -0.24 0.24 0.38 0.34

B15_WiShadingSky 0.02 -0.35 -0.35 0.07 0.20 -0.44 - 0.16 -0.41 0.57 -0.63 - 0.23 0.13 1.00 0.41 -0.24 -0.32 -0.18 0.13 - -0.29 0.25 0.44 0.39
E1_CoEnergy -0.11 -0.11 -0.61 0.52 0.05 0.19 - 0.13 0.05 0.81 -0.36 - 0.40 0.35 0.41 1.00 0.23 -0.93 -0.10 0.21 - -0.85 0.91 0.98 0.99
E2_HeEnergy -0.58 0.42 0.03 -0.08 -0.22 0.44 - -0.31 0.16 0.25 -0.03 - -0.01 0.01 -0.24 0.23 1.00 -0.49 0.21 0.09 - -0.57 0.55 0.11 0.32
E3_LiEnergy 0.27 0.04 0.55 -0.40 -0.02 -0.32 - 0.05 -0.02 -0.80 0.34 - -0.32 -0.28 -0.32 -0.93 -0.49 1.00 0.06 -0.20 - 0.97 -0.92 -0.85 -0.94

E4_PVEnergyGain -0.40 -0.03 -0.14 -0.12 -0.98 0.04 - -0.06 0.17 -0.13 0.16 - -0.29 -0.01 -0.18 -0.10 0.21 0.06 1.00 0.37 - 0.05 0.01 -0.10 -0.09
E5_PVEPBT -0.26 -0.25 -0.33 0.19 -0.31 -0.19 - 0.12 -0.19 0.34 -0.06 - -0.03 -0.04 0.13 0.21 0.09 -0.20 0.37 1.00 - -0.20 0.23 0.22 0.23

L1_Glare - - - - - - - - - - - - - - - - - - - 1.00 1.00 - - - -
L2_LiUniformity 0.32 -0.05 0.46 -0.34 -0.02 -0.28 - 0.15 0.03 -0.80 0.36 - -0.32 -0.24 -0.29 -0.85 -0.57 0.97 0.05 -0.20 - 1.00 -0.87 -0.76 -0.88
T1_ThCmfSpec -0.31 -0.04 -0.55 0.41 -0.05 0.38 - 0.03 0.16 0.71 -0.32 - 0.28 0.24 0.25 0.91 0.55 -0.92 0.01 0.23 - -0.87 1.00 0.85 0.93
T2_ThCmfSprt -0.07 -0.17 -0.65 0.57 0.07 0.14 - 0.17 0.05 0.78 -0.37 - 0.41 0.38 0.44 0.98 0.11 -0.85 -0.10 0.22 - -0.76 0.85 1.00 0.96

T3_TempCriteria -0.19 -0.09 -0.61 0.52 0.05 0.20 - 0.06 0.07 0.82 -0.39 - 0.40 0.34 0.39 0.99 0.32 -0.94 -0.09 0.23 - -0.88 0.93 0.96 1.00

Fig. A.11: Correlation matrix of design alternatives generated with the ‘zigzag’ parametric model.
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B01_FloorArea 1.00 0.12 0.50 0.00 -0.28 -0.34 -0.46 -0.26 -0.40 -0.11 0.14 0.15 0.57 -0.04 0.24 -0.10 -0.67 0.26 0.28 - -0.28 0.26 -0.35 -0.04 -0.14
B02_Volume 0.12 1.00 0.39 0.12 0.86 -0.08 -0.30 -0.19 -0.31 -0.38 -0.42 -0.06 0.05 -0.29 -0.61 -0.39 -0.18 0.34 -0.86 - 0.39 0.34 -0.38 -0.43 -0.37

B03_ExposedWallArea 0.50 0.39 1.00 0.16 0.28 -0.36 -0.81 -0.53 -0.73 -0.79 -0.21 -0.29 0.29 -0.03 -0.20 -0.79 -0.72 0.81 -0.28 - -0.13 0.81 -0.84 -0.75 -0.79
B04_Orientation 0.00 0.12 0.16 1.00 0.20 -0.19 -0.24 -0.11 -0.15 -0.23 -0.23 -0.18 0.16 0.25 -0.17 -0.20 -0.20 0.16 -0.20 - -0.02 0.18 -0.27 -0.25 -0.17

B05_PVPanelArea -0.28 0.86 0.28 0.20 1.00 0.02 -0.21 -0.21 -0.20 -0.52 -0.47 -0.14 -0.10 -0.26 -0.73 -0.54 -0.02 0.39 -1.00 - 0.42 0.39 -0.40 -0.58 -0.50
B06_WiAreaNorth -0.34 -0.08 -0.36 -0.19 0.02 1.00 0.28 -0.03 0.21 0.20 -0.06 -0.23 -0.29 0.04 -0.03 0.21 0.41 -0.25 -0.02 - 0.04 -0.28 0.38 0.25 0.25
B07_WiAreaEast -0.46 -0.30 -0.81 -0.24 -0.21 0.28 1.00 0.43 0.70 0.72 0.24 0.31 -0.34 -0.11 0.18 0.66 0.86 -0.77 0.21 - 0.16 -0.77 0.80 0.62 0.67

B08_WiAreaSouth -0.26 -0.19 -0.53 -0.11 -0.21 -0.03 0.43 1.00 0.28 0.60 0.17 0.04 -0.32 0.33 0.18 0.64 0.41 -0.69 0.21 - 0.08 -0.68 0.62 0.62 0.63
B09_WiAreaWest -0.40 -0.31 -0.73 -0.15 -0.20 0.21 0.70 0.28 1.00 0.60 0.42 0.14 -0.22 -0.02 0.24 0.54 0.74 -0.61 0.20 - 0.06 -0.62 0.73 0.55 0.53

B10_WiAreaSky -0.11 -0.38 -0.79 -0.23 -0.52 0.20 0.72 0.60 0.60 1.00 0.28 0.33 -0.16 0.06 0.40 0.99 0.63 -0.93 0.52 - 0.04 -0.94 0.92 0.96 0.98
B11_WiShadingNorth 0.14 -0.42 -0.21 -0.23 -0.47 -0.06 0.24 0.17 0.42 0.28 1.00 0.11 -0.08 0.17 0.31 0.26 0.15 -0.25 0.47 - -0.19 -0.26 0.28 0.30 0.24
B12_WiShadingEast 0.15 -0.06 -0.29 -0.18 -0.14 -0.23 0.31 0.04 0.14 0.33 0.11 1.00 0.18 -0.47 -0.03 0.32 0.05 -0.33 0.14 - -0.09 -0.30 0.14 0.26 0.28

B13_WiShadingSouth 0.57 0.05 0.29 0.16 -0.10 -0.29 -0.34 -0.32 -0.22 -0.16 -0.08 0.18 1.00 -0.12 0.14 -0.15 -0.49 0.22 0.10 - -0.03 0.23 -0.34 -0.14 -0.19
B14_WiShadingWest -0.04 -0.29 -0.03 0.25 -0.26 0.04 -0.11 0.33 -0.02 0.06 0.17 -0.47 -0.12 1.00 0.33 0.09 -0.02 -0.03 0.26 - -0.10 -0.04 0.10 0.12 0.08

B15_WiShadingSky 0.24 -0.61 -0.20 -0.17 -0.73 -0.03 0.18 0.18 0.24 0.40 0.31 -0.03 0.14 0.33 1.00 0.40 0.06 -0.29 0.73 - -0.17 -0.30 0.34 0.46 0.36
E1_CoEnergy -0.10 -0.39 -0.79 -0.20 -0.54 0.21 0.66 0.64 0.54 0.99 0.26 0.32 -0.15 0.09 0.40 1.00 0.55 -0.93 0.54 - 0.02 -0.93 0.89 0.98 0.99
E2_HeEnergy -0.67 -0.18 -0.72 -0.20 -0.02 0.41 0.86 0.41 0.74 0.63 0.15 0.05 -0.49 -0.02 0.06 0.55 1.00 -0.70 0.02 - 0.28 -0.71 0.81 0.51 0.58
E3_LiEnergy 0.26 0.34 0.81 0.16 0.39 -0.25 -0.77 -0.69 -0.61 -0.93 -0.25 -0.33 0.22 -0.03 -0.29 -0.93 -0.70 1.00 -0.39 - -0.12 1.00 -0.88 -0.87 -0.94

E4_PVEnergyGain 0.28 -0.86 -0.28 -0.20 -1.00 -0.02 0.21 0.21 0.20 0.52 0.47 0.14 0.10 0.26 0.73 0.54 0.02 -0.39 1.00 - -0.42 -0.39 0.40 0.58 0.50
E5_PVEPBT - - - - - - - - - - - - - - - - - - - 1.00 - - - - -

L1_Glare -0.28 0.39 -0.13 -0.02 0.42 0.04 0.16 0.08 0.06 0.04 -0.19 -0.09 -0.03 -0.10 -0.17 0.02 0.28 -0.12 -0.42 - 1.00 -0.13 0.08 -0.03 0.05
L2_LiUniformity 0.26 0.34 0.81 0.18 0.39 -0.28 -0.77 -0.68 -0.62 -0.94 -0.26 -0.30 0.23 -0.04 -0.30 -0.93 -0.71 1.00 -0.39 - -0.13 1.00 -0.89 -0.88 -0.95
T1_ThCmfSpec -0.35 -0.38 -0.84 -0.27 -0.40 0.38 0.80 0.62 0.73 0.92 0.28 0.14 -0.34 0.10 0.34 0.89 0.81 -0.88 0.40 - 0.08 -0.89 1.00 0.90 0.89
T2_ThCmfSprt -0.04 -0.43 -0.75 -0.25 -0.58 0.25 0.62 0.62 0.55 0.96 0.30 0.26 -0.14 0.12 0.46 0.98 0.51 -0.87 0.58 - -0.03 -0.88 0.90 1.00 0.96

T3_TempCriteria -0.14 -0.37 -0.79 -0.17 -0.50 0.25 0.67 0.63 0.53 0.98 0.24 0.28 -0.19 0.08 0.36 0.99 0.58 -0.94 0.50 - 0.05 -0.95 0.89 0.96 1.00

Fig. A.12: Correlation matrix of design alternatives generated with the ‘orthogonal mass’ parametric model.
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B01_FloorArea 1.00 -0.74 -0.79 -0.11 -0.18 0.24 -0.74 0.50 0.41 -0.57 0.47 -0.70 -0.72 0.17 0.50 0.44 -0.93 -0.06 -0.14 -0.12 0.51 -0.15 -0.82 0.60 0.39
B02_Volume -0.74 1.00 0.92 0.17 0.30 -0.17 0.56 -0.39 -0.28 0.30 -0.34 0.48 0.52 -0.17 -0.50 -0.57 0.86 0.29 0.00 0.10 -0.57 0.34 0.62 -0.68 -0.53

B03_ExposedWallArea -0.79 0.92 1.00 0.15 0.32 -0.27 0.57 -0.43 -0.39 0.36 -0.35 0.57 0.63 -0.27 -0.51 -0.62 0.92 0.32 -0.02 0.12 -0.53 0.39 0.65 -0.73 -0.59
B04_Orientation -0.11 0.17 0.15 1.00 0.15 0.04 -0.02 0.14 0.10 0.21 -0.08 0.06 0.08 0.16 0.03 0.21 0.14 -0.21 -0.03 0.22 -0.30 -0.17 0.20 0.17 0.24

B05_PVPanelArea -0.18 0.30 0.32 0.15 1.00 -0.16 0.14 -0.10 -0.23 0.16 -0.24 0.17 0.24 -0.18 -0.03 -0.17 0.29 0.11 -0.81 0.02 -0.16 0.12 0.20 -0.18 -0.16
B06_WiAreaNorth 0.24 -0.17 -0.27 0.04 -0.16 1.00 -0.21 0.09 0.51 -0.22 0.30 -0.17 -0.24 0.07 -0.20 0.30 -0.23 -0.31 0.03 -0.03 0.12 -0.33 -0.04 0.28 0.30
B07_WiAreaEast -0.74 0.56 0.57 -0.02 0.14 -0.21 1.00 -0.33 -0.32 0.50 -0.37 0.61 0.61 -0.10 -0.45 -0.36 0.77 0.01 0.05 0.09 -0.33 0.12 0.75 -0.48 -0.34

B08_WiAreaSouth 0.50 -0.39 -0.43 0.14 -0.10 0.09 -0.33 1.00 0.06 -0.13 0.26 -0.21 -0.33 0.10 0.32 0.38 -0.45 -0.19 -0.02 0.08 0.12 -0.14 -0.31 0.44 0.32
B09_WiAreaWest 0.41 -0.28 -0.39 0.10 -0.23 0.51 -0.32 0.06 1.00 -0.34 0.26 -0.36 -0.42 0.14 -0.04 0.31 -0.39 -0.17 0.07 -0.07 0.24 -0.17 -0.23 0.38 0.31

B10_WiAreaSky -0.57 0.30 0.36 0.21 0.16 -0.22 0.50 -0.13 -0.34 1.00 -0.35 0.56 0.49 -0.21 -0.02 0.34 0.58 -0.62 -0.02 0.15 -0.24 -0.51 0.80 0.17 0.34
B11_WiShadingNorth 0.47 -0.34 -0.35 -0.08 -0.24 0.30 -0.37 0.26 0.26 -0.35 1.00 -0.30 -0.35 -0.07 -0.19 0.10 -0.44 0.07 0.08 -0.04 0.18 0.07 -0.46 0.19 0.03
B12_WiShadingEast -0.70 0.48 0.57 0.06 0.17 -0.17 0.61 -0.21 -0.36 0.56 -0.30 1.00 0.76 -0.36 -0.46 -0.27 0.72 -0.02 0.17 0.38 -0.41 0.09 0.65 -0.40 -0.28

B13_WiShadingSouth -0.72 0.52 0.63 0.08 0.24 -0.24 0.61 -0.33 -0.42 0.49 -0.35 0.76 1.00 -0.25 -0.43 -0.34 0.74 0.06 0.07 0.11 -0.31 0.14 0.62 -0.47 -0.32
B14_WiShadingWest 0.17 -0.17 -0.27 0.16 -0.18 0.07 -0.10 0.10 0.14 -0.21 -0.07 -0.36 -0.25 1.00 0.15 0.11 -0.24 -0.02 0.09 -0.20 0.10 -0.06 -0.17 0.14 0.14

B15_WiShadingSky 0.50 -0.50 -0.51 0.03 -0.03 -0.20 -0.45 0.32 -0.04 -0.02 -0.19 -0.46 -0.43 0.15 1.00 0.53 -0.54 -0.27 -0.18 -0.08 0.26 -0.33 -0.35 0.58 0.53
E1_CoEnergy 0.44 -0.57 -0.62 0.21 -0.17 0.30 -0.36 0.38 0.31 0.34 0.10 -0.27 -0.34 0.11 0.53 1.00 -0.49 -0.85 -0.06 -0.01 0.30 -0.84 -0.02 0.96 0.99
E2_HeEnergy -0.93 0.86 0.92 0.14 0.29 -0.23 0.77 -0.45 -0.39 0.58 -0.44 0.72 0.74 -0.24 -0.54 -0.49 1.00 0.12 0.04 0.14 -0.54 0.22 0.85 -0.64 -0.46
E3_LiEnergy -0.06 0.29 0.32 -0.21 0.11 -0.31 0.01 -0.19 -0.17 -0.62 0.07 -0.02 0.06 -0.02 -0.27 -0.85 0.12 1.00 0.01 -0.10 -0.14 0.96 -0.35 -0.73 -0.86

E4_PVEnergyGain -0.14 0.00 -0.02 -0.03 -0.81 0.03 0.05 -0.02 0.07 -0.02 0.08 0.17 0.07 0.09 -0.18 -0.06 0.04 0.01 1.00 0.13 -0.07 0.02 0.03 -0.09 -0.06
E5_PVEPBT -0.12 0.10 0.12 0.22 0.02 -0.03 0.09 0.08 -0.07 0.15 -0.04 0.38 0.11 -0.20 -0.08 -0.01 0.14 -0.10 0.13 1.00 -0.21 -0.06 0.14 -0.03 -0.01

L1_Glare 0.51 -0.57 -0.53 -0.30 -0.16 0.12 -0.33 0.12 0.24 -0.24 0.18 -0.41 -0.31 0.10 0.26 0.30 -0.54 -0.14 -0.07 -0.21 1.00 -0.19 -0.41 0.37 0.28
L2_LiUniformity -0.15 0.34 0.39 -0.17 0.12 -0.33 0.12 -0.14 -0.17 -0.51 0.07 0.09 0.14 -0.06 -0.33 -0.84 0.22 0.96 0.02 -0.06 -0.19 1.00 -0.23 -0.74 -0.87
T1_ThCmfSpec -0.82 0.62 0.65 0.20 0.20 -0.04 0.75 -0.31 -0.23 0.80 -0.46 0.65 0.62 -0.17 -0.35 -0.02 0.85 -0.35 0.03 0.14 -0.41 -0.23 1.00 -0.21 0.02
T2_ThCmfSprt 0.60 -0.68 -0.73 0.17 -0.18 0.28 -0.48 0.44 0.38 0.17 0.19 -0.40 -0.47 0.14 0.58 0.96 -0.64 -0.73 -0.09 -0.03 0.37 -0.74 -0.21 1.00 0.94

T3_TempCriteria 0.39 -0.53 -0.59 0.24 -0.16 0.30 -0.34 0.32 0.31 0.34 0.03 -0.28 -0.32 0.14 0.53 0.99 -0.46 -0.86 -0.06 -0.01 0.28 -0.87 0.02 0.94 1.00

Fig. A.13: Correlation matrix of design alternatives generated with the ‘non-orthogonal mass’ parametric model.

QUESTIONNAIRE

This questionnaire is for the completion of the MsC Building Technology graduation research of 
Jamal van Kastel. The research question of the graduation research is: 
How can visual analytics methods be integrated in a computational design system to make 
multi-variate, multi-objective, performance-driven decision-making of a large set of design 
alternatives accessible to architects and climate designers? 
During the graduation process a visual analytics tool has been developed. This questionnaire 
aims to test the functionality of the visual analytics tool.
Information derived from this questionnaire will be used in the graduation research. A summary 
of all questionnaires will be presented in the thesis.

This questionnaire consists of the following parts:

1. Introduction (10 min.)
2. Manual optimization of a sports hall design (10 min.)
3. Questions about your decision-making process during the manual optimization (5 min.)
4. Explanation of the data processing methods in the visual analytics tool (10 min.)
5. Use of the visual analytics tool to find optimal design alternatives (10 min.)
6. Questions about your experience with the various aspects of the visual analytics tool (15 min.)
7. Questions about your experience with the visual analytics tool as a whole (5 min.)
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QUESTIONNAIRE

This questionnaire is for the completion of the MsC Building Technology graduation research of 
Jamal van Kastel. The research question of the graduation research is: 
How can visual analytics methods be integrated in a computational design system to make 
multi-variate, multi-objective, performance-driven decision-making of a large set of design 
alternatives accessible to architects and climate designers? 
During the graduation process a visual analytics tool has been developed. This questionnaire 
aims to test the functionality of the visual analytics tool.
Information derived from this questionnaire will be used in the graduation research. A summary 
of all questionnaires will be presented in the thesis.

This questionnaire consists of the following parts:

1. Introduction (10 min.)
2. Manual optimization of a sports hall design (10 min.)
3. Questions about your decision-making process during the manual optimization (5 min.)
4. Explanation of the data processing methods in the visual analytics tool (10 min.)
5. Use of the visual analytics tool to find optimal design alternatives (10 min.)
6. Questions about your experience with the various aspects of the visual analytics tool (15 min.)
7. Questions about your experience with the visual analytics tool as a whole (5 min.)

APPENDIX I: QUESTIONNAIRE
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Please enter your (current or previous) occupation:

Fill out to what extent you agree or disagree with each of the following statements. Please select 
one answer per row.

MsC student - Architecture
MsC student - Building Technology

No occupation related to the field of architecture
Other:

You will be asked to optimize a sports hall building following “traditional design processes” and 
following a computer-aided design process, of which the visual analytics tool is part of.  Please 
enter your email address if you want to receive the simulation results of both your designs. 
Your email address will be kept confidential and will not be shared with any third party. Leave 
this field blank if you do not wish to receive the simulation results. 

Email address:

I have experience in the field of 
architectural design.

I have experience in the field of 
climate design.

I have experience in the field of 
Zero-Energy design.

I have experience in the field of 
computer-aided design.

I have experience in the field of 
data analytics.

Slightly
untrue

Neither true 
nor false

Untrue TrueSlightly true Don’t know 
/ No 

opinion

1.
Firstly, you are given a short introduction on the graduation research. Amongst others, this 
presentation introduces the purpose statement of the research. The purpose of this research 
is to develop a visual analytics tool that facilitates design exploration and design optimization 
for decision-making in the field of architecture and climate design.
The visual analytics tool is a high-interactive data visualization tool that visualizes a large data 
set of design alternatives and their corresponding performances and allows the user to explore 
this data environment in order to find or determine the best-performing design alternatives.

The aim of this questionnaire is to test the functionality of the visual analytics tool. Most 
importantly, this questionnaire tests
(1) whether a design process supported by the visual analytics tool leads to better-performing 
designs than designs made using traditional design processes and
(2) whether the visual analytics tool as a whole and whether its current features support the 
design process of architects.

The visual analytics tool is tested using a case study, which concerns the design of a nearly-
Zero Energy sports hall. Besides energy consumption, the sports hall is optimized for various 
thermal comfort and visual comfort objectives, listed below:

• Annual cooling energy demand; the annual amount of energy needed to cool the building in order to meet thermal 
performance objectives. The HVAC system ventilates 8 l/s per person.

• Annual heating energy demand; the annual amount of energy needed to heat the building in order to meet 
thermal performance objectives. The HVAC system ventilates 8 l/s per person.

• Annual lighting energy demand; the annual amount of energy needed for artificial lighting. Artificial lighting is 
not used when daylight provides adequate lighting levels. The required light level depends on the occupancy and 
ranges from 250 lux (for trainings) to 700 lux (for championships)

• PV energy gain; the energy gain from the photovoltaic cells on the building.
• PV EPBT; the energy pay-back time of the PV panels. The energy pay-back time is the time required by the PV 

panels to deliver the energy needed to construct them. The energy pay-back time thus indicates the effectiveness 
of the PV panels’ orientation.

• Lighting uniformity; the uniformity of the light levels of the playing field. Lighting uniformity is expressed as the 
annual amount of hours of inadequate uniformity. Lighting uniformity is calculated using a grid of sensor point, in 
which the similarity of the illuminance of adjacent sensor points should be higher than a factor of 0.7.

• Temperature criteria; minimum and maximum indoor operative temperatures of 19°C and 27°C, respectively. 
Temperature criteria are expressed as the annual amount of hours comfort levels are not met. 

• Thermal comfort of the spectators; measured using an adaptive comfort model (ISSO 74) and expressed as the 
annual amount of hours comfort levels are not met. Depending on the running mean outdoor temperature, indoor 
operative temperatures should range from 20°C to 26°C.

• Thermal comfort of the sports players; measured using an adaptive comfort model (ISSO 74) and expressed as 
the annual amount of hours comfort levels are not met. Depending on the running mean outdoor temperature, 
indoor operative temperatures should range from 18°C to 25°C.

• Architectural qualities; this performance objectives may include various non-quantified performance objectives, 
such as aesthetics, integration in the urban context, sociological performances, etcetera.
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Please enter your (current or previous) occupation:

Fill out to what extent you agree or disagree with each of the following statements. Please select 
one answer per row.

MsC student - Architecture
MsC student - Building Technology

No occupation related to the field of architecture
Other:

You will be asked to optimize a sports hall building following “traditional design processes” and 
following a computer-aided design process, of which the visual analytics tool is part of.  Please 
enter your email address if you want to receive the simulation results of both your designs. 
Your email address will be kept confidential and will not be shared with any third party. Leave 
this field blank if you do not wish to receive the simulation results. 

Email address:

I have experience in the field of 
architectural design.

I have experience in the field of 
climate design.

I have experience in the field of 
Zero-Energy design.

I have experience in the field of 
computer-aided design.

I have experience in the field of 
data analytics.

Slightly
untrue

Neither true 
nor false

Untrue TrueSlightly true Don’t know 
/ No 

opinion

1.
Firstly, you are given a short introduction on the graduation research. Amongst others, this 
presentation introduces the purpose statement of the research. The purpose of this research 
is to develop a visual analytics tool that facilitates design exploration and design optimization 
for decision-making in the field of architecture and climate design.
The visual analytics tool is a high-interactive data visualization tool that visualizes a large data 
set of design alternatives and their corresponding performances and allows the user to explore 
this data environment in order to find or determine the best-performing design alternatives.

The aim of this questionnaire is to test the functionality of the visual analytics tool. Most 
importantly, this questionnaire tests
(1) whether a design process supported by the visual analytics tool leads to better-performing 
designs than designs made using traditional design processes and
(2) whether the visual analytics tool as a whole and whether its current features support the 
design process of architects.

The visual analytics tool is tested using a case study, which concerns the design of a nearly-
Zero Energy sports hall. Besides energy consumption, the sports hall is optimized for various 
thermal comfort and visual comfort objectives, listed below:

• Annual cooling energy demand; the annual amount of energy needed to cool the building in order to meet thermal 
performance objectives. The HVAC system ventilates 8 l/s per person.

• Annual heating energy demand; the annual amount of energy needed to heat the building in order to meet 
thermal performance objectives. The HVAC system ventilates 8 l/s per person.

• Annual lighting energy demand; the annual amount of energy needed for artificial lighting. Artificial lighting is 
not used when daylight provides adequate lighting levels. The required light level depends on the occupancy and 
ranges from 250 lux (for trainings) to 700 lux (for championships)

• PV energy gain; the energy gain from the photovoltaic cells on the building.
• PV EPBT; the energy pay-back time of the PV panels. The energy pay-back time is the time required by the PV 

panels to deliver the energy needed to construct them. The energy pay-back time thus indicates the effectiveness 
of the PV panels’ orientation.

• Lighting uniformity; the uniformity of the light levels of the playing field. Lighting uniformity is expressed as the 
annual amount of hours of inadequate uniformity. Lighting uniformity is calculated using a grid of sensor point, in 
which the similarity of the illuminance of adjacent sensor points should be higher than a factor of 0.7.

• Temperature criteria; minimum and maximum indoor operative temperatures of 19°C and 27°C, respectively. 
Temperature criteria are expressed as the annual amount of hours comfort levels are not met. 

• Thermal comfort of the spectators; measured using an adaptive comfort model (ISSO 74) and expressed as the 
annual amount of hours comfort levels are not met. Depending on the running mean outdoor temperature, indoor 
operative temperatures should range from 20°C to 26°C.

• Thermal comfort of the sports players; measured using an adaptive comfort model (ISSO 74) and expressed as 
the annual amount of hours comfort levels are not met. Depending on the running mean outdoor temperature, 
indoor operative temperatures should range from 18°C to 25°C.

• Architectural qualities; this performance objectives may include various non-quantified performance objectives, 
such as aesthetics, integration in the urban context, sociological performances, etcetera.
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2.
You are given a parametric model of the sports hall that has the same design constraints as the 
parametric model used to generate the design alternatives in this questionnaire’s visual analytics 
tool. You are asked to ‘manually optimize’ the design of the sports hall based on your expertise in 
the field of architecture, by changing the sliders to change the geometry. 

Optimization should be based on the performance objectives listed below. Behind each performance 
objective the average performance of the simulations in the visual analytics tool are listed. This in-
formation substitutes information on sports halls’ performance that designers could otherwise derive 
from literature research. You have 10 minutes to determine the geometry that you think is the most 
optimal.

• Cooling energy (4,300 kWh / year)

• Heating energy (52,000 kWh / year)

• Lighting energy (23,000 kWh / year)

• PV energy gain (55,000 kWh / year)

• PV energy payback time (5.8 years)

• Lighting Uniformity (66 % / year not met)

• Thermal comfort of spectators (8.9 % / year not met)

• Thermal comfort of sports players (13 % / year not met)

• Temperature criteria (1.6 % / year not met)

• Architectural qualities

Room for comments to the surveyor:

3.
The following questions are about the decision-making process of your manual optimization.

Please rank the following performance objectives from 1 to 11, based on the trade-offs you made 
choosing the “best” design alternative. Assign 1 to the most important performance objective and 
11 to the least important performance objective.

Architectural qualities
Cooling energy
Heating energy
Lighting energy
PV energy gain

PV energy payback time
Lighting Uniformity

Glare
Temperature criteria

Thermal comfort of spectators
Thermal comfort of sports players

The following questions are about traditional design processes in general, i.e. design approaches 
commonly used in practice. Please answer the questions with regards to the aforementioned perfor-
mance objectives.

I am confident that traditional design processes involve 
well-determined priorities among performance objectives.

I am confident that traditional design processes involve 
well-substantiated design choices.

I am confident that traditional design processes result in 
the most optimal design alternative.

Neither 
agree nor 
disagree

DisagreeStrongly 
agree

Strongly 
disagree

No 
opinion

Agree

Fill out to what extent you agree or disagree with each of the following statements. Please select 
one answer per row.

I am confident that I was able to determine my priori-
ties among the various performance objectives

I am confident that I made well-substantiated design 
choices in the decision-making process.

I am confident that I have found the most optimal 
design alternative.

Neither 
agree nor 
disagree

DisagreeStrongly 
agree

Strongly 
disagree

No 
opinion

Agree

Room for comments to the surveyor:
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3.
The following questions are about the decision-making process of your manual optimization.

Please rank the following performance objectives from 1 to 11, based on the trade-offs you made 
choosing the “best” design alternative. Assign 1 to the most important performance objective and 
11 to the least important performance objective.

Architectural qualities
Cooling energy
Heating energy
Lighting energy
PV energy gain

PV energy payback time
Lighting Uniformity

Glare
Temperature criteria

Thermal comfort of spectators
Thermal comfort of sports players

The following questions are about traditional design processes in general, i.e. design approaches 
commonly used in practice. Please answer the questions with regards to the aforementioned perfor-
mance objectives.

I am confident that traditional design processes involve 
well-determined priorities among performance objectives.

I am confident that traditional design processes involve 
well-substantiated design choices.

I am confident that traditional design processes result in 
the most optimal design alternative.

Neither 
agree nor 
disagree

DisagreeStrongly 
agree

Strongly 
disagree

No 
opinion

Agree

Fill out to what extent you agree or disagree with each of the following statements. Please select 
one answer per row.

I am confident that I was able to determine my priori-
ties among the various performance objectives

I am confident that I made well-substantiated design 
choices in the decision-making process.

I am confident that I have found the most optimal 
design alternative.

Neither 
agree nor 
disagree

DisagreeStrongly 
agree

Strongly 
disagree

No 
opinion

Agree

Room for comments to the surveyor:
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4.
You are now given a presentation on the various components of the visual analytics landscape. The 
presentation provides a short explanation of each of the components. The information presented 
in the presentation intents to match the information that in a commercial software tool would be 
derived from a “quick look in the manual”.

Room for comments to the surveyor:
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4.
You are now given a presentation on the various components of the visual analytics landscape. The 
presentation provides a short explanation of each of the components. The information presented 
in the presentation intents to match the information that in a commercial software tool would be 
derived from a “quick look in the manual”.

Room for comments to the surveyor:

5.
You are invited to use the visual analytics tool in order to find the “best” design alternative, based 
on your preferences. Similar to the manual optimization process, you have 10 minutes to find your 
“best” design. After those 10 minutes, you may spend additional time in the visual analytics tool to 
explore its various aspects.

Room for comments to the surveyor:
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The intended purpose of this aspect of the visual analy-
tics tool contributes to my decision-making process.

The intended purpose of this aspect of the visual analy-
tics tool contributes to my decision-making process.

The data processing method as used in the visual ana-
lytics tool achieves its intended purpose.

The data processing method as used in the visual ana-
lytics tool achieves its intended purpose.

Visualisation of and interaction with the data processing 
method in the visual analytics tool are intuitive.

Visualisation of and interaction with the data processing 
method in the visual analytics tool are intuitive.

The data processing technique in the visual analytics 
tool helped me in finding information of interest to me.

The data processing technique in the visual analytics 
tool helped me in finding information of interest to me.

Neither 
agree nor 
disagree

Neither 
agree nor 
disagree

Disagree

Disagree

Strongly 
agree

Strongly 
agree

Strongly 
disagree

Strongly 
disagree

No 
opinion

No 
opinion

Agree

Agree

Intended purpose
Data processing method

Visualisation(s) in landscape

Intended purpose
Data processing method

Visualisation(s) in landscape

Organize and visualize each design alternative
Self-Organizing Map
Buildings plotted on a hexagonal grid

Supplement data set with non-simulated designs
Self-Organizing Map
Empty cells in the hexagonal grid

6.
On the following pages you are asked to fill out to what extent you agree or disagree with each of 
the following statements based on the presentation on the visual analytics tool and on your experi-
ence with the visual analytics tool. Please select one answer per row.
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The intended purpose of this aspect of the visual analy-
tics tool contributes to my decision-making process.

The intended purpose of this aspect of the visual analy-
tics tool contributes to my decision-making process.

The data processing method as used in the visual ana-
lytics tool achieves its intended purpose.

The data processing method as used in the visual ana-
lytics tool achieves its intended purpose.

Visualisation of and interaction with the data processing 
method in the visual analytics tool are intuitive.

Visualisation of and interaction with the data processing 
method in the visual analytics tool are intuitive.

The data processing technique in the visual analytics 
tool helped me in finding information of interest to me.

The data processing technique in the visual analytics 
tool helped me in finding information of interest to me.

Neither 
agree nor 
disagree

Neither 
agree nor 
disagree

Disagree

Disagree

Strongly 
agree

Strongly 
agree

Strongly 
disagree

Strongly 
disagree

No 
opinion

No 
opinion

Agree

Agree

Intended purpose
Data processing method

Visualisation(s) in landscape

Intended purpose
Data processing method

Visualisation(s) in landscape

Show interrelationship of design alternatives
Self-Organizing Map - D matrix
Canyons

Show total performance of design alternatives
Stacked bar graph + analytic hierarchy process
Soil layers and corresponding landscape heights
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The intended purpose of this aspect of the visual analy-
tics tool contributes to my decision-making process.

The intended purpose of this aspect of the visual analy-
tics tool contributes to my decision-making process.

The data processing method as used in the visual ana-
lytics tool achieves its intended purpose.

The data processing method as used in the visual ana-
lytics tool achieves its intended purpose.

Visualisation of and interaction with the data processing 
method in the visual analytics tool are intuitive.

Visualisation of and interaction with the data processing 
method in the visual analytics tool are intuitive.

The data processing technique in the visual analytics 
tool helped me in finding information of interest to me.

The data processing technique in the visual analytics 
tool helped me in finding information of interest to me.

Neither 
agree nor 
disagree

Neither 
agree nor 
disagree

Disagree

Disagree

Strongly 
agree

Strongly 
agree

Strongly 
disagree

Strongly 
disagree

No 
opinion

No 
opinion

Agree

Agree

Intended purpose
Data processing method

Visualisation(s) in landscape

Intended purpose
Data processing method

Visualisation(s) in landscape

Indicate designs with best and worst performances
Pictogram chart
Various pictograms (trees, flowers and rocks)

Classify designs based on energy demand
Decision tree
Surface type (grass, dirt, ..)
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7.
The following questions are about your general experience with the visual analytics tool.

The following questions are about your general experience with the visual analytics tool. Fill out to 
what extent you agree or disagree with each of the following statements. Please select one answer 
per row.

I am confident that I was able to determine my priori-
ties among the various performance objectives

I am confident that I made well-substantiated design 
choices in the decision-making process.

I am confident that I have found the most optimal de-
sign alternative in the provided design space.

Neither 
agree nor 
disagree

DisagreeStrongly 
agree

Strongly 
disagree

No 
opinion

Agree

Room for comments to the surveyor:

Please rank the following performance objectives from 1 to 11, based on the trade-offs you made 
choosing the “best” design alternative. Assign 1 to the most important performance objective and 
11 to the least important performance objective.

Architectural qualities
Cooling energy
Heating energy
Lighting energy
PV energy gain

PV energy payback time
Lighting Uniformity

Glare
Temperature criteria

Thermal comfort of spectators
Thermal comfort of sports players
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The following questions are about the potential of the visual analytics tool. For these questions, 
please consider a ‘commercial’ version of the visual analytics tool, i.e. a tool that is more developed 
with regards to control options, customizability and user friendliness than the visual analytics tool 
you have used. Fill out to what extent you agree or disagree with each of the following statements. 
Please select one answer per row.

The visual analytics tool has the potential to improve 
substantiation of decision-making in the design process, 
compared to traditional design processes.

The visual analytics tool has the potential to facilitate 
exploration of a larger amount of design alternatives, 
compared to traditional design processes.

The visual analytics tool has the potential to lead to a 
better understanding of building performances, 
compared to traditional design processes.

Use of the visual analytics tool has the potential to 
result in better-performing architecture, compared to 
traditional design processes.

Use of the visual analytics tool encourages me to create 
more sustainable and/or better-performing designs, 
compared to traditional design processes.

I would consider using the visual analytics tool in a 
design project to visualize a data set of design 
alternatives.

I would consider using an iterative design system to 
generate a data set of design alternatives in a design 
project.

Neither 
agree nor 
disagree

DisagreeStrongly 
agree

Strongly 
disagree

No 
opinion

Agree

The visual analytics tool has the potential to improve 
visualization of the performances of design alternatives, 
compared to traditional design processes.

Room for comments to the surveyor:

Please list the most important qualities of the visual analytics tool and explain why you think they 
are important:

Please list the greatest weaknesses and threats of the visual analytics tool and explain why you think 
they are relevant issues:

The area below can be used to share your final remarks. If you have any final remarks, suggestions 
for improvements, or other comments, please leave them below:

The greatest weaknesses and threats of the visual analytics tool are:

The most important qualities of the visual analytics tool are:

because:

because:
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The following questions are about the potential of the visual analytics tool. For these questions, 
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Please select one answer per row.

The visual analytics tool has the potential to improve 
substantiation of decision-making in the design process, 
compared to traditional design processes.

The visual analytics tool has the potential to facilitate 
exploration of a larger amount of design alternatives, 
compared to traditional design processes.

The visual analytics tool has the potential to lead to a 
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agree nor 
disagree
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agree

Strongly 
disagree

No 
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Agree

The visual analytics tool has the potential to improve 
visualization of the performances of design alternatives, 
compared to traditional design processes.

Room for comments to the surveyor:

Please list the most important qualities of the visual analytics tool and explain why you think they 
are important:

Please list the greatest weaknesses and threats of the visual analytics tool and explain why you think 
they are relevant issues:

The area below can be used to share your final remarks. If you have any final remarks, suggestions 
for improvements, or other comments, please leave them below:

The greatest weaknesses and threats of the visual analytics tool are:

The most important qualities of the visual analytics tool are:

because:

because:
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APPENDIX J: QUESTIONNAIRE RESULTS

Able to determine priorities between performances

Able to make substantiated trade-offs
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Fig. A.14: Questionnaire responses about participant’s experience in relevant fields. Ratings correspond to degree to which participants 
agree to the statement (1 - Strongly disagree, 5 - Strongly agree). 

Fig. A.15: Responses on participant’s confidence in the functioning of various aspects of the design processes considered in the 
questionnaire. Ratings correspond to degree to which participants agree to the statement (1 - Strongly disagree, 5 - Strongly agree). 

Fig. A.16: Responses on suitability of individual data analytics methods. Ratings correspond to degree to which participants agree to 
the statement (1 - Strongly disagree, 5 - Strongly agree). 
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VAS has potential to improve visualization

VAS has potential to improve substantiation

VAS has potential to facilitate design exploration

VAS leads to better understanding of performances

VAS encouraged to create more sustainble designs

VAS results in better-performing architecture

I would consider use of IDS in a design project

I would consider use of VAS in a design project

Use of CDS
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Fig. A.17: Questionnaire responses about general questions on the VAS and CDS. Ratings correspond to degree to which participants 
agree to the statement (1 - Strongly disagree, 5 - Strongly agree). 

Fig. A.18: Questionnaire responses about the most important qualities of the visual analytics tool.

“Similar designs around my preferred design with better performances, because it makes it easier to improve 
the building without change the design”

“Gives a good overview of all ‘climate’ design properties in combination with design alternatives. Landscape/
colors/objects are clear. The strong visual presentations help you understand it quicker, this makes it easy to use.”

“[The most important qualities of the visual analytics tool are] generation of lots of designs and grouping 
of designs; creates overview/insight, [because] this is very quick using the visual analytics tool compared to 
traditional design.”

“[The most important qualities of the visual analytics tool are] The clear clustering of different design. 
Landscapes per design, [because] as a designer you get a clear view of how certain designs perform.

“Quick overview of great array of aspects. Although many options are given, the user can quickly move 
towards a cluster of options to explore more in depth there.”

“It shows the buildings with the best performances in a very understandable way, even when you’re an 
amateur.”

“The tool gives quick insight in (clarity of) what the advantages are and what the differences are. If something 
changes in a building, it is clear what effect it has with regards to performances.

“[The most important qualities of the visual analytics tool are] being able to quickly see the results, which 
saves time, [and] being able to quickly try different aspects within a design, [because] it makes making choices 
between aspects easier.
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Fig. A.19: Questionnaire responses about the greatest weaknesses and threats of the visual analytics tool.

Fig. A.20: Other questionnaire remarks.

“Too many performance objectives, because some aren’t relevant but still create buildings which are high 
performance because of irrelevant objectives”

“The objectives are not that clear. Some weren’t completely intuitive in my opinion, because sometimes they 
mean something positive sometimes not. More time would definitely get me used to the system”

“Threat; losing control because of too many designs. Weakness; many irrelevant designs, suggests that it 
‘does not work’”

“[The greatest weaknesses and threats of the visual analytics tool are] the interaction by the end user, 
[because] one already needs to know how to make a parametric model”

“Too much info, because the user could get lost.”
“The decision tree is very firm. It is directing you towards the green. You might miss a building on a brown soil, 

that can be better with just a small adjustment.”
“The base design slightly forces you towards the final design.”

“I’m not sure I could get an overview of all the criteria and design options in the time that I had”
“Maybe try to move around as other architecture programs like Rhino, would facilitate the use for users not 

used to this system”
“Awesome!”
“The tool needs some practicing, but it is fun. It sure helps you to find the best option in a very pleasant way. 

You don’t have to be an expert in data, you can see what is best. One can easily change some parameters and see 
what will come out.”
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