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Abstract
We introduce a variant of the timber grid shell, the timber Voronoi shell, whose surface is reticulated by Voronoi tessellation
and whose edges are made of discrete dimensional timber. This work explores form-finding methods of the Voronoi shell
as a compressive funicular shell. Two closed-form solutions to shape initialization are proposed. We develop methods
for minimizing the deviation from coplanarity between timber members and adjacent surface normal in order to facilitate
manufacturing. A well-defined fabrication process is important for making the physical structure consistent with the
structural model. A 6-axis robot with a motor spindle is employed to prefabricate the timber so the in situ manual assembly
becomes easier. A parametric model describes the joint details. We formulate the robotic toolpath as a closed-form function
of the resultant mesh from form finding. Thus, a general-purpose programming language can directly implement the mesh
optimization and manufacturing processes without CAD or CAM software. The physical implementations, including an
exhibition pavilion, validated the approach.

Keywords Grid shell · Form finding · Timber · Fabrication · Structural optimization · Toolpath

1 Introduction

The shell structure is a thin curved plate structure that trans-
mits applied forces by normal forces and shear forces devel-
oped on the surface. The thickness of the shell is often much
smaller than other dimensions of the entire structure. Thus,
thin shells are efficient structural systems covering large
spaces with a relatively small amount of materials. Much
research has contributed to the theory of shell structures and
the practical techniques of construction. Recently, the rapid
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integration of digital fabrication technologies and computa-
tional design approaches has led to a new peak on this topic.
Following this line, this work focuses on the form finding of
shell structures and on the digital prefabrication of the com-
ponents. The rationalization of the manufacturing process
contributes to a true, precise implementation of the virtual
geometry. Our approach drives a fabrication-oriented design
in the early stages, especially concerning the joint details.

1.1 Timber grid shell

There are at least two types of timber-framed shells (Naicu
et al. 2014):

1. The structure uses continuous grid members with flexi-
ble laths spanning across the structure. The laths inter-
sect with each other at the nodes. This system is called
a timber grid shell. One great idea behind such a sys-
tem is the transformation from a 2D net to 3D grid shell.
The structure is assembled flat on the ground to form a
2D articulated mat. The 3D shell structure is then
achieved by pushing on the edges of this mat and, even-
tually, the structure takes its most adequate form (Paoli
2007). One celebrated case is the 1975 Mannheim
Multihalle (Liddell 2015).

2. This work focuses on another type of grid shell, which
is made of discrete grid members that connect at nodes.
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Such structures often use rigid glued laminated timber
(glulam) as members. Connections for glulam members
are typically made with bolts and steel plates. The
discrete grid shell often employs the triangular mesh for
its stability, e.g., in the case of the Pods sports complex
(2011), Scunthorpe, UK. Quadrilateral grids and N-gon
grids are less popular probably for two reasons: (1) the
problem of mobility of rectangle or n-gons should be
resolved to ensure the stability of the whole structure
(Dimčić 2011) and (2) Each rectangle or polygon of the
grid does not typically form a plane, which may bring
difficulty to the design of details.

1.2 Form finding of shells

An adequate shape is crucial to the load-bearing behavior
and a consistent style of shells. Antoni Gaudı́ and Frei
Otto were famous for using hanging chain models to design
funicular structures. Based on computing technology and
finite element methods (FEM), various numerical models
have been developed for form finding of shell structures
(Veenendaal and Block 2012). Not only have structural
engineers but architects have also strived to develop new
form-finding methods. The principle “form follows force”
has a strong appeal in the discipline of architecture.

The force density method amounts to solving a system of
linear algebraic equations, unlike other methods which are
formulated as iterative algorithms (Schek 1974; Linkwitz
and Veenendaal 2014). However, the external load and the
force density should be predefined. Dynamic relaxation
presents an iterative numerical integration of Newton’s
second law of motion until the entire system settles down
in a static equilibrium via viscous or kinetic damping
terms (Barnes 1999; D’Amico et al. 2014). The particle-
spring method is intuitive: the loads and self-weight of
particles are balanced with the forces generated by the
elongation of the virtual ‘springs’ between the particles
(Kilian and Ochsendorf 2005; Bhooshan et al. 2014). The
thrust network analysis is appropriate for finding the shape
of compressive funicular shells. It controls the force density
by choosing a fixed horizontal projection of the solution and
by manipulating the reciprocal force diagram (Block 2009;
Van Mele et al. 2014).

Recent progress has been made on geometric and structural
form finding with polyhedral meshes (Tang et al. 2015).
Besides static equilibrium, other design criteria such as
boundary interpolation, planarity of faces, panel size of shape,
and costs have been integrated in the form finding. The topol-
ogy of the mesh is fixed after initialization in most approaches,
while Pietroni et al.’s work explored the anisotropic, density
varying remeshing of grid shells (Pietroni et al. 2015).

1.3 Timber Voronoi shell

We developed a timber Voronoi shell as a prefabricated
compressive shell. The shell surface is reticulated by a
Voronoi tessellation. Every node connects three edges. Each
edge is implemented by a dimensional timber. One can
view such a network as a dual graph of the timber-framed
geodesic domes (e.g., the PlayWorld Bristol, UK) whose
surface is made of triangles. We have built two prototypes:

1. The mero sphere (at QINGXIAO Ltd, Nanjing, 2018)
stands for the simplest prototype of the timber Voronoi
shell (Fig. 1). The spherical shape (diameter 4 m) is not
structurally optimized. It consists of 114 pieces of tim-
ber (cross section 68 × 95 mm) and 76 nodes (7.5 mm
stainless steel plates). It uses 0.50 m3 timber in total.

2. The Upsilon pavilion (at National Exhibition and
Convention Center, Shanghai, 2018) is a typical timber
Voronoi shell. The dimension is 6×6×3.7 m. The form-
finding process finds a compress-only ‘tree’ shape.
It consists of 145 pieces of timber and 120 nodes.
The timber weigh 243 kg (0.56 m3) in total. Manual
assembly takes six hours while de-assembly takes one-
and-a-half hours. The project video can be found in
Hua (2018b).

Contrary to the timber grid shell featuring flexibility (2D
mat to 3D shell), the timber Voronoi shell has rigid wooden
bars and, thus, is not intended to be deformable. Each piece
of timber is attached to neighboring pieces of timber by
metal connectors. For the connection (Fig. 2):

1. Compression is transmitted between two neighboring
pieces of timber through the (flat) touching surfaces of
the two.

2. The neighboring pieces of timber do not interlock with
each other, in contrast to mortise-tenon connections.

3. The connectors do not bear major forces if the structure
is optimized to be compression-only. However, they act
on bending moments if (1) unexpected forces are applied
or unexpected deformations occur or (2) the structure is
not optimized (e.g., the mero sphere in Fig. 1).

4. The thickness (along the direction that is orthogonal to
the mesh surface) of the timber, working together with
the connectors, helps to prevent out-of-plane buckling.
The width of the timber, working together with the
connectors, contributes to the resistance of in-plane
distortion (corresponding to diagonal stiffness in a
typical timber grid shell).

An example of such a connection is illustrated in Fig. 2. The
connection consists of timber (as edges), a laser-cut metal
plate (as node), nuts, and bolts.
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Fig. 1 Left: The mero pavilion
as a timber Voronoi Shell. Right:
Every metal plate (node)
connects three pieces of timber
(edges)

To reduce the risk of buckling, our strategy is modeling
the timber pavilion as funicular structure with pin joined
members, while using rigid connections (of dimensional
timber) for physical construction. The rigid joints can resist
unexpected loads and deformations. For example, the shape
was not optimized in the mero pavilion (Fig. 1) where the
joints are strong enough to bear bending moments.

1.4 Robotic fabrication

One essential appeal of shell structure is that it brings strong
synergy between architects, structural engineers, industrial
partners, and builders (Willmann et al. 2018). Bespoke
digital fabrication has recently made great progress. Design,
engineering, and construction have become three aspects
of one development (Gramazio et al. 2014), rather than
three intertwined processes in a traditional workflow. This is
convincing in the contemporary cutting-edge study of shells
(Block et al. 2018): designers do not only create the geometry

Fig. 2 The joint details of timber Voronoi Shell. There are gaps (ca.
0.25 mm) between the metal plate and the cut in the timber; thus, the
compression is transmitted through each pair of neighboring pieces of
timber rather than through the metal plate

by formal logic through computer programming but also
precisely inform fabrication processes by programming the
CNC machines.

Robotic fabrication technologies allow the designers
to directly manipulate (though not in real time) every
detail in manufacturing, especially for timber structures
(Willmann et al. 2016). Thus, designers are responsive
for making the joints effective and assembling all the
components correctly (Eversmann et al. 2017), according to
the structural behavior of the shell. In our projects of timber
shells, we pursued a closed-form expression of the toolpath
for prefabrication, towards complete integration of design
and materialization.

1.5 Contributions

We developed a timber-metal prefabricated system whose
structural behavior is governed by a linear algebraic model.
The structure stands as a compressive funicular shell in
static equilibrium of member axial forces and gravitational
pull. Compared to existing works, this paper features:

1. An integrated workflow from concept to building,
including Voronoi diagram construction, mesh opti-
mization, joint articulation, and robotic fabrication of
timber structures.

2. A closed-form solution to shape initialization of shells
(Section 2.1). Our geometric approach minimizes the sum
of the squared lengths of all members. The resultant
form typically approximates a doubly curved surface.

3. Methods for optimizing the nodal normals to satisfy
coplanar conditions (Section 3).

4. In Section 4, the toolpath is formulated as a function of
the resultant mesh from the form-finding process. Thus,
the translation from the form finding to the executable
machine instructions (for prefabrication) becomes
straightforward.

The workflow of our system is illustrated in Fig. 3.
The Voronoi diagram is initialized using the geometric
method (LSL) or the static method (UFD). The resultant
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valence-3 mesh

mesh initialization (3D)

geometric       static     

LSL UFD

structural
optimization?

iterative 
form finding

No (mero)

Yes (Upsilon)

coplanar 
condition?

No 
optimize

surface normals

Yes 

joint geometry

Voronoi 
Diagram (2D)

toolpath for
fabrication

Fig. 3 Workflow from Voronoi digram to toolpath planning

valence-3 mesh (each node links three edges) is ready for
constructing geometric details for fabrication. But there are
two important options. First, the shape of the mesh can be
optimized to reach static equilibrium between axial forces
and gravity. Second, one may impose coplanarity between
timber members and adjacent surface normal in order to
facilitate manufacturing. Finally, the toolpath for robotic
fabrication is created from the joint geometry.

1.6 Notations

We employ a 3D Euclidean space for modeling the mesh
structure. The z-axis is upwards. So the direction of the
gravity can be represented by a row vector t = [

0 0 −1
]
.

A given graph, as a starting point of the form-finding
process, can be characterized as follows:

K: the degree of the node. K = 3 in our case.
N : number of graph nodes;
M: number of graph edges (members);
S: the set of indices of the variable nodes whose

coordinates are to be computed.
C: an N × M incidence matrix (CT is the branch-node

matrix):

Cij =
⎧
⎨

⎩

1 if edge j ends in node i,

−1 if edge j begins in node i,

0 otherwise.

CN ∈ Z
|S|×M and CF ∈ Z

(N−|S|)×M are the submatrices for
the variable (or non-supported) nodes and the fixed nodes,
respectively:

C =
[

CN

CF

]

The form-finding process is concerned with the geometry
of the mesh:

x ∈ R
N×3: an N × 3 matrix; each row represents the

coordinates of a node.
u: an M × 3 matrix representing the directions of edges

u = CT x (1)

l: a vector consists of the lengths of all edges (bars):

li =

√√
√
√√

3∑

j=1

u2
ij , ∀1 ≤ i ≤ M (2)

û: a normalized version of u, i.e., ûi = ui/||ui|| = ui/li .

2Mesh construction and optimization

Our methods of shape initialization, form finding, and joint
design require the nodes to be of degree 3, i.e., there are
three edges incident to each node. The 2D Voronoi digram
is often more flexible than the hexagonal grid, for example,
when the cells’ sizes are differentiated. Two steps were
employed to create a 2D Voronoi diagram:

1. Randomly place a set of points in a 2D polygon
representing the construction site. Each point pushes
its neighboring points (within a predefined radius)
iteratively. Eventually, this self-organizing process
makes all points evenly distributed within the polygon.
Alternatively, the points are directly distributed on a 3D
surface, e.g., on a sphere (Fig. 1).

2. Create the 2D Voronoi diagram (e.g., Fig. 4 top) from
the distributed points. The diagram is represented as an
undirected graph.

2.1 Shape initialization

Given a fixed network topology, most form-finding
processes (Veenendaal and Block 2012) commence with a
flat geometry. How to initialize the shape when the fixed
points are not located at the same height is a rarely treated
problem. There are both pragmatic and aesthetic concerns
on initialization. The former requires that the geometry
should not significantly differ from the one produced by
structural calculation while the latter requires that the shape
should be smooth and the polygons should not be visually
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Fig. 4 The input planar graph, shape initialization (LSL), and form
finding in the Upsilon project. Fixed points are marked in red

distorted (Dimčić 2011). In this subsection, two closed-form
solutions for shape initialization are proposed. The first
minimizes the sum of the squared lengths of the network
edges while the second simplifies the force density method.

2.1.1 Least squared lengths (LSL)

The geometry of the predefined ground structure is often
a planar graph assuming that the fixed points are located
at the same height (on the ground). However, the shape
initialization becomes non-trivial when the fixed points have
different positions on the z-axis. We propose a geometric

solution to this problem by minimizing the sum of the
(squared) lengths of all bars

x ← arg min
x

||CT x||2F (3)

where ||·||F denotes the Frobenius norm. The three columns
of matrix x correspond to x, y, and z-component of the 3D
coordinates of all nodes. The matrix x can be decomposed
into xN ∈ R

|S|×3 and xF ∈ R
(N−|S|)×3 for the variable (or

non-supported) nodes and the fixed nodes, respectively:

x =
[
xN

xF

]

Thus, submatrix xN consists of the actual variables of the
objective function (3). Submatrix xF provides the boundary
conditions for the structure. The quadratic function reaches
the minimum value when its gradient is equal to 0. It leads
to a system of 3|S| linear equations

−CNCT
NxN = CNCT

F xF (4)

Solving (4) gives xN as the initial shape of the network,
which often resembles a doubly curved surface connecting
the fixed points. Compared to an initial shape of flat mesh
(with fixed points with distinct z-components), such a
‘curved surface’ resembles the final result of form finding
(Fig. 4).

Compared to Dimčić’s (2011) relaxation method, which
tries to keep the member lengths as similar as possible,
LSL minimizes the sum of the squared lengths of members
instead. The advantage of LSL is that it results in a
closed-form solution (4). Dimčić (2011)’s model is more
sophisticated as it concerns other criteria (such as keeping
the Voronoi diagram on the predefined surface) and
subsequently relies on metaheuristic for obtaining solutions.

2.1.2 Uniform force density (UFD)

Although LSL is developed from a purely geometric
perspective, its formulation is closely associated with the
force density method, which is based on static analysis.
The force density method has succeeded in deriving an
analytical model by regarding the force-length ratio as
constants for each member (Schek 1974). Linkwitz and
Veenendaal (2014) recently generalized this model to
nonlinear cases. Here, we take an opposite approach:
simplifying the original method further for a convenient
initialization of the shell shape.

The force density method features

−CNQCT
NxN = pN + CNQCT

F xF (5)

The diagonal matrix Q denotes the force density, or
the force-length ratio of members. Matrix pN denotes
gravitational pull on all non-supported nodes. By imposing
a uniform density, i.e. Q = I , we have the uniform force
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density (UFD) model for initialization. The only unfixed
term (expert for the variable xN ) is the load pN ∈ R

|S|×3,
which can be uniformly specified by

pN = gJ ⊗ t

where ⊗ denotes tensor product; g is a constant specifying
the shell’s weight; J is a |S|-dimensional column vector of
1s.

Equation (5) is identical to the LSL model (4) when Q =
I and pN = 0. The UFD method is probably the simplest
initialization method concerning the static equilibrium of
member axial forces and external loads.

2.2 Determining geometry towards static
equilibrium

This section introduces an iterative algorithm that finds the
shell geometry in static equilibrium. The sum of vectorial
forces from the three incident bars must equal the load
lumped in the node. The goal is to determine the (non-fixed)
nodal positions as variables, which determine the directions
of members û. The static equilibrium is represented by the
equation

H
(
CF û − p

) = 0 (6)

where F is an M × M diagonal matrix belonging to the
member forces fj , j ∈ [1, M]. H is an N × N diagonal
matrix

Hii =
{

0, if node i is fixed,

1, otherwise.

The external forces on the nodes are

p = gwt + E (7)

where w (N-dimensional column vector) denotes the nodes’
mass; g is a constant of gravity; E (N × 3 matrix) denotes
the external forces applied to the nodes.

A more realistic way is to distribute the weights of bars
onto the nodes

p = g

2
C̃lt + E (8)

as l (M-dimensional column vector which represents the
lengths of all bars) would change during the form-finding
process. C̃ is an absolute version of C, i.e., C̃ij =
|Cij |, ∀i, j .

In general, people have not discovered analytic solutions
(except for approaches imposing additional constraints) to
the equilibrium problem (6) given load conditions and
boundary constraints (Veenendaal and Block 2012). The
axial forces F are associated with the mesh geometry and
the nodal loads p depend on the lengths of bars as (8),
so the nonlinear (6) is difficult to be written in a closed

form for standard solvers. There could be many possible
solutions instead of one unique solution. Thus, specific
iterative numerical methods have been widely investigated.
For example, the particle-spring system (Bhooshan et al.
2014) provides an intuitive heuristic mechanism to solve
(6). Recent form-finding methods (Tang et al. 2015; Pietroni
et al. 2015) have integrated static equilibrium constraints
and other design criteria such as surface fairness, boundary-
alignment, and surface remeshing.

The structure reaches static equilibrium between member
axial forces (there are no shear forces or bending moments
in the model) and external loads if the nodal positions satisfy
(6). Thus, an iterative process towards (6) implicitly reduces
shear forces or bending moments in the structure. This
section introduces a simplified variant of the particle-spring
system. The particle-spring method proposes a physical-
based algorithm (Kilian and Ochsendorf 2005; Bhooshan
et al. 2014) as a heuristic to satisfy the (6). To simulate the
spring behavior, the axial force of each bar is proportional
to its elongation (Hooke’s law of elasticity). So the (signed)
magnitude of the j th member axial force is

fj = k(lj − �j ) (9)

where k is a constant factor characteristic. lj is the (variable)
length of edge j during the form-finding process. The
constant �j denotes the initial length of edge j , it is
convenient in controlling the final shapes’ ‘curvature.’
(Fig. 5).

The particle-spring model becomes sophisticated when
dealing with motion and acceleration (Bhooshan et al.
2014), according to Newton’s laws of motion. However, if
one is only concerned with the final equilibrium of forces
rather than the exact trajectories of the nodal motions,
the process can be simplified to a non-linear Richardson
iteration:

where the solution x is updated by a fraction of the residual
at every iteration.

The iterative algorithm makes heuristic local searches.
The convergence behaviors are illustrated in the chart in
Fig. 6. We observe that ||�x|| is monotonically decreasing
in four cases. The algorithm’s termination condition
||�x||F < ε appears as a threshold for approaching the
condition (6).
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Fig. 5 The results of the spring
system method with different
settings of initial length �. The
initial geometry of the four
cases are identical. The fixed
points are marked in red

3 Coplanar conditions for surface normals

The resulting mesh from the structural calculation resides on
a virtual surface. One can estimate both the surface normals
at nodes, and subsequently construct the local frames of bars
and the joint details (as in the Upsilon project). However,
some fabrication process may prefer that each member (bar)
and the two normals at both ends lie in the same plane
(Fig. 7, bottom). Such coplanar conditions are associated
with the construction of parallel mesh (Pottmann et al.
2007). We aim to adjust the nodal normals to 1) fully
or partially satisfy coplanar conditions, and 2) minimize
the deviation of the adjusted normals from their original
estimations. Following the two goals, this section introduces
three different approaches:

1. The coplanar conditions are formulated as constraints
and the deviation is presented as the objective function.
The constrained optimization problem can be solved by
using Lagrange multipliers.

Fig. 6 The convergence behaviors of the heuristic algorithm
(Section 2.2) in the four cases shown in Fig. 5. ||�x|| is plotted against
computational time

2. A condition of parallel mesh (stronger constraints than
the coplanar conditions) is introduced as a constraint
which results in a system of linear equations.

3. The objective function integrates both the coplanar con-
ditions and the deviation so that the two design criteria
can be negotiated. A heuristic iterative algorithm is
introduced.

Fig. 7 Top: two nodal normals n∗
1, n

∗
4 and u3 are not in one plane.

Bottom: After modifying the nodal normals, n1, n4, and u3 lie in one
plane (meeting coplanar conditions). The member normal lies in this
plane and the minor direction is orthogonal to the plane
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The Upsilon project did not employ these methods, which
provide more options in designing the geometry details for
prefabrication.

First, we introduce two related vector definitions:
{
yi,k = ̂xDi,k

− xi

mi,k = yi,k × yi,(1+k)%K
∀1 ≤ i ≤ N, 0 ≤ k ≤ K − 1

where the hat symbol denotes vector normalization; symbol
% denotes integer modulo; D is an N×K matrix of integers;
and the ith row contains the indices of the nodes that link
the node i. The order is clockwise (following the right-hand
rule, the surface normal as the axis of rotation).

The nodal normals are defined as the average of the
normals of the adjacent triangles (defined by the two
members attached to the node):

n∗
i =

̂K−1∑

k=0

mi,k, ∀i ∈ [1, N] (10)

3.1 Direct formulation of coplanar conditions

The desirable normals ni (1 ≤ i ≤ N) are the variables. We
wish that ni is aligned with its initial estimation n∗

i , so the
objective is to maximize

N∑

i=1

ni · n∗
i

under constraints

||ni ||2 = 1, ∀i ∈ [1, N] (11)

For member j , the coplanar condition can be formulated
as

det
[
nWj,1 ûj nWj,2

] = 0, ∀j (12)

where W is an M×2 matrix of integers, the j th row contains
the indices of the two ends of edge j . The three vectors
nWj,1, ûj ,nWj,2 in (12) are illustrated in Fig. 8 (top).

One can use Lagrange multipliers to obtain the solution
as the partial derivatives of the objective and the constraints
in (11,12) can be written in a closed form. A practical choice
is using the first-order Lagrangian method (Bertsekas 2016).

3.2 Linear model withminimum norm solution

This approach formulates a stronger condition than coplanar
conditions in Section 3.1 and, consequently, leads to a
system of linear equations whose solution can be obtained
by linear solver. This model defines the modifications n,

i of
the nodal normals as variables, i.e.,

ni = n∗
i + n,

i , ∀i

The modifications should be minimized. The coplanar
conditions in (12) leads to quadratic equations. To construct

Fig. 8 Member-wise rotation of nodal normals. Top: edge j is
associated with two nodal normals nWj,1 and nWj,2 . Bottom: the view
along the member direction ûj . The two nodal normals are rotated
towards dj to meet coplanar condition

a system of linear equations, we employ the parallel
conditions

ûj ×
(
n∗

Wj,2
+ n,

Wj,2
− n∗

Wj,1
− n,

Wj,1

)
= 0, ∀j (13)

which are linear with respect to n,
i . The parallel conditions

(Pottmann et al. 2007) are stronger than coplanar conditions.
Whenever (13) holds, so holds (12), but not vice versa.

The goal is to reduce all the modifications. One can
implicitly implement this objective with the minimum
norm solution of an underdetermined system. Let the 3N-
dimensional vector z contain all the elements in matrix n,:

n,
i =

⎡

⎣
z(−2+3i)

z(−1+3i)

z(3i)

⎤

⎦

The objective is to minimize ||n,||F , or

||z|| (14)

Borrowing the hat-map notation from the Lie algebra for
SO(3) group, we define

ũj
def=
⎡

⎣
0 −ûj3 ûj2

ûj3 0 −ûj1

−ûj2 ûj1 0

⎤

⎦
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The linear constraints in (13) are equivalent to

[[
1, −1

]⊗ ũj

]

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

z(−2+3Wj,1)

z(−1+3Wj,1)

z(3Wj,1)

z(−2+3Wj,2)

z(−1+3Wj,2)

z(3Wj,2)

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

= ûj × (n∗
Wj,2

− n∗
Wj,1

)

(15)

where ⊗ denotes the tensor product. These edgewise
constraints can be assembled into a global system of linear
equations Az = b, where A is a 3M × 3N matrix given by

⎡

⎣−CT ⊗
⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦

⎤

⎦ ◦

⎡

⎢⎢
⎣
[

1, · · · , 1
]

︸ ︷︷ ︸
N

⊗

⎡

⎢⎢
⎣

ũ1

ũ2

· · ·
ũM

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦

where ◦ denotes the Hadamard product.
A Voronoi mesh typically has more edges than nodes,

i.e., there are more rows than columns in A. However,
SVD gives the number of non-zero singular values, which
indicates that the system is undetermined. Thus, the
minimum norm solution of the system can be obtained from
SVD’s orthonormal bases corresponding to the non-zero
singular values. As a result, the norm (14) is minimized and
the coplanar conditions are satisfied.

3.3 Heuristic algorithm via Rodrigues’ rotation

This method treats nodal normals n as variables and formu-
lates the coplanar conditions as an unconstrained optimiza-
tion problem. We have two conflicting goals: (1) imposing
coplanar conditions and (2) keeping the angle between
each evolving nodal normal and its initial estimation n∗

i

below the threshold φmax . Thus, we minimize the following
objective function

M∑

j=1

∣
∣det

[
nWj,1, ûj , nWj,2

]∣∣+ η
∑

i∈S

max(φi − φmax, 0)

(16)

where

cos φi = ni · n∗
i

η is a constant weight.
Member-wise rotation is a simple method to make the

member direction and the two nodal normals in one plane.
It involves the Rodrigues’ rotation

r(b, θ, v)
def= v cos θ +(b×v) sin θ +b(b ·v)(1−cos θ) (17)

where b is the axis of rotation about which v rotates by an
angle θ .

For each member j , one can compute

c1 = ûj × nWj,1

c2 = ûj × nWj,2

cos θj = ĉ1 · ĉ2

dj = ûj × (ĉ1 + ĉ2)

sj =
{

1, if ĉ1 · dj < 0
−1, otherwise

for rotating the nodal normals around member j (Fig. 8) to
meet coplanar conditions. θj denotes the angle between ĉ1

and ĉ2.
We developed a heuristic iterative algorithm to min-

imize the objective (16). Each iteration consists of (1)
member-wise rotation of nodal normals and (2) the nodal
normals’ alignment. One can terminate the iterations when
the rotations are significantly small. Each iteration is as
follows:

where α, β denote constant learning rates. The typical value
of α is 0.1-0.15. When β = 1, the angle between a nodal
normal ni and the original estimation n∗

i is always below the
threshold φmax . When 0 < β < 1, the algorithm balances
between the coplanar conditions and the nodal normals’
alignment.

The three charts in Fig. 9 show the convergence behaviors
of the algorithm with different settings of the threshold
φmax . It indicates that the objective’s first term (responsible
for coplanar conditions) is always smoothly decreasing,
while there are three stages for the behaviors of the second
term (responsible for the deviation): (1) the value of the term
is zero in the beginning, (2) the value increases erratically
in the following stage, (3) the value becomes constant in the
final stage. Eventually, the ratio between the value of the
first term and the second becomes constant.

3.4 Finalize the local frames of bars

The timber prefabrication will be organized in the local
frames of the bars. A comprehensive discussion on frame
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Fig. 9 The convergence behaviors of the algorithm in Section 3.3 with
three different configurations (Top: φmax = π/12, middle: φmax =
π/9, bottom: φmax = π/6 ). Both the coplanar error and the deviation,
the two terms in the objective (16), are plotted against computational
time. The deviation is scaled 100 times along the vertical axis for
illustrative purpose

representations can be found in Craig (2005). A 3×3 unitary
matrix describes the frame of the j th bar:

� =
⎡

⎣
e1,1 e2,1 e3,1

e1,2 e2,2 e3,2

e1,3 e2,3 e3,3

⎤

⎦

where e1 = ûj , e2 = p(e1, ̂nWj,1 + nWj,2), and e3 = e1 ×e2

stand for the three axes of the local frame. The function p()

creates a new vector orthogonal to u (normalized) from the
resource vector v:

p(u, v)
def= v − (v · u)u

||v − (v · u)u|| (18)

The frame’s the origin is at

Oj = xWj,1 + xWj,2

2

Vectors e2, nWj,1 , and nWj,1 lie on one plane if the
coplaner conditions are met, otherwise they are generally
not on one plane.

4 Joint geometry and robotic fabrication

Turning a shape-optimized mesh into a timber shell is
a complex materialization process with many options on
materials, joint details, and fabrication. Our bespoke joint
is designed to facilitate the planning of manufacturing pro-
cedures. Computer numerical control (CNC) manufacturing
in practice heavily relies on computer-aided design (CAD)
and computer-aided manufacturing (CAM) software (Sarcar
et al. 2008; Chang and Wysk 1997). A typical workflow is
“3D solid model (CAD) - toolpath from model discretiza-
tion (CAM) - fabrication”. The map from the 3D model
to the toolpath is essentially a black box and often fol-
lows ad hoc assumptions. Here, we take another approach:
representing the toolpath as a closed-form function of the
resultant mesh of the form-finding process. Subsequently,
the machine codes for fabrication can be directly derived
from the closed-form functions.

The details of joint geometry (Figs. 2 and 10) include
(1) two flat slopes, each slope touching an adjacent piece of
timber; (2) a straight flat cut, which the metal plate will be
inserted into; and (3) a hole, which the bolt will go through.

  

bolt goes up

nut

Ii,k

-

to node Di,k

hi,k i,k

e2

bi,(k+2)%K

Oi,k

A

B

D

C

h

e3

e1
bi,k

bi,(k+1)%K

to node Di,(k+1)%K

to node Di,(k+2)%K

Ii,k

+
ni

xi

Fig. 10 Joint geometry. The metal plate is not orthogonal to the bar’s cross section
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The following characteristics guarantee the three connected
pieces of timber will fit together:

1. The common line of the two slopes of one piece of
timber coincides that of the other two adjacent pieces of
timber. The common line is along the surface normal ni

at node i.
2. The nodal normal ni is perpendicular to the plane that the

flat cut (for accommodating the metal plate) is made on.
3. The hole for bolt and nut is made parallel with the bar’s

cross section (along e2). It leads to a slight bias from the
right angle between the metal plate and the bolt.

If the nodal normals meet the coplanar conditions
(Section 3), ni lies in the e1-e2 plane (Fig. 10 right).
Otherwise, it is not the case. The coplanar conditions were
not imposed in our projects as the robotic milling device
is flexible enough to handle the irregular geometry. So the
joint geometry and the toolpath are generally formulated
where the coplanar condition is just a special case.

4.1 Joint geometry

At node i, two touching pieces of timber are supposed to
share an in-between vector bi,k (Fig. 10):
{
bi,k = p(ni , r)

r = r(mi,k, cos−1
(
yi,k · yi,(k+1)%K

)
, yi,k)

where r() denotes the Roderigues’ rotation (17). The other
two in-between vectors are defined likewise.

Points ωi,k and hi,k are on the plane of the metal plate.
The bolt goes through ωi,k along the direction of e2
{

ωi,k = δωp(ni , yi,k) + xi

hi,k = δhp(ni , yi,k) + xi

where δω, δh denote two predefined constants. Function p()

is defined in (18).
The metal plate intersects with the two surfaces of the

timber (Fig. 10 right) at point I−
i,k and I+

i,k . Let wid denote
the width of timber (long the minor direction of the cross
section, Fig. 7). The point I−

i,k is given by intersecting the

plane ABCD (Oi,k − wid
2 e3 is a point on the plane; vector e3

is the normal of the plane) and the line (hi,k is a point on the
line; vector yi,k × ni is the direction of the line), i.e.

I−
i,k = q(Oi,k − wid

2
e3, e3,hi,k, yi,k × ni )

where q() is the plane-line intersection function which gives
an intersection point (if n̂ · v 	= 0):

q(p, n̂, b, v)
def= b − n̂ · b − n̂ · p

n̂ · v v (19)

where p and n̂ denote the point and the normal of the plane,
respectively; b and v denote the point and the direction of
the line, respectively.

Likewise, the other intersection point is

I+
i,k = q(Oi,k + wid

2
e3, e3,hi,k, yi,k × ni )

4.2 Joint geometry in local frames

Eventually, transforming all data (in the global coordinates
system) into the bar’s local frame would facilitate the
toolpath planning for that individual bar. For example, one
can transform the relevant vectors into the bar’s local frame:

n′
i = �T ni

b′
i,k = �T bi,k

and represent the relevant points in the bar’s local frame:

x′
i = Oi,k + �T (xi − Oi,k)

I
′±
i,k = Oi,k + �T (I±

i,k − Oi,k)

ω′
i,k = Oi,k + �T (ωi,k − Oi,k)

The ′ symbol indicates the local version of a vector (or a
point). The three axes are e′

1 = [1, 0, 0]T , e′
2 = [0, 1, 0]T ,

and e′
3 = [0, 0, 1]T .

4.3 Robot milling

Both a 5-axis CNC machine and a robotic system (Chen
and Dong 2013) are adequate for creating the details on the
timber’s ends. We employed a high payload 6-axis KUKA
robot for prefabrication. An automatic tool change (ATC)
spindle is mounted to the robot flange. Each piece of timber,
as the workpiece, is fixed horizontally (Fig. 11). The video
(Hua 2018b) briefs the robotic fabrication process.

Before working, the robot requires the ‘BASE’ frame
calibration and the ‘TOOL’ frame calibration (Craig 2005).
The BASE frame, including the origin, the x, y, and z-axes,
is the coordinate system of the workpiece relative to the
robot’s pedestal (often called the WORLD coordinate). We
calibrated the BASE origin to Oi,k , the three axes of the
BASE along the bar’s local frame (e′

1, e
′
2, e

′
3). The TOOL

frame is the coordinate system of the tool (the milling bit
on the spindle) relative to the robot flange (Craig 2005). We
calibrated the tool center point (TCP) to the center of the
head of a flat end-mill and the three axes of TOOL along
the frame of the robot flange (in our case, the x-axis of
TOOL happens to be along the bit (outward)). Then, the
coordinates of the tool (milling bit) trajectory can be directly
expressed in the BASE frame, as the robot will automat-
ically use the TOOL and BASE frames when computing
kinematics.

The geometry of each joint is uniquely parametrized.
Thus, the data in the machine instructions for cutting each
joint is unique. Conventional off-line programming could
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Fig. 11 The robotic milling system

be extremely tedious. However, our project managed to
automatically generate the data in the toolpath.

4.4 Toolpath planning

There are still many options on milling the connection
details with the preceding set-up of the robotic system. We
opted for creating the joint by flank milling (Bedi et al.
2003; Larue and Altintas 2005). Corresponding to the geo-
metric details at the end of a piece of timber, the following
steps are planned:

1. The milling bit creates the two slopes by flank milling
(aligning the bit with ±n′

i).

2. The bit cuts from I ′−
i,k to I

′+
i,k to make space for the metal

plate, aligned with ω′
i,k − x′

i . The end-mill diameter is
0.5 mm larger than the thickness of plate, as a result,
there are gaps between the steel plate and the cut in the
timber.

3. The bit drills through ω′
i,k for inserting a bolt, along

the direction (0, ±1, 0). Thus, the bolt’s direction is not
orthogonal to the metal plate. The end-mill diameter
should be slightly larger than the bolt diameter.

In the following, we will focus on the toolpath planning
for the two slopes. The procedure consists of

1. Linear movement from b′
i,(k+2)%K to x′

i with the bit
along n′

i (Fig. 12).
2. from b′

i,(k+2)%K to x′
i , along −n′

i .

Fig. 12 Toolpath for cutting the slope by flank milling

3. from b′
i,k to x′

i , along n′
i ,

4. from b′
i,k to x′

i , along −n′
i ,

As the four movements are symmetrical, the following
formulation only elaborates the first movement. Concerning
the diameter of the bit, d , the bit can go linearly from point
s1 to s2.

The point s2 is obtained by offsetting a distance d/2 from
point x′

i (Fig. 12). Vector n′
i × b′

i,(k+2)%K is the normal of
the plane x′

iAB. Thus,

s2 = x′
i + d

2

(
n′

i × b′
i,(k+2)%K

)

The other point s1 is obtained by offsetting a distance
d/2 from the intersection point E (Fig. 12). Point E is given
by intersecting the plane ABCD (−wid

2 e′
3 is a point on the

plane; vector e′
3 is the normal of the plane) with the line

(x′
i , E), i.e., E = q

(
−wid

2 e′
3, e

′
3, x

′
i ,b

′
i,(k+2)%K

)
.

As a result,

s1 = q

(
−wid

2
e′

3, e
′
3, x

′
i ,b

′
i,(k+2)%K

)

+d

2

(
n′

i × b′
i,(k+2)%K

)

Not only the 3D coordinates but also the tool (bit)
orientation must be specified in a movement. The KUKA
robot employed Euler angles to represent the tool’s
orientation. Here, one can align the tool’s x-axis with n′

i , y-
axis with p(n′

i , e
′
3), and subsequently the Euler angles can

be computed (Craig 2005; Hua 2018a).
The instruction of a linear movement of the robot has the

form of

LIN { X Y Z A B C }
where the first three values specify the 3D position of the
bit head (TCP) and the last three values are the Euler angles.
Therefore, we can use a general-purpose programming
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language to feed the calculated data into corresponding
places inside the machine instructions. The instructions
for all pieces of timber are first created and saved on a
computer. The instructions for a particular piece of timber
are stored in one source file (.src file). Then the file is copied
to the robot, which can execute the instructions to fabricate
the corresponding timber (Fig. 11).

5 Results and discussions

The two built prototypes, the mero sphere and the Upsilon
pavilions (Fig. 13), indicate multiple options in the shape
design of shells (Flowchart in Fig. 3):

1. The simplest approach is using certain ‘a priori’ shape
(e.g., the mero sphere, Fig. 1) or a manually modeled
free surface, if the joint connections are strong enough
to bear irregular bending moments.

2. A convenient option is to use the initialization shape
without iterative form finding. It is efficient to use either
the LSL or UFD model, as the shape can be obtained by
solving a system of linear equations.

Fig. 13 The Upsilon pavilion as a timber Voronoi shell

3. A more reasonable approach is to employ the form-
finding method to create a compressive funicular shape
in static equilibrium.

4. If the detail design or the fabrication process prefer
coplanar conditions on nodal normals, the optimization
methods in Section 3 are helpful.

Timber Voronoi shells present a prefabrication system
that unifies computational form finding and prefabrication-
assembly solutions. The adjustment of the nodal positions
in the iterative form-finding process finds the geometry in
static equilibrium of member axial forces and external loads.
On the other hand, the joint details allow the timber to
mainly experience compression and the metal plates (with
bolt and nut) to be idle until unexpected loads or deforma-
tion occur. Further, the geometry of the timber details and
the metal connections are designed for systematic fabrica-
tion. Eventually, the toolpath can be expressed in a closed-
form function of the shell geometry.

The detailing at the valence-3 node is a key problem in
the design of the timber Voronoi shells. Regarding the whole
shell as a compressive funicular structure, our main strategy
is that the compression should be transmitted between
the neighboring timber directly, while the “bolt-metal
plate” mechanism provides safety under unexpected loads
and deformations. The shell structure should be in static
equilibrium of member axial forces and gravitational pull so
that the out-of-plane bending moments and in-plane shear
forces at the nodes are small in the physical installation.
Employing the flat steel plate simplifies the prefabrication
processes of timber and sheet metal; however, the angled
cut in the timber weakens the timber bar. Thus, the angle
between the nodal normal and the bar’s cross section should
be limited. In future work, we are going to carry out the
numerical and physical load tests of the node details.

Traditional timber structures opt for a small category of
timber components. Every instance of the same category
has the exact same geometry. This is widely-recognized
wisdom for manual or manual-machine combined working
processes. By contrast, all timber components have differ-
ent shapes in our Voronoi shells, though they belong to
one category (one class in the programming language). This
could be a nightmare for conventional manufacturing sys-
tems, just considering the off-line programming for each
irregular component respectively. Thus, exploiting symme-
try and reducing the number of types of components became
an important strategy. However, the direct translation from
the closed-form expression of the toolpath to the exe-
cutable robot instructions is suited for the individually cus-
tomized pieces. We also developed an open-source library
(Hua 2018a) to output robot instructions (KUKA .src files)
from the Java language.
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Our current fabrication plan still demands much manual
labor in assembly. Future work concerning further automa-
tion includes (1) automating the processes of loading and
unloading timber in the machine. An option is to let the
robot arm grab, move (when fabricating), and unload the
timber while the cutters are fixed; and (2) automating
the assembly processes, e.g., with multiple robotic arms
attached to gantry systems (Thoma et al. 2018). However,
auto de-assembly of timber structures also poses a great
challenge but there are hardly any experiments on this topic.

The efficiency of the computation is not our major
concern as the problem’s scale is relatively small. We ran
our Java implementation of the algorithms on a MacBook
with a 2.4GHz i5 processor. For the Upsilon pavilion (120
nodes and 145 members), the shape initialization, form
finding (600 iterations), and coplanar optimization (linear
model) take less than one second.

6 Conclusions

Fabrication-oriented geometry design has gained great
interest from both the academy and practice. Based
on the advanced computational methods and fabrication
technology, people now try to unlock the relation between
form, structure and material, which follow an established set
of preconceived rules (Menges 2016; Willmann et al. 2018).
For example, one will probably avoid connecting three
pieces of timber at one point (because it seems tedious to
describe and materialize the geometry) and prefer triangles
to polygons in a timber-framed shell (because triangles are
stable). However, our method makes the timber Voronoi
shell feasible by minimizing undesirable forces and defining
the fabrication process with closed-form expressions. The
interplay between formal logic and materialization processes
could be an active and fruitful participant in shell design.

Recent years have seen two trends in shell structures
design. On the one hand, user-friendly software (or
plug-ins) make shell design accessible to non-experts.
For example, Kangaroo and the RhinoVAULT plug-in
for Rhinoceros are easy-to-use form-finding tools for
architects. People can also find convenient software that
translates given geometry into robot toolpath. On the other
hand, the cutting-edge development of shell design (e.g., the
Armadillo vault Block et al. 2018) demands deep expertise
on structural analysis, spatial design, material science, and
CNC fabrication. Without intensive cooperation between
different disciplines, very little progress can be made. In this
work, we propose a well-defined link from the form finding
to the toolpath for fabrication and attempt to establish an
explicit, consistent formalism from form finding to CNC
manufacturing. As a result, researchers from different fields

can work together and new user-friendly software may link
experts and new users.
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