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Double-link expandohedra are introduced: each is constructed from a parent poly-
hedron by replacing all faces with rigid plates, adjacent plates being connected by
a pair of spherically jointed bars. Powerful symmetry techniques are developed for
mobility analysis of general double-link expandohedra, and when combined with
numerical calculation and physical model building, demonstrate the existence of
generic finite breathing expansion motions in many cases. For icosahedrally sym-
metric trivalent parents with pentagonal and hexagonal faces only (fullerene poly-
hedra), the derived expandohedra provide a mechanical model for the experimen-
tally observed swelling of viruses such as cowpea chlorotic mottle virus (CCMV).
A fully symmetric swelling motion (a finite mechanism) is found for systems based
on icosahedral fullerene polyhedra with odd triangulation number, T ≤ 31, and is
conjectured to exist for all odd triangulation numbers.
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1. Introduction

Many viruses consist of an outer protein coat (the virion) containing a DNA or
RNA ‘payload’, where the virion undergoes reversible structural changes that allow
switchable access to the interior by the opening of interstices through expansion.
These changes may be driven, for example, by variations in pH of the biological
medium. The present paper introduces a mechanical model that helps to understand
the expansion in terms of classical principles of structural mechanics.

An example that has been well characterised is the cowpea chlorotic mottle virus
(CCMV), shown in figure 1, that has a structure based on the truncated icosahedron
(‘T = 3’ in the standard notation for triangulated icosahedral structures (Caspar &
Klug 1962)). In the native form, stable around pH 5, 180 chemically identical protein
subunits form a shell of diameter ' 286 Å. The protein subunits form into either
pentagonal or hexagonal capsomeres. At pH 7, the virus particles undergo a 10%
increase in radius, thought to occur as a result of deprotonation of carboxyl moieties
at the inter-capsomere contacts, leading to electrostatic repulsion that opens out the
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Figure 1. Cryoelectron microscopy and image reconstruction of the cowpea chlorotic mottle
virus (CCMV): (a) in an unswollen condition induced by low pH; (b) in a swollen condition
induced by high pH. Images provided by T. Baker, Purdue University.

structure but falls short of complete disassembly through preservation of interwoven
carboxyl/protein links between capsomeres (Speir et al. 1995). Discrete swollen
states have also been observed in many plant viruses, e.g. turnip crinkle (Sorger
et al. 1986), tomato bushy stunt (Robinson & Harrison 1982) and southern bean
mosaic viruses (Rayment et al. 1979), and similar phenomena have been inferred
for animal viruses such as poliovirus (Fricks & Hogle 1990). An important feature
of the swelling process is that it leads to opening of a 20 Å-diameter portal on the
quasi-threefold axes at full expansion. Exploitation of these portals for pH-gated
material transport and fabrication of mineralised nanoparticles has been proposed
(Douglas & Young 1998, 1999).

In engineering terms, virion expansion can be considered as the actuation of
an expandable-retractable nanostructure. Expanding structures on the macroscopic
scale have been well studied with a view to exploitation e.g. as deployable structures
(Pellegrino & Guest, 2000). Kovács et al. (2003) introduced a class of expandable
polyhedral structures, the expandohedra, consisting of prismatic faces with a single
link along each edge formed by hinged plates. The existence of a finite breathing
motion for such systems depends critically on the correct geometry of the linking
hinge assembly. The geometry of this single-link prototype differs in detail from
that found in viruses: the experimental observations on (Speir et al. 1995) show
a linkage where adjacent ‘faces’ have a double-link connection exhibiting local C2

symmetry.
The present paper shows that it is possible to adapt the notion of an expando-

hedron to the biological context by constructing a double-link expandohedron with
several desirable properties. Not only is the double-link structure closer to the ob-
served virus morphology, while retaining a finite breathing mode, but the existence
of this mode is a generic symmetry feature that does not depend on a particu-
lar linkage geometry. The links consist of a pair of bars connected to the faces by
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Figure 2. The construction of a double-link expandohedron around a regular pentagonal
face. A simple arrangement, in which links run from vertices to edge mid-points, is shown;
many other arrangements are compatible with the construction described in the text.

spherical joints, in a simplified form of a double link suggested in the concluding
paragraph of the paper by Kovács et al. (2003).

2. Construction

We will consider double-link expandohedra based on trivalent polyhedral parents,
i.e. polyhedra in which each vertex is the meeting point of three edges. These include
as special cases all the ‘fullerenes’, which consist entirely of hexagonal and pentago-
nal faces, the latter being twelve in number, and in particular icosahedral fullerenes,
which are possible for vertices numbering 20T , where T is the triangulation number,
defined as T = i2 + ij + j2 such that i, j = 0, 1, 2, ..., i2 + j2 6= 0 (Coxeter 1971;
Goldberg 1937). These icosahedral fullerenes provide structural models for a large
class of viruses (Caspar & Klug 1962).

Consider a trivalent polyhedron P . The double-link expandohedron D is con-
structed from the elements of P as shown schematically in figure 2. First the faces
of P are separated. D contains a distinct rigid prism for each face of P , the same
in size and shape as the original. Each edge of P is thereby doubled, with the edge
that was common to two faces now replaced by edges of the separated faces. The
rigid face prisms are now linked by a pair of bars that are connected to the prisms
by spherical joints: these bars run ‘diagonally’ across the gap. The choice of sense of
diagonals is made cyclically on some starting face, and then propagated consistently
over the whole set of face prisms.

The construction described gives a ‘fully closed’ configuration, where the bars
along an edge are both co-linear with the edge. However, a more general initial
geometric configuration would be given by initially displacing the face prisms in
some way consistent with the symmetry of D, and then generating the bars. There
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Figure 3. A double-link expandohedron based on the cube; the model is shown expanding
from left to right. The faces consist of square-box sections; the linking bar is a tube
containing a prestressed elastic string running face to face. The method of construction
leads to the structure being most relaxed in its expanded state, from which it can be
closed by drawstrings running between opposite faces. The drawstrings have been edited
out of these images, for clarity.

is a great deal of latitude in the placement of the bars; to reproduce a morphology
similar to that seen in virus structures, each would run approximately from a vertex
on one face to the midpoint of the adjacent face. In CCMV for example, the linking
protein strands, modelled here by spherically-jointed bars, are anchored within the
capsomere subunits. The only conditions that the bar placement must follow are
that the disposition of the bars should respect any rotational symmetries of P , and
the bars must not coincide.

An example of a physical model of a double-link expanding cube constructed as
described is shown in figure 3.

3. Mobility analysis

(a) Mobility counting

In our mobility analysis, we shall consider each of the bars between faces to
provide a single constraint on the motion of the faces. Thus we will not consider
the bars separately as rigid bodies. By construction then, D consists of f rigid
bodies and 2e constraints, where f and e are respectively the numbers of faces and
edges of P , which are related to v, the number of vertices of P , by the Euler relation
for spherical polyhedra, v +f = e+2. As P is trivalent, e = 3v/2, and f = v/2+2.

The mobility criterion is a simple generic counting relationship for calculating
the degrees of freedom of a mechanical linkage (Hunt 1978). In a form that allows
for non-independent constraints (Guest & Fowler 2003) the mobility of a linkage
consisting of n bodies connected by g joints, where joint i provides ci constraints,
is given by

m − s = 6(n − 1) −

g
∑

i=1

ci, (3.1)

where m is the number of mechanisms and s is the number of states of self-stress
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that the linkage can sustain (a state of self-stress is a set of internal forces in the
linkage in equilibrium with zero external load).

Here each face is a rigid body, so n = f , and for each of the g = e sets of links
between faces, ci = 2, i.e. there are two constraints per edge of P . Thus

m − s = 6(f − 1) − 2e (3.2)

and, for a trivalent parent polyhedron P ,

m − s = 6(v/2 + 1) − 3v = 6. (3.3)

Thus, every double-link expandohedron based on a trivalent polyhedron has at least
six mechanisms. Simple counting gives no information about the nature of these
mechanisms; they may be finite or infinitesimal, and may or may not include a fully
symmetric breathing mode. A symmetry analysis will help to clarify these issues.

(b) A symmetry-extended mobility analysis

This section will use a symmetry-extended mobility rule written in the lan-
guage of representations. The representation of a set of objects, such as faces or
constraints, denoted by Γ(object), describes the symmetry of that set in the rel-
evant point group, which here is the rotational subgroup G(D) of G(P ), the full
point group of P . The representation Γ(object) collects the character χ(S) of a
set under a symmetry operation S, i.e. the trace of the matrix that relates the set
before and after the application of S.

In the language of representations, one form of the mobility criterion (Guest &
Fowler 2003) is

Γ(m) − Γ(s) = Γ(relative body freedoms) − Γ(constraints) (3.4)

where Γ(m) and Γ(s) are the representations of the mobilities, and the states of
self-stress, respectively. Following the development in Guest & Fowler (2003), the
relative body freedoms of D span

Γ(relative body freedoms) = (Γσ(f, P ) − Γ0) × (ΓT + ΓR) (3.5)

where Γσ(f, P ) is the permutation representation of the face centres of P , Γ0 is the
totally symmetric representation, and ΓT and ΓR are the translation and rotational
representations, all in the point group G(D). This is a mathematical expression of
the fact that, in the absence of constraints, each body can rotate and translate
independently in 3D space.

In D, each bar imposes a scalar constraint on the distance between points on the
connected rigid face prisms. For each edge these scalar constraints have an in-phase
and out-of-phase combination. The in-phase component spans Γσ(e, P ), the per-
mutation representation of the edge centres of P , and the out-of-phase component
spans Γ→(e, P ), the representation of a set of vectors along the edges of P . Hence,
the set of all constraints spans

Γ(constraints) = Γσ(e, P ) + Γ→(e, P ). (3.6)
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In total, substituting (3.5) and (3.6) into (3.4), and noting that ΓR = ΓT in the
pure rotational group G(D),

Γ(m) − Γ(s) = 2(Γ(f, P ) − Γ0) × ΓT − Γσ(e, P ) − Γ→(e, P ). (3.7)

Further simplification is possible by taking the symmetry relations for struc-
tural components of trivalent polyhedra (Ceulemans & Fowler 1991) in versions
appropriate to a pure rotational group:

Γσ(f, P ) + Γσ(v, P ) = Γ→(e, P ) + 2Γ0, (3.8)

Γσ(v, P ) × ΓT = Γ→(e, P ) + Γσ(e, P ), (3.9)

Γσ(e, P ) × ΓT = Γσ(e, P ) + 2Γ→(e, P ) (3.10)

where Γσ(v, P ) is the permutation representation of the vertices of P . Multiplying
(3.8) by 2ΓT , using (3.9) to replace Γσ(v, P ) × ΓT and replacing 2Γ→(e, P ) from
(3.10) by Γσ(e, P ) × ΓT − Γσ(e, P ) allows (3.7) to be written, for P trivalent, as

Γ(m) − Γ(s) = Γσ(e, P ) ×

{

ΓT × ΓT −
5

2
ΓT −

3

2
Γ0

}

+ 2ΓT . (3.11)

The mathematical form of (3.11) has a number of useful consequences. The first
observation to note is that the term in braces has character 3×3−3×5/2−3/2 = 0
under the identity operation, so that the results m−s = 6 of the scalar counting rule
is recovered. The second observation is that the right-hand side of (3.11) consists
of a term that depends on the structure of P , Γstructure, and a term (2ΓT ) that
does not. The third observation is that the P -dependent term has character zero
under every operation except those C2 rotations whose axes pass through edges of
P ; Γσ(e, P ) has non-vanishing character only such C2 operations and the identity,
and the term in braces has zero character under the identity, as noted above. As
ΓT × ΓT − (5/2)ΓT − (3/2)Γ0 has character +2 under all C2 operations, we can
write, for P trivalent,

Γ(m) − Γ(s) = Γstructure + 2ΓT (3.12)

where Γstructure has character zero everywhere but under operation S = C2, where
the character is 2x, with x the number of edges of P unshifted by S (zero, one or
two). For any particular case, reduction of Γstructure is straightforward, particularly
if there is only one class of C2 operations. However, even these simple calculation
can be avoided, as (3.12) has a solution in closed form for all possible groups.

(c) Mobility by symmetry group

A complete solution of (3.12) can be given for all double-link expandohedra
based on trivalent parents. The twisted nature of the links in D implies that G(D)
is a pure rotational point group, and is hence limited to five possibilities: an axial
group CN , a dihedral group DN , the tetrahedral group T , the octahedral group
O, or the icosahedral group I. All trivalent polyhedra P , whatever their full point
group G(P ), produce a double-link expandohedron belonging to one of these five
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symmetry types. G(D) is the maximum rotational subgroup, obtained by striking
out all improper operations from G(P ); the full set of possibilities is:

G(P ) → G(D) : CNv, CNh, S2N , CN → CN ,

DNh,DNd,DN → DN ,

Th, Td, T → T,

Oh, O → O,

Ih, I → I.

For all double-link expandohedra based on trivalent parents, the symmetry dif-
ference between mechanisms and states-of-self-stress is governed entirely by the
numbers of edges that lie on C2 axes, and (3.11) therefore reduces to a simple
formula for Γ(m) − Γ(s). The procedure is to reduce Γstructure to a sum of irre-
ducible components. As the only characters of Γstructure that may take non-zero
values are those for C2 operations, the number of occurrences of a given irreducible
representation Γi is

2n2 x χi(C2)

|G|

where n2 is the number of C2 operations in the class, χi(C2) is the character of
Γi and |G| is the order of the group. Reduction of ΓT is shown in standard tables
(Atkins et al. 1970).

The results fall naturally into eight subcases:

G(D) = I: The number of edges on a C2 axis is either x = 2 or x = 0, and

Γ(m) − Γ(s) =
x

2
(A − T1 − T2 + H) + 2T1; (3.13)

G(D) = O: The number of edges on a C2 axis that coincides with a principal C4

axis must be x = 0, and on any other C2 axis is either x = 2 or x = 0. Thus

Γ(m) − Γ(s) =
x

2
(A1 − A2 − T1 + T2) + 2T1; (3.14)

G(D) = T : The number of edges on a C2 axis is either x = 2 or x = 0, and

Γ(m) − Γ(s) =
x

2
(A + E − T ) + 2T ; (3.15)

G(D) = D2: The numbers of edges, x, y, z, on the three distinct C2 axes can each
independently take values of 2 or 0. Thus

Γ(m) − Γ(s) =
1

2
(x + y + z)A +

1

2
(4 − x − y + z)B1+

1

2
(4 − x + y − z)B2 +

1

2
(4 + x − y − z)B3; (3.16)

G(D) = DN , N > 2, N even: The number of edges on the C2 axis that coincides
with the principal CN axis is x = 0, and the numbers of edges, x′, x′′, on the

Article submitted to Royal Society
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distinct transverse C ′

2
and C ′′

2
axes each independently take values of 2 or 0.

Thus

Γ(m) − Γ(s) =
1

2
(x′ + x′′)A1 +

1

2
(4 − x′ − x′′)A2+

1

2
(x′ − x′′)B1 +

1

2
(x′′ − x′)B2 + 2E1, (3.17)

(where E1 ≡ E for N = 4);

G(D) = DN , N odd: The number of edges on a C2 axis is one of x = 2, 1, 0, and

Γ(m) − Γ(s) = xA1 + (2 − x)A2 + 2E1, (3.18)

(where E1 ≡ E for N = 3);

G(D) = C2: The number of edges on the C2 axis can take values of x = 2, 1, 0, and

Γ(m) − Γ(s) = (2 + x)A + (4 − x)B; (3.19)

G(D) = CN , N 6= 2: There is no pure C2 axis, and

Γ(m) − Γ(s) = 2ΓT , (3.20)

where 2ΓT = 6A for N = 1, 2ΓT = 2A + 2E for N = 4, and 2ΓT = 2A + 2E1

otherwise.

It will later prove useful to have noted that Γ(m) − Γ(s) contains the totally
symmetric representation for any double-link expandohedron D where at least one
edge of the parent polyhedron lies on a C2 axis, and for any D where G(D) is an ax-
ial CN group. This implies that Γ(m) contains a totally symmetric component, and
therefore that the structure has a totally symmetric mechanism — either infinites-
imal or finite. Subsection 3(e) discusses how to determine when this mechanism is
a finite breathing mode.

(d) Icosahedral virus systems

The structures of interest as models of viruses are the trivalent polyhedra defined
by T = i2+ij+j2 such that i, j = 0, 1, 2, ..., i2+j2 6= 0, and consist of an icosahedral
arrangement of 12 pentagons and 10(T − 1) hexagons, having 20T vertices and
therefore 30T edges. These are precisely the polyhedra that represent icosahedrally-
symmetric fullerene carbon cages, and are the icosahedral members of the class of
‘multi-symmetric’ polyhedra (Goldberg 1937). For these systems, the results of §3(c)
can be extended.

A chiral icosahedral fullerene polyhedron has orbits of edges of sizes 30 or 60,
where two edges of an orbit of size 30 lie on each C2 axis (x = 2), but no edges on an
orbit of size 60 lie on any C2 axis (x = 0). It has vertices that fall into orbits of 20
(vertices on C3 axes), and orbits of 60 (vertices in the general position). Edge orbits
of size 20 are not possible, as a tangential edge may not have C3 symmetry, and
vertex orbits of size 30 are likewise forbidden by the impossibility of C2 symmetry
for a vertex at the junction of three tangential edges. A single-shell icosahedral
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fullerene polyhedron can therefore have at most one 30 orbit, since the edges that
make up the 30 orbit occupy all the points at which the 15 C2 axes pierce the
sphere, and therefore this orbit can be occupied only if T is odd. T = 4 (the 80
vertex icosahedral fullerene) is the smallest case with x = 0.

Similarly, the single-shell icosahedral fullerene polyhedron can have at most one
20-orbit of vertices, with the same necessary and sufficent condition that T be odd.
Hence x = 0 iff T is even, and x = 2 iff T is odd. Thus there is a guaranteed
totally symmetric mechanism iff T is odd, valid in particular for T = 1 and all of
its successive leapfrogs (Fowler & Steer 1987) T = 3, 9, 27, ....

The result generalises to the other Goldberg polyhedra, the tetrahedrally sym-
metric trivalents with 4 triangles, and the octahedrally symmetric trivalents with 6
squares, all other faces being hexagonal. In these cases the vertex counts are 4T and
8T , the edge counts 6T and 12T , and the x = 2 case is exactly that of a polyhedron
with a single 6 (12) orbit of edges, i.e. T odd.

Orbit analysis can also be applied to the parameters determining bar positions in
double-link expandohedra. For example in the case T = 3 links may be constructed
with three distinct bar lengths, two for pentagon-hexagon contacts, and one for
the hexagon-hexagon contacts on the C2 axis. This allows tuning of the model to
reproduce experimentally observed features such as the pentamer ‘dimpling’ of the
swollen CCMV (Speir et al. 1995).

(e) A finite breathing mode?

Kangwai and Guest (1999) gave two conditions that together guarantee that
a mechanism is finite and not only infinitesimal. These are that the mechanism
has to be totally symmetric in some appropriate symmetry group, while at the
same time there must not be a totally symmetric state of self-stress. The previous
section showed that many double-link expandohedra are certain to have a totally
symmetric mechanism from a mobility analysis; this section will determine under
which conditions it can be guaranteed that a totally symmetric state of self-stress
does not exist.

A totally symmetric state of self-stress can be ruled out for almost all configura-
tions of double-link expandohedra based on the five platonic solids. Here, every edge
has a C2 axis passing through it, and for a totally symmetric state of self-stress, if
there is a tension in one bar linking two faces, there must be an equal tension in
the other bar. Considering one of the faces, these tensions will have a component
perpendicular to the face, except when both bars lie parallel to the face, which can
only happen in the fully closed configuration. As all pairs of bars on each edge of a
face provide the same force, the face can only be in equilibrium in the fully closed
configurations, or if the tensions are both zero. Thus apart from the fully closed
configuration, there can be no totally symmetric state of self-stress. Arguments
based on vertex parity show that even for the fully closed configuration, only the
octahedron can support a totally symmetric state of self-stress.

The simple result above that a totally symmetric state of self-stress is not pos-
sible in a generic configuration does not extend to icosahedral fullerene polyhedra.
For a general placement of bars, however, numerical calculation (§4) has not found
a totally symmetric state of self-stress for cases of interest.
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Additional, not totally symmetric, states of self-stress in the fully closed configu-
ration exist for any expandohedron. There will always be a ‘local’ state of self-stress
where one bar of an edge is in tension, and the other is in compression. Thus in
the fully closed state, the states of self-stress must span at least Γ→(e, P ), and to
preserve Γ(m) − Γ(s) there must be additional mechanisms, which disappear once
the double-link expandohedron is displaced along its totally symmetric breathing
mode.

4. Calculations

Two types of calculation were carried out. Firstly, detailed symmetry-adapted cal-
culations to characterise mechanisms and states of self-stress were carried out for
double-link expandohedra based on each of the trivalent platonic solids. Secondly,
a more limited check on the number of mechanisms and states of self-stress was
made for the first 15 icosahedral expandohedra.

(a) Platonic double-link expandohedra

In each case, a ‘general’ geometry is found by initially forming the expandohedra
in its fully closed state, with bars running from vertices to edge mid-points. Each
face is then rotated about its normal by 10◦, and displaced along its normal by the
distance required to restore the correct bar lengths. For this geometry, a symmetry-
adapted equilibrium matrix (Kangwai & Guest 2000) is calculated, and used to
characterise states of self-stress and mechanisms. The results are as follows:

Dodecahedron, G(D) = I:
m = 9; s = 3, (4.1)

Γ(m) = A + T1 + H; Γ(s) = T2; (4.2)

Cube, G(D) = O:
m = 7; s = 1, (4.3)

Γ(m) = A + T1 + T2; Γ(s) = A2; (4.4)

Tetrahedron, G(D) = T :
m = 6; s = 0, (4.5)

Γ(m) = A + E + T ; Γ(s) = 0. (4.6)

For each of these cases, there are two edges on each C2 axis, and hence x = 2, and
the symmetry results (3.13)–(3.15) give a full account of the mechanisms and states
of self-stress. In particular, there is no totally symmetric state of self-stress.

(b) Icosahedral double-link expandohedra

Calculations were carried out for the double-link expandohedra based on the
icosahedral fullerene polyhedra, T = 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31,
36, i.e. the first 15 possibilities. In each case a ‘generic’ geometry was constructed
by taking ‘topological coordinates’ from the eigenvectors of the adjacency matrix
(Manolopoulos & Fowler 1992), separating the faces by radial expansion of 10%,
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concerted rotation of all faces by 3◦, and connection of bars between vertices and
edge mid-points. These coordinates have the full (chiral) symmetry G(D), but are
otherwise essentially arbitrary. An equilibrium matrix relating the forces and cou-
ples applied to faces, to the tension in the linking bars was constructed, and its
rank determined. The dimensions and the rank of this matrix give the number of
mechanisms and states of self-stress (Pellegrino 1993).

The idea behind using a single point calculation of this kind is that the symmetry-
mobility criterion is derived for a generic geometry within the appropriate symmetry-
group, and as such give a minimum, but not necessarily complete, account of the
mechanism and states of self-stress. Examples are known where such a result is
incomplete for special configurations (Fowler & Guest 2000), or displays systematic
incompleteness for all configurations (Fowler & Guest 2002). In the present case ei-
ther is a priori conceivable, but can be distinguished by an appropriate single-point
calculation if this shows that the minimum set is complete at some ‘generic’ single
point. A single-point calculation that shows the minimum set is incomplete does
not distinguish between the cases. For example, if a double-link expandohedron for
T = 4 was constructed as above, but without face rotation, it would give m = 15,
s = 9, but here edges of adjacent faces are parallel, as are the connecting bars.

The 15 results follow a simple pattern. The odd values of T give m = 9 and s = 3,
whereas the even values of T give m = 6 and s = 0. As these are exactly the number
predicted by the symmetry mobility criterion (3.11), we see that symmetry gives a
full account of the mechanisms and states of self-stress in the generic icosahedrally
symmetric configuration. Application of (3.13) tells us that the mechanisms for T
odd span A+T1+H, and for T even span 2T1, whereas the states of self-stress span
the representation T2 for odd T , and are absent for even T . Thus the mobilities of
all odd T cases, including that of the CCMV, follow the pattern set by T = 1, the
dodecahedron (4.2). It is a natural conjecture that these results are true for all T .

5. Conclusions

This paper has introduced an infinite class of double-link expandohedra, each con-
structed from a parent polyhedron by replacing all faces with rigid plates, and
connecting adjacent plates with a pair of spherically jointed bars. The construction
is a realistic model of observed morphology of e.g. CCMV and other viruses capable
of reversible expansion under change in pH.

New symmetry-based techniques have been used to provide a general account of
the mobility of such expandohedra, giving closed formulae for the symmetry excess
of mechanisms over states of self stress for all the possible double-link expandohedra
based on trivalent parents. The formulae are cast in terms of the numbers of links
with C2 site symmetry. A generic breathing expansion mode has been identified
for all double-link expandohedra based on CN -symmetric parent polyhedra and
for all with non-zero numbers of links with C2 site symmetry. The latter class
includes double-link expandohedra based on trivalent platonic solids and crucially
all those based on icosahedrally symmetric trivalent polyhedra with pentagonal and
hexagonal faces only and with odd triangulation number. A potential expansion
mechanism is thus identified for odd-T icosahedral viruses.

Numerical calculations on the structures defined by the first 15 triangulation
numbers show the completeness of the generic symmetry treatment, from which it
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can be deduced that the totally symmetric expansion mode is finite in all cases with
odd T ≤ 31, and non-existent in all cases with even T ≤ 36. It is conjectured that
these two results generalise to all T .
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