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Fig. 1. Our algorithm computes a triangular auxetic linkage that closely approximates a given surface when deployed to maximal extension via inflation. The
fabricated material is laser cut from a single sheet, mounted onto the support frame, and inflated with a generic rubber balloon.

Deployable structures are physical mechanisms that can easily transition

between two or more geometric configurations; such structures enable in-

dustrial, scientific, and consumer applications at a wide variety of scales.

This paper develops novel deployable structures that can approximate a

large class of doubly-curved surfaces and are easily actuated from a flat

initial state via inflation or gravitational loading. The structures are based

on two-dimensional rigid mechanical linkages that implicitly encode the

curvature of the target shape via a user-programmable pattern that permits

locally isotropic scaling under load. We explicitly characterize the shapes

that can be realized by such structures—in particular, we show that they can

approximate target surfaces of positive mean curvature and bounded scale

distortion relative to a given reference domain. Based on this observation,

we develop efficient computational design algorithms for approximating a

given input geometry. The resulting designs can be rapidly manufactured

via digital fabrication technologies such as laser cutting, CNC milling, or 3D

printing. We validate our approach through a series of physical prototypes

and present several application case studies, ranging from surgical implants

to large-scale deployable architecture.
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1 INTRODUCTION
Deployable structures are shape-shifting mechanisms that can tran-

sition between two or more geometric configurations. Often con-

ceived to minimize space requirements for storage or transport,

deployable structures are used, for example, for antennas or solar

panels in satellites, as coronary stents in medical applications, as

consumer products (e.g. umbrellas), or in architectural designs (e.g.

retractable bridges or relocatable, temporary event spaces).

Most existing realizations of deployable structures are geometri-

cally simple and often exhibit strong symmetries. Deploying more

general curved surfaces is made difficult by the inherent complex-

ity of jointly designing initial and target geometries within the

constraints imposed by the deployment mechanism [Gantes 2001].

We propose a new class of deployable structures and associated

computational methods that enable rapid deployment of doubly-

curved freeform surfaces (see Figure 1). Our approach is based on a

ACM Trans. Graph., Vol. 37, No. 4, Article 106. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201373
https://doi.org/10.1145/3197517.3201373
https://doi.org/10.1145/3197517.3201373


106:2 • Konaković-Luković et. al.

planar linkage of rigid triangles connected by rotational joints at

vertices; this linkage has regular connectivity, but spatially varying

scale. In-plane rotation of the triangles induces an approximately

isotropic expansion or contraction in area, which allows a mechan-

ical interpretation of the linkage as an auxetic surface metamate-

rial [Saxena et al. 2016], or a geometric interpretation in terms of

conformal maps [Konaković et al. 2016]. By spatially varying the tri-

angle sizes, we effectively control the maximum possible expansion

at each point, which in turn provides control over curvature: under

maximal extension, nonuniform expansion forces the structure to

buckle out of the plane and assume a curved configuration. Here

several questions arise: which curvature functions can be encoded

in such a pattern? How can we actuate a linkage to achieve maximal

expansion? Which surfaces can we hope to realize using this proce-

dure? Several key contributions help to address these questions:

• We introduce spatially graded auxetic metamaterials suitable

for deployment via inflation or gravitational loading. In par-

ticular, we show that these deployment strategies achieve

maximal expansion everywhere and provide additional regu-

larization to ensure that the target shape is unique.

• We provide a general analysis of deformation by inflation and

gravitational loading to formally classify the set of realizable

doubly-curved target shapes.

• We present an optimization algorithm to solve the inverse

design problem: Given a desired target geometry, our method

finds appropriate scaling parameters and a corresponding

layout of the 2D linkage such that the target shape is achieved

when the linkage is deployed.

The resulting structures offer a number of benefits: (i) The rest-

state is (piece-wise) flat, which facilitates compact storage as well as

cost- and time-efficient fabrication techniques (such as laser cutting

or milling); (ii) The target geometry is directly encoded in the 2D

linkage structure so that no additional support or scaffolding is

required to guide deployment; (iii) Our approach is scale-invariant

and can be applied to realize a broad and explicitly defined class

of doubly-curved surfaces. If a given surface is not within the set

of realizable shapes, we apply optimization to find a feasible target

surface that is close to the desired design.

The rest of the paper is organized as follows: Section 2 reviews

connections to related work. Section 3 considers geometric models

of inflation and gravitational loading, helping to understand the

feasible design space. Specifically, we characterize the shapes that

can be achieved via inflation or gravitational loading in terms of

surfaces of positive mean curvature and conformal deformations

with bounded scale factor. Section 4 introduces our spatially graded

auxetic metamaterial, realized as a rigid triangular linkage. We show

how to locally adapt maximal expansion (and hence, target curva-

ture) by varying the scale and orientation of linkage elements in

the initial flat state. Section 5 describes an optimization algorithm

for solving the inverse design problem, i.e., finding suitable parame-

ters for our metamaterial that ensure the target surface is faithfully

approximated when actuated. In Section 6 we present several case

studies and physical prototypes that highlight potential applications

across domains ranging from small-scale heart stents to large-scale

Fig. 2. Conventional heart stents are straight and typically chosen by the
surgeon from a set of standard sizes. Recent research has shown the benefits
of curved stents [Tomita et al. 2016]. Our method can be used to create
freeform curved heart stents that can be adapted to the specific geometry
of the patients’ blood vessels. The stent is administered with a catheter to
the correct position (left) inflated to its target geometry (middle, right).

air-supported domes. We conclude with a discussion of the limi-

tations of our approach, and also identify opportunities for future

research (7).

2 RELATED WORK
Computational material design. Several previous works have de-

signed custom materials to achieve high-level deformation goals.

Bickel et al. [2010] stack layers of various nonlinear base materials to

produce a desired force-displacement curve. Microstructure design

works [Panetta et al. 2015; Schumacher et al. 2015; Zhu et al. 2017]

construct small-scale structures from one or two printing materials

to emulate a large space of linearly elastic materials. These works fo-

cus on designing deformable materials that typically undergo small

stretches and return to their rest configurations when unloaded,

making them less suitable as deployment mechanisms.

Inverse elastic shape design. Another common goal is to opti-

mize deformable objects’ rest shapes so that they assume desired

equilibrium shapes under load. The inverse elastic shape design

algorithms of [Chen et al. 2014; Pérez et al. 2015] design flexible ob-

jects achieving specified poses under gravity or user-defined forces.

These works do not attempt to find compact rest configurations

amenable to efficient fabrication, transport, and deployment. One

exception is [Skouras et al. 2012], which designs rubber balloons

that inflate to desired target shapes. However, fabricating custom

rubber balloons involves a complicated multi-step molding process

best suited for small-scale target shapes. Additionally, the inflation

must be carefully controlled to avoid under- or over-inflating. In

contrast, our flat initial state facilitates simple fabrication at a wide

range of scales. Our deployment method is also more robust, since

the final state is precisely singled out by construction – the target

is reached when the material cannot expand any further.

Deployment-aware design. Other works have focused on design-

ing objects that rapidly expand into nearly rigid target shapes. Sk-

ouras et al. [2014] construct inflatable structures by fusing together

sheets of nearly inextensible material. Because each panel inflates
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Fig. 3. Design study of deployable architecture. The freeform inflatable
dome can be used as a semi-permanent, relocatable space.

into a nearly developable surface, many small panels are poten-

tially needed to closely approximate a smooth, wrinkle-free doubly-

curved surface. Zheng et al. [2016] design compact scissor linkage

assemblies that, when stretched, uniformly expand into coarse ap-

proximations of 3D shapes. Their method ensures a collision-free

expansion path for sparse wireframe designs. Dudte et al. [2016] per-

form basic research into approximating singly- and doubly-curved

surfaces with generalized Miura folds. Their origami patterns have

a single degree of freedom parametrizing their path from the flat

configuration to the target shape. For doubly curved surfaces, the

construction is bi-stable, leading to an especially simple deployment

process. However, the design algorithm produces flat configurations

with over twice the surface area of the target.

Actuated shape-shifting. The engineering and graphics communi-

ties have both sought to design mechanisms that transition between

discrete configurations or trace out continuous deformation paths

when actuated. By embedding a rigid fiber lattice in flexible silicon,

Connolly et al. [2017] design tubes that accurately reproduce bend-

ing and twisting motions when inflated. Ma et al. [2017] generalize

this idea, segmenting objects into chambers that, when inflated to

certain pressures, drive the shape into a sequence of desired poses.

Also using pneumatic actuation, Overvelde et al. [2016] present an

origami-inspired metamaterial that dramatically changes shape, and

Ou et al. [2016] design flat sheets that fold into complex origami

shapes. Raviv et al. [2014] design structures that can bend, stretch,

and fold when exposed to water. Liu et al. [2017] study how a

pre-strained elastomer sheet patterned with ink can self-fold when

heated by a lamp.

Actuated form-prescribed geometry. Recent work [Guseinov et al.

2017; Pérez et al. 2017] follows a similar rationale of encoding a

3D target surface in a flat sheet of material. In these methods, the

activation mechanism is directly integrated into the material in

the form of a pre-tensioned elastic membrane. Upon release, the

membrane contracts and forces the pre-shaped rigid elements into

their global target configuration. This approach achieves impressive

results, but has several drawbacks. (i) Pre-stretched materials are

limited in scale. (ii) Fabrication is more complex, since it requires

compositing multiple materials. (iii) Shaping by contraction means

that the flat surface is larger in area than the target surface, reducing

potential packing benefits. (iv) Closed surfaces are more difficult to

realize (only disk-topology surfaces have been shown).

Our approach is scale-invariant, does not require multi-material

compositing (our inflation balloons need not be attached to the

auxetic linkage), leads to compact flat-packed sheets, and can handle

shapes of arbitrary topology.

Auxetic Materials. Auxetic surface materials are an essential in-

gredient of our approach: auxetic linkages permit otherwise inex-

tensible flat sheets of material to uniformly stretch as needed to

deform into doubly curved surfaces. We refer the reader to [Saxena

et al. 2016] for a survey on auxetic patterns, their unique mechanical

properties, and their potential applications to diverse engineering

and medical problems. In graphics, Konaković et al. [2016] intro-

duced a design tool for fabricating curved target surfaces by cutting

auxetic patterns into flat sheets. However, the resulting uniform

linkage pattern is difficult to deploy because the target surface is

not singled out in any way; the structure can just as easily deform

into an infinite family of other surfaces. This ambiguity necessitates

the use of guide surfaces and careful manual alignment when shap-

ing the material. Our work addresses this limitation by spatially

varying the pattern to uniquely encode the target shape, enabling

rapid deployment without guide surfaces by simple expansion.

Friedrich et al. [2018] also seek to encode the target surface by

limiting the pointwise maximal stretch factors. Rather than design-

ing a fully opened linkage on the target surface, the authors outline

a heuristic to construct a partially opened pattern in the plane:

based on the scale factors of a conformal map, they insert polygonal

openings resembling those at the top of Figure 6. However, it is un-

clear how these polygonal openings are positioned and connected

to ensure proper linkage functionality. The authors then propose

an iterative evolutionary optimization process needed to bring the

fully opened pattern closer to the target surface. In contrast, our

algorithm directly ensures the target surface is closely approximated

by the fully opened linkage; furthermore, we detail efficient mech-

anisms for deployment and characterize the space of achievable

designs for each deployment mechanism.

Multi-stable auxetic patterns [Rafsanjani and Pasini 2016] are

another potential avenue for encoding maximal stretch factors in a

material: they expand from their rest configuration and settle into

stable equilibrium at one or more stretched configurations. We leave

investigation on how to modify these patterns to encode curved

surfaces as future work.

Polyhedral Patterns. When deployed, our auxetic linkage’s equi-

lateral triangles and hexagonal openings tile the target surface with

a tri-hex pattern. A common task in architectural geometry is to

rationalize curved input surfaces using planar polyhedral patterns.

Schiftner et al. [2009] and Jiang et al. [2015] both introduce algo-

rithms that can approximate input surfaces with tri-hex patterns

as a special case. Vaxman et al. [2017] propose a form-finding tool

for general combinatorial patterns and show applications to tri-hex
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meshes. These works focus on symmetry, planarity, and other pat-

tern quality requirements, making no attempt to ensure the tri-hex

pattern can be flattened into a planar configuration by closing the

hexagons, which is essential in our approach.

3 SHAPE SPACE
Which shapes can we hope to achieve with our structures? The

answer depends jointly on the geometry of the structure, as well

as the method used to actuate it. Rather than study this question

in terms of the detailed geometry of a specific mechanical linkage,

we will first consider an idealized model based on smooth differen-

tial geometry. This analysis will then inform the design of discrete

mechanical linkages and their physical actuation described in Sec-

tion 4 and the corresponding optimization algorithm discussed in

Section 5. In particular, we will explicitly characterize the shapes

one can hope to achieve via (i) inflation and (ii) gravitational load-

ing; we will also make an interesting connection between inflated

balloons and conformal geometry (Section 3.2.1).

3.1 Preliminaries
In this section, we consider a closed, compact, and oriented topologi-

cal surfaceM with geometry given by a map f : M → R3 assigning
coordinates to each point ofM . The differential d f of f maps tan-

gent vectors X onM to the corresponding vectors d f (X ) in R3; the
differential is also sometimes denoted as the Jacobian or deformation
gradient. A map f is an immersion if its differential is injective, i.e.,
if at each point p ∈ M it maps nonzero vectors to nonzero vectors;

sinceM is compact, it is an embedding if f is also injective (loosely

speaking: if it has no self-intersections). Formally, we will require

that f is a twice differentiable immersion with bounded curvature.

To any immersed surface we can associate the quantity

vol(f ) :=

∫
M

N · f dAf ,

where N is the outward unit normal, and dAf is the area element

induced by f ; when f is embedded, vol(f ) is just the enclosed

volume. We will also use д and H to denote the metric and mean

curvature (resp.) induced by f . We use the definition H = 1

2
∇f · N ,

so, e.g., a sphere has constant positive mean curvature. If dA and

dÃ are two area measures on M , we will write dA ≤ dÃ to mean

that dA(U ) ≤ dÃ(U ) for all open sets U ⊂ M . When considering

variations of the surface, we will think of f as a time-parameterized

family of immersions f (t) and adopt the shorthand
Ûϕ := d

dt ϕ |t=0
for any time-varying quantity ϕ.

3.2 Inflation
To understand the space of shapes that can be achieved via inflation,

we consider an idealized and purely geometric model of rubber bal-

loons. From a mechanical viewpoint, our model would correspond

(very roughly) to a thin isotropic elastic membrane with spatially

varying maximal expansion. This model should however be taken

with a grain of salt: our goal here is not to formulate a precise me-

chanical model, but rather to get a sense of the most significant

geometric effects exhibited by our discrete mechanism—a more rig-

orous analysis (e.g., based on homogenization of the small-scale

Fig. 4. Design study of a freeform chair realized using four layers of spatially
graded auxetic material to fully cover the surface (see Section 5 for details).

geometry) is beyond the scope of this paper. Moreover, for compu-

tational design, it is often more useful to have a simple and easily

computable geometric model than a detailed mechanical model

which is accurate but difficult to explore due to heavy computa-

tional requirements (e.g., finite element analysis).

We specifically consider the geometry of immersions that (i) lo-

cally maximize enclosed volume, and (ii) do not stretch area above

a given upper bound. Note that we do not consider questions of dy-
namics (e.g., “can this configuration be reached from a given starting

point?”), which are notoriously difficult even without constraints on

volume or area. Instead we consider only the simple static question

of, “what will be true about a surface that achieves these conditions?”

In particular, we make the following observation:

Proposition 3.1. Let dA+ be an area measure on M . Among all
(twice differentiable) immersions f : M → R3 such that dAf ≤ dA+,
those that locally maximize the enclosed volume vol(f ) will (i) have
strictly positive mean curvature H > 0 away from sets of measure
zero, where H ≥ 0; and (ii) will achieve the upper bound on area
(dAf = dA

+).

Proof. (i) Suppose an immersion f admits a nonempty open set

D ⊆ M on which H ≤ 0. Then we can construct a smooth positive

function u : M → R supported on D and consider the outward

normal variation
Ûf := uN . The corresponding first-order changes

in volume and area measure are given by

d
dt vol(f )|t=0 =

∫
M
udAf > 0 and

d
dt dAf |t=0 = 2uHdAf ,

respectively. Since uH ≤ 0, this variation increases volume without

increasing area; hence, f is not a volume maximizing immersion.

Moreover, if H < 0 at any point p ∈ M , then (by continuity of H )

there must be an open ball around p on which H is strictly negative.

Hence, on sets of measure zero, an immersion f that maximizes

volume must have H ≥ 0.

ACM Trans. Graph., Vol. 37, No. 4, Article 106. Publication date: August 2018.



Rapid Deployment of Curved Surfaces via Programmable Auxetics • 106:5

Fig. 5. When inflated, rubber balloons exhibit near-conformal deformation
(indicated by the preservation of right angles), further motivating our use
of an auxetic design space for inflatable structures.

(ii) Since both dAf and dA+ are area measures, we have dA+ =

φdAf for some continuous function φ : M → R. If dAf < dA+,
then there will be at least one point p ∈ M where φ(p) < 1, and

by continuity, an open neighborhood D around p where φ < 1.

Letting u be a smooth positive function supported on D, a normal

variation uN will now increase the volume without violating the

area bound. □

Roughly speaking, the surfaces that can be realized via infla-

tion in our model are those that have positive mean curvature (see

Proposition 3.1 and Section 4.1 for further discussion). In practice,

we therefore modify a given target surface to have positive mean

curvature, as described in Section 3.4.

3.2.1 Conformal Balloons.
Suppose we no longer consider volume maximization nor an upper

bound on area, but simply ask about the shape of a balloon that

tries to minimize the elastic membrane energy when filled with

a fixed volume of air. In particular, the Dirichlet energy ED (f ) :=∫
M |d f |2 dA0 models an elastic membrane with zero rest length, or,

asymptotically, the energy due to extreme stretching. Critical points

of Dirichlet energy are called harmonic maps, and any harmonic

map between topological spheres is necessarily holomorphic or anti-

holomorphic [Eells and Wood 1976]. We hence find a connection to

conformal geometry:

Theorem 3.2. Consider a surface (M,д0) of spherical topology.
Among all embeddings f : M → R3 of fixed enclosed volume vol(f ) =
c , any embedding minimizing the membrane energy ED is conformal,
i.e., the induced metric д := d f ⊗ d f is conformally equivalent to д0.

Proof. Let
˜f be a non-conformal embedding with volume c , and

let Σ := ˜f (M) ⊂ R3 denote the image of
˜f . We know that a map

minimizing Dirichlet energy over all orientation-preserving embed-

dings f : (M,д0) → Σ is holomorphic (and in particular, conformal

since it is injective and orientation-preserving). Therefore, because

˜f is not conformal, we can find an embedding f ∗ mapping to Σ with

smaller Dirichlet energy. This f ∗ still has volume c , but lower ED ,

so
˜f is not minimal. □

Due to the rather simplistic model of membrane energy, onemight

wonder whether this theorem provides any useful information about

real physical balloons or our auxetic mechanisms (which allow an

area scaling of at most 4). However, Dirichlet energy will still tend

to dominate more realistic nonlinear models of elasticity in the

limit of large stretching. Consider for instance the elastic energy

described by Chao et al. [2010], E(f ) :=
∫
M |d f − Rf |

2 dA, where
Rf denotes the rotation closest to d f . In the limit of large strain, the

quadratic (i.e., Dirichlet) term of the expansion |d f |2 − 2⟨d f ,Rf ⟩ +

|Rf |
2
dominates, and we are left with the same picture as before.

Moreover, the nonlinear terms drop off rather quickly, suggesting

that one should observe conformal behavior even for moderate

stretching—as supported by physical experiments such as the one

pictured in Figure 5. This observation further motivates our use of

auxetic materials with bounded scale factors for inflatable structures.

3.3 Gravitational Deployment
Gravity is an even simpler mechanism for shape deployment: just

suspend a sheet of material by its boundary and let gravity pull it

into the target shape. This approach is most suitable for surfaces

with simple boundary curves like in Figure 11. In fact, to simplify

the fabrication process, we require that the initial surface spanning

the boundary curves be a height field; otherwise attaching the flat

material to the boundary curveswould require a complicatedmanual

deformation. The height field property also guarantees that the

downward gravitational force has a positive component along the

surface’s normal direction, ensuring that it can pull the surface open

analogously to the inflation setup.

When fabricated from our idealized material (characterized by

having zero stiffness until an upper area bound is reached), we ob-

serve that height-field-initialized surfaces will remain height fields

during the deployment. This follows from the fact that only two

types of forces act on interior points during the deployment: gravity

and the material stresses enforcing the area bound. Gravity pushes

points in the material straight downward, decreasing height values

but preserving the height field property. Stresses enforcing the area

stretch bound always take the form of tensile forces: regions of

material that have reached their stretching bound pull uniformly

inward against the surrounding material (tangentially to the sur-

face). Unlike expansive forces, these tensile forces act to straighten

out the material and will not cause the sheet to fold over itself to

violate the height field property.

We now characterize the space of height field surfaces deployable

by gravity, again ignoring questions of dynamics. For consistency

with the inflation setup, we orient the surface’s height axis verti-

cally (parallel to gravity) and choose the surface orientation so that

normals point downward. The gravitational deployment process is

formulated as minimizing the immersion f ’s gravitational potential
energy:

U (f ) :=

∫
M

f · z dA,

where z is the height axis vector oriented opposite gravity and scaled
by the gravitational acceleration constant. Note that dA is the area

element induced by an isometric immersion of M (for which we

assume the material density is 1) and is independent of the particular

immersion f .
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Proposition 3.3. A height field surface represented as a smooth
immersion f : M → R3 that locally minimizes the gravitational po-
tential energyU (f ) over all smooth immersions satisfyingdAf ≤ dA+

and Dirichlet conditions f = ftgt on ∂M , must (i) have strictly positive
mean curvature H > 0 away from sets of measure zero, where H ≥ 0;
and (ii) achieve the upper bound on area (dAf = dA

+).

Proof. (i) Suppose there exists a region D ⊆ M of nonzero mea-

sure on which H ≤ 0. We can construct a smooth, positive bump

function u compactly supported on D so that the positive normal

variation
Ûf := uN decreases gravitational potential to first order:

d
dtU (f + tuN )|t=0 =

∫
D
uN · z dA < 0,

because N · z < 0 by the height field property. Furthermore, this

variation does not violate the upper bound on area: the area measure

changes by

d ÛAf = 2uHdAf ≤ 0.

Therefore, f does not locally minimize gravitational potential en-

ergy. (The proof of part (ii) is analogous to Proposition 3.1.)

□

3.4 Projection to Feasible Surfaces
If the surface violates the positive mean curvature requirement, we

must modify it for compatibility with our deployment mechanisms.

However, we wish to keep the design as similar to the input surface

as possible. Accordingly, we change the surface only where needed,

leaving the regions of positive mean curvature untouched. In the

regions violating the requirement, we make the smallest change

necessary in mean curvature space.

We propose the following repair process to achieve these goals:

apply mean curvature flow
Ûf = −HN to each region of negative

mean curvature, terminating when mean curvature reaches zero.

Then, to ensure H ≥ ε > 0, an arbitrarily small, smooth normal

variation can be applied, computed, e.g., by solving Equation 1 with

ÛH = 1 and zero Dirichlet boundary conditions.

Our repair process indeed produces the closest admissible surface

in the sense of minimizing pointwise curvature distance |H − H0 |

almost everywhere inM (where H0 is the mean curvature of the ini-

tial immersion): it preserves mean curvature in the positive regions

and minimally adjusts each non-positive value. Curvature-based

distance metrics like this are often considered good models of per-

ceptual distance [Kim et al. 2002]. However, for the examples we

tried, we can make an additional observation: the repair process

also locally minimizes pointwise distances to the original surface.

We formalize the repair process as follows. For a smooth initial

immersion f0 : M → R3, the regions Ri ⊂ M on which H < 0

are always bounded by well-defined curves ∂Ri . The repair pro-

cess cuts away each f0(Ri ) and replaces it with a minimal surface

f (Ri ) spanning the same immersed boundary curve. This viewpoint

corresponds to the limit ε → 0.

First, we consider the space of admissible variations one might

apply to the repaired surface when attempting to move it closer

to the original. We consider an arbitrary suitably regular variation

Ûf := Ri → R3 and define normal velocityu := Ûf ·N for convenience.

We observe that u = 0 on ∂Ri since the perturbed surface must still

fill the same boundary curve.

The corresponding first-order change inmean curvature is [Doğan

and Nochetto 2012]:

2 ÛH = − △f u − (κ2
1
+ κ2

2
)u + 2 Ûf · ∇f H = − △f u − 2|K |u, (1)

whereκ1 = −κ2 are theminimal surface patch’s principal curvatures.

The term involving
Ûf vanishes because H ≡ 0, and we applied the

simplification κ2
1
+ κ2

2
= 2|κ1κ2 | = 2|K |. Preserving non-negative

mean curvature requires:

ÛH ≥ 0 =⇒ △f u + 2|K |u ≤ 0.

For small |K | (mildly curved repaired patches), we expect the Lapla-

cian term to dominate and force the normal velocity to achieve its

minimum on the boundary ∂Ri (superharmonic functions obey a

minimum principle). But u = 0 there, forcing u ≥ 0 inside Ri .
Furthermore, in our experiments, closest points on the original

surface always lie to the negative side of the repaired patch in that,

∀p ∈ f (Ri ) and nearest original points p∗ = argminp̃∈f0(Ri )∥p̃ − p∥,

we haveN · (p∗ − p) ≤ 0. This should be expected formoderate edits,

as the curvature flow process converging to the minimal surface

moves points only in the positive normal direction. In these cases,

moving any point on our repaired surface closer to the original

surface requires a motion in the negative normal direction which,

for small |K |, violates the non-negative mean curvature constraint.

4 MATERIAL DESIGN
Our goal is to design a mechanism that deforms from an initial flat

configuration into a doubly-curved target surface when actuated by

inflation or gravity. Konaković et al. [2016] study a similar problem,

where linkages based on the regular 2D Kagome lattice are deformed

into general curved target shapes. This approach has two key ob-

stacles to overcome when it comes to rapidly deployable structures,

namely (i) a perfectly regular lattice encodes no information about

the target shape, necessitating some kind of “scaffolding” such as a

3D print to guide assembly, and (ii) there is no clear way to actuate
such a surface, which must be laboriously pointwise-aligned to the

mold and deformed by hand. These observations motivate us to (i)

encode the target shape into the linkage by considering a spatially
varying pattern rather than a regular one, and (ii) consider geome-

tries that can be rapidly deployed via inflation or gravity, as studied

in Section 3.

Discrete Conformal Geometry. A key motivation for starting with

the Kagome lattice is that, as observed by Konaković et al. [2016],

deformations of this lattice behave at the large scale like conformal

mappings with bounded scale factor. This loose analogy is made a

bit more precise by making a connection to the Cauchy-Riemann

equations: for both conformal maps and the lattice, infinitesimal

planar motions are determined by real degrees of freedom at the

boundary. Another connection recently made by Lam [2017] is that

infinitesimal rotations of the lattice can be described as discrete

harmonic functions (in the usual sense of the cotangent Laplacian),

mirroring the fact that for the logarithmic derivative log(z′) = u+ıθ
of a holomorphic map z, the two components u,θ describing scaling

and rotation (resp.) are conjugate harmonic. To date, however, there
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initial 2D state

fully expanded

Fig. 6. Spatially variable maximal expansion of the linkage can be achieved
by scaling and rotating the linkage triangles in the initial 2D state. When
already fully opened (left), no more expansion is possible. When fully closed
(right), the linkage can expand to increase by a factor two in length (or a fac-
tor of four in area). Partially opening the initial configuration allows varying
the scale factor, indicated by the size of the orange triangles connecting the
barycenters of the openings.

is still no complete discrete theory of conformal maps based on

the Kagome lattice that includes finite deformations, nor confor-

mal immersions in R3. Nonetheless, adopting the conformal point

of view allows us to leverage well-developed tools from computa-

tional conformal geometry for the purpose of designing deployable

mechanisms.

Mechanical Properties. From a mechanical point of view, linkages

based on the Kagome lattice are flexible enough to produce a wide

variety of curved surfaces and already have a locking mechanism

built-in: stretching the material to four times its original area fully

opens the linkage, blocking further expansion. In fact, one can easily

show that the linkage is rigid (albeit unstable) in its fully open con-

figuration; additional forces such as gravity or air pressure help to

stabilize the fully open state. We take advantage of these mechanical

properties to aid deployment. In particular, we adapt the pattern to

achieve a spatially varying (rather than constant) maximum bound

on expansion across the surface. When deployed, the varying expan-

sion leads to out-of-plane buckling; thus the linkage must assume a

curved configuration.

The geometric and mechanical pictures can of course be linked:

the bound on expansion in the discrete linkage can be modeled by

a bound on the conformal scale factor eu of a smooth conformal

map, and the buckling exhibited by the deployed linkage is approx-

imately determined by the Yamabe equation ∆u = e2uK relating

the logarithm of the scale factor to the Gaussian curvature K of

a smooth surface approximating the target geometry. To explore

designs for our mechanical linkage, we therefore adopt a strategy

based on geometry: first, we compute a conformal map from the

plane to the target surface, and read off the scale factors λtgt := eu .
We then use these factors to design or “program” a spatially-graded

pattern that approximately matches the corresponding maximum

expansion at each point. When fully expanded, a mechanism based

on this pattern should approximate the desired target shape. Below

variable, partial expansion

fully expanded

target 3D state
automatically deployed

initial 2D state

fully closed

variable, partial expansion

target 3D state
requires guide surface

initial 2D state

Fig. 7. The method of Konaković et al. [2016] (left) uses a uniform, fully
closed initial 2D state and achieves its target state with variable partial
openings. Proper deployment thus requires a guide surface and precise
manual alignment. In contrast, our spatially varying initial openings in
the 2D state allow encoding the target surface in the flat configuration,
facilitating automatic deployment by maximal expansion without the need
of any guide surface (right).

we first consider the uniqueness of the deployed configuration, be-

fore detailing how to program the desired maximal expansion factor

into our discrete triangular linkage.

4.1 Uniqueness
The spatially varying maximal extension factor uniquely determines

the fully expanded linkage’s metric. In other words, the deployed

shape is completely determined up to isometric deformation. Does

this mean that the metamaterial uniquely encodes the target shape?

In general, the answer is no. For instance, the material alone cannot

distinguish between “bumps” with negative or positive mean cur-

vature since both produce the same metric distortion. However, in

this case our specific deployment methods provide additional regu-

larization: they always produce surfaces of positive mean curvature,

eliminating this ambiguity.

Convex surfaces are known to be unique up to global rigid trans-

formations. Surprisingly, the question of whether smooth closed

surfaces can be flexible in R3 (i.e., admit infinitesimal deformations

preserving the metric) remains an open problem in differential ge-

ometry [Ghomi 2017]. So far, no examples have been found, and in

practice, all of our examples deployed to their proper target config-

urations.
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conformal 

regular
meshing

conformal

3D linkage
initialization

3D linkage
optimization

2D linkage
initialization

2D linkage
optimization

S

M

M3D

L

L3D

f f -1 target edge
lengths

2D 2D

Fig. 8. Sketch of the optimization algorithm for computing the spatially graded auxetic linkage for a given input surface S .

4.2 Auxetic Linkages with Locally-Controlled Stretching
We now consider how to adapt the regular triangle auxetic link-

age structure to impose a spatially-varying upper scaling bound

tailored to the conformal scale factor λtgt. We begin with the follow-

ing observation: taking the standard linkage pattern (with length

stretch factor λ in the range 1 ≤ λ ≤ 2) and pre-stretching by 2/λtgt
yields a new material with the stretching bounds λtgt/2 ≤ λ ≤ λtgt.
Effectively, this pre-stretching limits the amount of additional ex-

pansion possible until the fully opened configuration is reached (see

Figure 6). This reduces our problem to producing a linkage with a

spatially-varying pre-stretch in its flat configuration. The challenge

now is to piece together patches with different pre-stretch. As illus-

trated in Figure 6, this can only be done by scaling the triangles, as

will be detailed below.

Figure 7 shows an example and provides a comparison between

our spatially graded auxetic linkage and the homogeneous pattern

proposed in [Konaković et al. 2016]. Note that the nonuniform link-

age structure no longer fully opens or closes in the plane like the reg-

ular auxetic linkage could; once any region (hexagonal opening) in

the pattern fully opens or fully closes, further expansion/contraction

requires spatially varying the stretch factors, inducing curvature

that forces the structure into 3D.

5 MATERIAL OPTIMIZATION
In this section, we describe our computational workflow and the op-

timization algorithm for computing the deployable auxetic linkage

for a given design surface.

Preprocessing. Our first step is to analyze the input surface to

ensure that it satisfies the positive mean curvature requirement.

As discussed in Section 3.4, we correct infeasible surfaces by ap-

plying mean curvature flow adapted to operate only on regions of

non-positive mean curvature(see also Figure 9). We use implicit

integration for the flow as proposed by [Desbrun et al. 1999]:

(Mt + hLt )xt+1 = Mtxt ,

where M is the mass matrix, h is the step size, L is the positive

semidefinite cotan Laplace matrix, x is a matrix of vertex positions

(one row per input surface vertex), and the superscripts indicate the

iteration number. We run this flow until convergence updating only

the positions of vertices with non-positive mean curvature.

Given the corrected input surface S , our goal now is to find the

2D layout of the triangular linkage that, when deployed to maximal

expansion, approximates S as closely as possible. Figure 8 illustrates

the main steps of our algorithm.

Conformal Flattening and Remeshing. We first compute a confor-

mal map f : S → Ω from the target surface S to a planar domain

Ω ⊂ R2 using the methods of [Sawhney and Crane 2017]. We check

if the conformal scale factors are within the bounds prescribed by

the linkage mechanism, and, if necessary, introduce cone singulari-

ties at user-selected locations to reduce scale distortion as described

below. Next, we sample the parametric domain Ω with a regular

equilateral triangle meshM2D that defines the base structure of our

linkage. The user selects the resolution and orientation of this mesh

to match her design intent. LiftingM2D onto S by the inverse map

f −1 yieldsM3D.

3D Linkage Optimization. We now obtain an initial guess for the

fully-opened linkage structure by constructing the medial triangle

for each triangle in M3D (i.e., inscribing a triangle by connecting

edge midpoints; see Figure 8). While this initialization is already

close to the desired target configuration, the discrete nature of the

lifting function introduces inaccuracies that necessitate further opti-

mization. In particular, we need to ensure that the linkage triangles

remain equilateral and are maximally expanded everywhere while

staying close to the target surface. Fortunately, these objectives

can be formulated easily in the context of the projective approach

of [Bouaziz et al. 2012]. Specifically, to obtain the linkage’s curved

target configuration L3D we minimize an energy function EL3D de-

fined as the sum of three different objective terms over the vertex

positions x,

EL3D(x) = ω1Eexpand(x) + ω2Eequi(x) + ω3Edesign(x), (2)

with weightsωi . Each term can be formulated as a sum of constraint

proximity functions of the form ϕ(xc ) = ∥xc − P(xc )∥2
2
, where xc is

the vertex set involved in the specific constraint, and P denotes the

projection operator to the constraint set, as detailed below.
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We observe that in the fully expanded

state, the hexagonal openings formed by

the linkage must attain maximum area. By

Cramer’s theorem [Niven 1981, p. 236], this

maximum is achieved when all vertices of

the opening lie on a circle.

We thus introduce the expansion term

E
expand

=
∑
h∈H

∥xh − PC (xh )∥
2

2
,

where h is an index set of vertices in a particular hexagonal opening,

and H is the collection of all such index sets in the linkage. PC (xh )
defines the projection to the circle closest to the vertices of xh
computed as described in [Bouaziz et al. 2012].

Contrary to the uniform pattern used in [Konaković et al. 2016],

our linkage triangles need to vary in scale to introduce spatially

varying maximal expansion. In order to let triangles scale freely but

keep their equilateral shape, we introduce the energy

Eequi =
∑
t ∈T

∥xt − PT (xt)∥22 ,

where t is the index set of the vertices of a triangle,T is the set of all

linkage triangles, and PT is the projection to the closest equilateral

triangle, computed using shape matching as described in [Umeyama

1991].

Finally, to keep the linkage close to the design surface, we apply

positional constraints of the form

E
design

=
∑
v ∈V

∥xv − PS (xv )∥22 ,

where v is a vertex index, V is the set of all linkage vertices, and PS
defines the projection to the closest point on S .
The minimization of EL3D then follows the typical local/global

iteration strategy (see also [Sorkine and Alexa 2007]): the local

step computes all the constraint projections involved in the objec-

tive terms for the fixed current vertex positions; the global step

subsequently solves for the optimal vertex positions keeping the

constraint projections fixed. Details on the precise definitions of

the projection operators and the corresponding numerical solver

implementations can be found in [Bouaziz et al. 2012] and [Deuss

et al. 2015].

2D Linkage Optimization. The 3D optimization provides us with

the curved target configuration L3D of the linkage in its fully opened

state. Now we need to find the contracted linkage in the plane that

defines the material rest state to be fabricated. We formulate this

problem as a second projective optimization. We first apply the

necessary topological cuts to convertM2D into a regular triangular

linkage L2D with uniform triangle sizes (Figure 8). Note that this flat

linkage has a one-to-one vertex correspondence with the deployed

linkage L3D. Next, we optimize the 2D vertex coordinates u of L2D
so that the triangles assume the edge lengths of L3D. This is again
easily implemented using a projective edge length constraint of the

form

E
edge
=

∑
(i, j)∈E

∥(ui − uj ) − PE (ui , uj )∥22 ,

where (i, j) denotes the vertex indices of an edge and E is the set of

edges of the linkage. The operator

PE (ui , uj ) =
∥xi − xj ∥
∥ui − uj ∥

(ui − uj )

projects to the closest edge with target length ∥xi − xj ∥ of the

corresponding edge in the 3D linkage L3D. We also add the non-

penetration constraint proposed in [Konaković et al. 2016] to avoid

collisions in the 2D state. The final optimized linkage L2D then

defines the flat auxetic surface material that deploys to the desired

target state.

Algorithm Parameters. Our implementation of the projective con-

straint solver is based on the open-source library provided by [Deuss

et al. 2015]. We set the weights in (2) to ω1 = ω2 = 100 and ω3 = 1

and apply between 100 to 600 iterations, depending on the mesh

resolution. Total computation time for 3D and 2D optimization for

a linkage with 8k triangles is 1.8 minutes on a standard desktop

computer with 4.2 GHz computed on a single core.

Cone Singularities. When the conformal scale factors exceed the

maximal expansion limits of the auxetic linkage, we need to insert

cone singularities in the conformal map to reduce scale distortion.

Singularities can also be mandated by the input surface’s topology

(to satisfy the Gauss-Bonnet theorem). These singularities corre-

spond to boundary vertices of M2D where the incident boundary

curves (seams) close up when lifted toM3D by the conformal map.

Because conformal maps preserve an-

gles, for the surface to close up and form

a regular equilateral triangle mesh when

lifted to M3D, the sum of triangle an-

gles around the singular vertex inM2D—

referred to as the cone angle—must be an

integer multiple of
π
3
. In the inset figure,

we show an example with cone angle
5π
3

and see how the equilateral triangle mesh (and an inscribed linkage)

will properly stitch together when lifted toM3D. Figure 10 shows

examples with singularities of cone angle
4π
3

and
5π
3
.

In-plane Opening. In case the computed scale factors do not fully

cover the maximal admissible range, the resulting 2D linkage can

still be expanded in the plane until one hexagonal opening is fully

opened—or contracted until one opening is fully closed—as shown

in the inset.

We leverage this property for the

fabrication result in Figure 1 to re-

duce the material stresses at the tri-

angle joints during inflation by pre-

opening the linkage as much as pos-

sible; this minimizes the rotation

necessary to achieve the fully ex-

panded configuration. In the opti-

mization, we add an additional angle

constraint [Deng et al. 2015] with a low weight that either tries to

expand or contract the linkage in the flat configuration, depending

on the user’s preference.
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Fig. 9. From left to right: input design surface, modified surface with positive mean curvature everywhere, optimized linkage in deployed state, 2D rest state
of flat-fabricatable material. In the bottom row, a singularity of cone angle 5π

3
is introduced to bring the conformal scale factors to lie within the admissible

range.

Filling in the Surface. If the user desires a deployed surface with-

out holes, the hexagonal openings in the fully expanded linkage can

be filled in by layering four sheets offset from each other:

However, simply creating copies of the optimized linkage L3D and

shifting them does not work: this would effectively translate the

deployed surface itself and also would lead to triangles imperfectly

fitting the hexagonal holes due to the varying scale factors. In-

stead, these sheets must be designed by offsetting copies ofM2D in

the parametric domain and lifting/optimizing them in 3D. Figure 4

shows an example of a surface filled in with this method.

Verification by Simulation. Recall that the above optimization

maximizes surface expansion of the linkage on a target surface

of positive mean curvature. In the smooth setting, our analysis in

Section 3 shows that this defines a deployable target surface under

inflation or gravity. To verify that this observation also holds in

the discrete case, and that the computed linkage does indeed define

a steady state under inflation or gravitational loading, we apply a

physics-based simulation. We use the same projective approach as

we did for linkage design, using only edge length constraints to keep

triangles rigid and positional constraints to fix the boundary. We

augment this optimization with dynamics as proposed in [Bouaziz

et al. 2014] by applying forces on the linkage vertices. For inflation,

the force vectors are oriented along the surface normal, for gravity

along the fixed negative vertical axis.

Our experiments confirm that the linkages properly deploy, reach-

ing an equilibrium configuration very close to L3D. For each of our

examples, we compute the maximal distance between vertices in

L3D and their corresponding pairs in the equilibrium linkage. We

then compute a maximum relative vertex deviation for each model

by dividing this distance by the length of the bounding box diagonal.
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Fig. 10. Cone singularities are required when modeling closed surfaces
such as the sphere. The simulated models at the top depict examples with
cone angles of 4π /3 and 5π /3, respectively. At the bottom, lower-resolution
fabricated prototypes with cone angles of 4π /3 are shown, one fabricated
by laser cutting with triangles connected by rings, one 3D printed with
ball joint connections. The surfaces have been closed manually along the
boundary elements prior to inflation.

The model with the worst relative deviation has a maximal vertex

distance of 0.0513 and a bounding box diagonal of 28.5, giving a

relative deviation of 0.0018. In all cases, the differences are nearly

imperceptible.

6 RESULTS
We verify our material design and optimization approach with a

number of numerical and physical experiments, illustrating a range

of potential application fields with different materials and usage

domains. Figure 9 shows several examples of our deployable auxetic

surfaces computed with the optimization algorithm described in

Section 5.

Fabricated Prototypes. Figure 1 shows how one can deploy a

doubly-curved freeform surface from a single flat sheet of mate-

rial. The expansive forces for deployment are created by a generic

rubber balloon that is inflated against the support plane. As the bal-

loon is pumped with air, it presses against and deforms the linkage

until the target shape is reached at maximal stretch. The balloon has

no information about the target shape, which is solely encoded in

the linkage pattern computed by our algorithm. Note that while the

inflated surface has positivemean curvature everywhere as required
by our analysis, both positive and negative Gaussian curvature are

present in the target shape. Figure 10 shows how cone singulari-

ties are introduced when inflating closed surfaces. The structure

of Figure 11 illustrates how gravitational forces can be used to de-

ploy the target shape from the flat rest configuration. The resulting

structure is in tension everywhere and can thus be used for physical

form-finding of self-supporting structures in analogy to the famous

approach of Antoni Gaudi [Fernandez 2006].

Application Case Studies. Figure 2 illustrates an application in

personalized medicine, where a deployable freeform coronary stent

can be customized to a specific patient. The stent is fabricated as

a flat structure, then rolled into a thin cylinder. When inflated,

the stent adopts the desired freeform shape to best advance blood

flow in the critical artery. Figure 3 highlights an application in

deployable architecture to construct a relocatable, semi-permanent

structure. Compared to the simple geometries of existing inflatable

structures, our approach supports a broader class of freeform shapes,

which allows adapting the structure to the design-specific interior

space requirements. Figure 4 illustrates how multiple layers of our

programmable auxetic material combine to create the approximately

closed surfaces of a freeform chair (deployed by gravity).

7 LIMITATIONS AND FUTURE WORK
Our current deployment strategies using inflation or gravity can

only actuate a subset of the surfaces realizable with a graded aux-

etic linkage: those with positive mean curvature. Adding additional

constraints—for example, in the form of strings connecting cer-

tain vertices and thus preventing expansion towards positive mean

curvature—can enlarge the space of deployable shapes. It is an in-

teresting question for future work to find a minimal set of such

constraints for a given target surface.

For closed surfaces and surfaces requiring singularities, we must

introduce cuts to flatten the material to the plane (see Figure 10 and

bottom row of Figure 9). While this retains the benefits of planar

fabrication, the deployment becomes more complex, as the material

has to be re-connected along the cut seam prior to actuation.

Our results confirm that we obtain a close approximation of the

target shape even for relatively coarse resolutions of the linkage.

However, although we have observed several connections to confor-

mal mapping theory that inform our optimization algorithms, we

currently do not have a discrete theory for the geometry of graded

auxetic linkages. Developing such a theory in the context of discrete

differential geometry is an exciting avenue for future work.

While our fabricated prototypes provide a proof-of-concept for

the physical realizability of our designs, we do not address impor-

tant fabrication-related issues at different scales. In particular, it is

crucial for robust deployment to optimize the joints connecting the

linkage triangles. It also would be interesting to test techniques for

permanently rigidifying the deployed structure. We hope that our

work can stimulate new research in material science, mechanical

engineering, and architectural construction to study these questions

in more detail.
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Fig. 11. Deployment via gravity. The auxetic linkage shown on the bottom right has been optimized to match the input design surface on the left. The structure
has been assembled in the flat state from individually laser-cut triangles that are connected by metallic rings to enable the rotational motion of the linkage
triangles. When lifted onto the rectangular support, the surface automatically deploys into its target shape. Note that boundary vertices are fixed along the
long edges of the support rectangle, and connected with strings on the short edges.

8 CONCLUSION
Numerous physical objects, such as ship or airplane hulls, build-

ing facades, clothing, and many consumer products are fabricated

by shaping thin, initially planar materials. The shaping process

typically involves bending, stretching, or otherwise deforming the

material using a mold or scaffold to guide the deformation towards

the desired 3D shape. Deployable structures provide an alternative

where the shaping process and resulting target geometry are implic-

itly encoded in the structure itself. We have shown that spatially

graded auxetics are well suited to implement deployable surface

structures. Instead of rationalizing a 3D design surface for a given

homogeneous material, we spatially optimize the material itself. By

carefully controlling the expansion behavior of the material, we di-

rectly program the target surface geometry into the flat 2D rest state.

Inflation or gravitational loading then automatically deploys the

rest state towards the target, which is assumed when the material

cannot expand any further. As a consequence, we can leverage the

efficiency of 2D digital fabrication technologies without requiring

any additional 3D guide surface. Our deployment strategy is robust

and reversible, which supports efficient storage and transport and

enables new applications for semi-permanent structures.

The combination of limited-expansion auxetic material with a

deployment via inflation or gravity imposes limits on the space of

realizable shapes. Our analysis clearly delimits this space and di-

rectly informs our computational solution, providing designers with

an effective tool to realize new deployable structures not possible

before.
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