
DENDRO
Voxel plug-in for Grasshopper

Documentation

v0.01.00

ecrlabs

www.ecrlabs.com/dendro

ecrlabs

Overview

Installation ...1

Basic Usage

Settings Component Inputs ..2

Converters

Mesh to Volume ..3

Curve to Volume ..3

Point Cloud to Volume ..4

Volume to Mesh ..5

Invalid Mesh Solutions ...6

Filters

Smooth ...7

Offset ..7

Blend ...7

Mask Filter ...8

Intersect Components

Union ... 10

Intersect .. 10

Difference ... 10

Input Output

Write VDB ...11

Read VDB ...11

Grasshopper Compatibility

Component Chart ...11

External Links

Contact and GitHub ..12

TABLE OF CONTENTS

www.ecrlabs.com/dendro

ecrlabs
1

Dendro is a volumetric modeling plug-in for Grasshopper built on top of the OpenVDB library. It provides multiple

ways to wrap points, curves, and meshes as a volumetric data type, allowing you to then perform various

operations on those volumes. Dendro includes components for boolean, smoothing, offsets, and morphing

operations.

When working with meshes or Breps, these types of operations are often computationally heavy, prone to

failures, or cannot handle complex geometry. OpenVDB’s volume data structures allow for quicker computation

with higher repeatability, enabling you to leverage more complex operations within Grasshopper.

The goal was to make Dendro integrate into Grasshopper as seamlessly as possible. Whereas many voxel

solutions require you to think of geometry as living with a bounding box, Dendro makes working with volumes

no different than handling any other geometry in Grasshopper. Dendro works with many native Grasshopper

components, avoiding the ‘blocking’ found in other plugins, and allowing you to move in and out of volume

operations very quickly.

OVERVIEW

INSTALLATION

DOWNLOAD AND UNBLOCK

Download the plug-in from www.ecrlabs.com/dendro

Right click the ZIP file and select “Properties” from the

drop-down menu. Make sure “Unblock” is not check ed

under the General tab.

COPY PLUGIN FILES

Copy all files from the ZIP to your Rhino/Grasshopper

plug-in directory. This should be:

C:\Users\[UserName]\AppData\Roaming\Grasshopper\Libraries\

DISABLE COFF BYTE ARRAYS

Open Rhino. Type the command:

GrasshopperDeveloperSettings

Make sure “Memory load *.GHA assemblies

using COFF byte arrays” is unchecked.

Failure to unblock the zip file or disable COFF byte arrays will result in the plug-in not working.

1

2

3

www.ecrlabs.com/dendro

ecrlabs
2

BASIC USAGE

Used by:
• Mesh to Volume
• Curve to Volume
• Point Cloud to Volume

Description:
Voxel size is the x, y, z
dimensions of the individual
voxels filling the volume.
Think of this as the
resolution of the volume.

Suggestions:
Keep this value as large as
possible while working and
decrease it as a final step.

Used by:
• Mesh to Volume
• Curve to Volume
• Point Cloud to Volume

Description:
Bandwidth extends the
available voxel field around
your volume. Voxels within
this band are set active,
everything else is inactive.

Suggestions:
This controls the active
voxel count so keep this
value as small as possible
in order to minimize
computation time.

Used by:
• Volume to Mesh

Description:
Isovalue is the accuracy
of the resulting mesh to
the original value. it can be
abstractly thought of as a
positive or negative offset.

Suggestions:
Typically you want to keep
this at zero to maintain
accuracy to the actual
volume.

If you encounter “Invalid
Mesh” issues, then setting
the Isovalue to 0.002 is
often a workaround.

Used by:
• Volume to Mesh

Description:
Adaptivity sets the
uniformity of mesh faces.
Values can range from 0-1,
with a value 0 being more
equalized and dense.

Suggestions:
Higher adaptivities will
allow more variation in
polygon size, resulting in
fewer polygons and quicker
calculations.

SETTINGS COMPONENT INPUTS

Let’s start with the settings component to create your first volume. The settings component has four inputs:

The typical workflow for the Dendro plug-in is to generate a volume, run your operations on it and then output

your volume as a mesh. Volume objects can be created from Meshes, Curves or Points.

GLOBAL VARIABLES

All the geometry converters within Dendro use a global settings parameter. There are fringe use-cases where

you may want to use different settings for each converter, but in general, you should create one settings

component and feed it into all of your components.

Voxel Size (S) Bandwidth (B) Isovalue (I) Adaptivity (A)

www.ecrlabs.com/dendro

ecrlabs
3

With an understanding of the basics of volume settings, you can use the Dendro conversion components to

switch to and from volume data. For converting geometry into volumes, you can use the Mesh to Volume,

Curves to Volume and Point Cloud to Volume components. Use the Volume to Mesh for getting your volume

back into a closed mesh.

MESH TO VOLUME

The Mesh to Volume component takes any closed mesh as input and converts it into a volume. For the Mesh

to Volume component to work it must have a Settings input and a “closed” mesh.

You can generate valid volumes from “open” meshes if your voxel size is larger than any gaps in the mesh.

This feature can be useful for mesh repair or for creating a watertight mesh for 3D printing.

CONVERSION

Mesh to Volume only works on closed meshes. If a mesh is open you will get erratic results. In the example to the right,
the input mesh box (left) is missing an entire face and as a result the output (right) is incorrect.

Open mesh
example

Erratic output from
Mesh to Volume

www.ecrlabs.com/dendro

ecrlabs
4

POINT CLOUD TO VOLUME

The Point Cloud to Volume component generates volumes from point data. Similar to Curve to Volume, this

component takes in a radius and creates a volume sphere at each point. You can supply one radius value for

everything or provide a list of radius values for each point.

This component can be used to replicate the features of the Curve to Volume but with more control. Below you

can see what happens as segment increases are applied to a curve with the resulting points used to create a

volume.

Additionally, the Point Cloud to Volume

component can take in a list of radius

values, one for each point provided. This

allows you to make complex variable

volumes from an input curve.

In this example points along a curve are

given a radius from 0.2 up to 3.0.

Points can also be used to create

a thickened volume from a mesh

or surface by supplying points.

Here all the vertices of a mesh

surface are extracted and

assigned a radius to create the

resulting volume.

www.ecrlabs.com/dendro

ecrlabs
5

VOLUME TO MESH

Volume to mesh is the single output component to get volumetric data back into a format that is native to

Grasshopper. The Volume to Mesh component will take single or multiple Volume (V) inputs and convert them

into mesh output.

The settings driving the mesh generation are the Isovalue and Adaptivity that come out of the Settings

component (see the table on page 2 for more information).

CURVE TO VOLUME

The Curve to Volume component takes any curve as input and generates a simple volume from it. The curve is

wrapped with a spherical profile of a given radius. The radius input defines the size of these spheres based off

of your global Rhino units.

Curves can also be used to effectively create lattice structures from existing line data when used in conjunction

with other plug-ins such as Crystallon or Interlattice, potentially with better reliability and performance

characteristics than their built in mesh generators.

www.ecrlabs.com/dendro

ecrlabs
6

In some instances, converting a volume into a mesh may result in an “Invalid Mesh.” Invalid Meshes often appear
to output correctly and render from the Grasshopper canvas without issue but fail on subsequent operations and
will not bake. As a result, they can be frustrating to spot and diagnose.

The easiest fix is to make a change to your Isovalue and take it from 0 to a small number such as 0.001 or 0.002
which will usually result in a valid mesh output. If there is still a failure to try tweaking your Adaptivity settings.

INVALID MESH

In this example the Volume to Mesh component is outputting an invalid mesh. This is not obvious until the

mouse is hovered over the “M” of the output triggering the yellow breakout info box.

VALID MESH

The invalid state was resolved by increasing the Isovalue from 0 to 0.002. This is the most common fix for

any invalid mesh output.

www.ecrlabs.com/dendro

ecrlabs
7

FILTERS

Filters are a group of Dendro components that modify volume objects. Filters offer some amazing flexibility in

modifying volumetric input data. Using other volumes as masks, you can even isolate specfic areas to apply

filtering to.

SMOOTH VOLUME

The Smooth component runs a smoothing operation on an input volume. The Smooth component has the

following inputs:

BLEND VOLUME

The Blend component takes any two volume inputs and morphs between them. The position to evaluate the

blend at is controlled by the parameter (t) input (interval of 0-1). The End Time (E) number establishes the

upper boundary of the time step and is tied to voxel size.

To find the correct End time, attach your volume inputs and then set your parameter (t) to 1. Then increase

your End Time until the output looks exactly like the (B) volume input. Now you can adjust the parameter (t) to

blend between the two input volumes.

OFFSET VOLUME

The Offset component offsets the exterior boundary of a volume. The Distance (D) input specifies the

offset amount in your document world units. Offset units may also be positive or negative which is very

helpful in shelling an object as well as making molds for casting.

Volume (V) Type (T) Width (W) Iterations (I)

Usage:
This is the input volume that
the smooth operation will
run on. Input can be single or
multiple volumes.

Usage:
There are four smoothing
types available: Gaussian (0),
Laplacian (1), Mean (2) and
Median (3). Values supplied
and integers.

Usage:
Width can be thought of as
the scale of the smoothing
effect on the input volume.
Input must be a positive
integer.

Width input has no effect on
Laplacian Type smoothing.

Usage:
Iteration is the number
of times the smoothing
operation runs on the input
body.

www.ecrlabs.com/dendro

ecrlabs
8

MASK FILTER

Dendro’s filter components (Smooth, Offset and Morph) all have a “Mask (M)” input, which allows you to

perform the filter operation in specific areas. Mask data is created by the Create Mask component. The mask is

defined by a volume which represents the bounds of the mask.

Masks function similarly to the mask feature found in a 2D image editor, allowing the user to define or limit an

area that will be affected by a filter.

Masks may seem confusing at first but getting comfortable with them allows for critical control of filter effects

in the Dendro volume workflow.

Mask Volume

Effected Volume

Mask Sphere

Masked smooth
area operation

Resulting volume

Volume (V) Min Value (A) Max Value (B) Mask Invert (I)

Usage:

This is the input volume that
will be your mask area.

Example:

In the above example the green
sphere is the mask volume.
This volume solely exists to
define a filter area and is not
seen in the resulting filter
operation.

A mask must overlap a target
volume in order to be of use.

Usage:

Min Value should be a
negative number. This value
can not be zero.

Example:

The Min Value defines how
the mask effect will transition
inside of the masked volume
boundary.

Start with a low negative
number such as -0.001 and
work your way up to see
effect.

Usage:

MaxValue should be a positive
number. This number can be
zero.

Example:

The max value defines how the
masked effect will transition
outside of the volume
boundary.

It is easiest to maintain this at
0 unless you are looking for a
specific effect.

Usage:

True or False boolean input
that defines which side of the
mask volume a filter effect will
influence.

Example:

A False boolean will mean
a filter will only apply to the
target volume on the inside
of the mask. A True input will
apply the filter to any part
of the volume outside of the
mask.

www.ecrlabs.com/dendro

ecrlabs
9

BOOLEAN

Boolean operations are one of the more compelling features within Dendro. Where mesh (and even NURBS)

booleans can be prone to failure, volume booleans are incredibly stable and can be computationally lighter. The

standard boolean operations available are Union, Difference, and Intersection.

When used with Filters the booleans can be extremely useful at shelling objects and/or making molds.

www.ecrlabs.com/dendro

ecrlabs
10

INTERSECT

Intersection outputs any overlapping volumetric area from both the A and B inputs. Inputs can be single

volumes or lists.

UNION

Union combines any overlapping input volumes into a single body. The component must have multiple input

volumes on the same branch of a tree in order to run correctly.

DIFFERENCE

This is the basic subtraction boolean in Dendro. The B input is subtracted from the A input. Inputs can be

single volumes or lists.

www.ecrlabs.com/dendro

ecrlabs
11

IO

Dendro has basic read and write capabilities for OpenVDB binary files. This can be utilized to interact with

OpenVDB files generated in programs outside of Rhino/Grasshopper such as Houdini or Maya.

WRITE VDB FILE

Saves a .VDB file to the specified File Path (F). File path must be fully specified valid location, file name and end

in “.vdb”. Boolean set to “True” triggers file output.

READ VDB FILE

Loads a .VDB file from specified location. File must have .vdb extension.

COMPONENT COMPATIBILITY

Dendro works with most Grasshopper components giving it the ability to fully integrate into the standard

Grasshopper workflow and logic. This helps to make the learning curve for Dendro voxel usage extremely low.

That being said, voxel systems are not natively supported by either Rhino or Grasshopper so some components

can have unexpected and unpredictable results. Below is a compatibility chart for native Grasshopper

components that accept Geometry (G) or Content (C) inputs with Dendro Volume (V) outputs.

Sets
All List items working
All Set items working
All Tree items working

Surface
• Primitive / BBox

Transform
• Affine / Camera Obscura
• Affine / Scale NU
• Affine / Shear
• Affine / Shear Angle
• Affine / Box Mapping

Transform
• Affine / Scale
• Array / Box Array
• Array / Curve Array
• Array / Linear Array
• Array / Polar Array
• Array / Rectangular Array

• Affine / Orient Direction
• Affine / Project
• Affine / Project
• Affine / Rect Mapping
• Affine / Tri Mapping
• Array / Kaleidoscope

• Euclidean / Mirror
• Euclidean / Move
• Euclidean / Move to Plane
• Euclidean / Orient
• Euclidean / Rotate
• Euclidean / Rotate 3D
• Euclidean / Rotate Axis
• Euclidean / Rotation Dir

Transform
• Euclidean / Move Away
From (partially working)
• Morph / (none of the
components in this group
are compatible)

• Util / Compound
• Util / Split
• Util / Inverse Trans
• Util / Transform
• Util / Group
• Util / UnGroup

Vector
• Point / Project point

Functioning Native Components

Non-Functioning Native Components

www.ecrlabs.com/dendro

ecrlabs
12

OPENVDB

Dendro is based built on top of the OpenVDB library which is developed and maintained by DreamWorks

Animation for use in special effects applications for feature film productions. For more information please visit:

www.openvdb.org

GITHUB REPOSITORY

Dendro is an open source project. The repository is up and available at GitHub:

www.github.com/ecrlabs/dendro

FOOD4RHINO

Questions on using the plug-in? We frequently check our Food4Rhino forum page and will get back to you asap:

https://www.food4rhino.com/app/dendro

CONTACT

Want to talk to us directly? No problem:

dev@ecrlabs.com

The Dendro plug-in is a beta product being actively updated so please check to ensure you have the most

up-to-date version at: www.ecrlabs.com/dendro

Thanks for the support!

-The ECR Labs Team

ADDITIONAL INFO

SPECIAL THANKS

The MachineHistories team for all their help in bringing this altogether and for their insights into making this a

much more thoughtful plug-in.

McNeel for their amazing documentation which helped in integrating these tools more seamlessly into the

Grasshopper workflow.

